158
Views
51
CrossRef citations to date
0
Altmetric
Review

Feasibility of cross-protective vaccination against flaviviruses of the Japanese encephalitis serocomplex

&
Pages 177-187 | Published online: 09 Jan 2014

References

  • Cook S, Holmes EC. A multigene analysis of the phylogenetic relationships among the flaviviruses (Family: Flaviviridae) and the evolution of vector transmission. Arch. Virol.151(2), 309–325 (2006).
  • Lindenbach BD, Rice CM. Flaviviridae: the viruses and their replication. In: Fields Virology. Knipe DM, Howley PM (Eds). Lippincott Williams & Wilkins, Philadelphia, PA, USA, 991–1042 (2001).
  • Guzman MG, Halstead SB, Artsob H et al. Dengue: a continuing global threat. Nat. Rev. Microbiol.8(Suppl. 12), S7–S16 (2010).
  • Solomon T. Flavivirus encephalitis. N. Engl. J. Med.351(4), 370–378 (2004).
  • Halstead SB, Jacobson J. Japanese encephalitis. Adv. Virus. Res.61, 103–138 (2003).
  • Konishi E, Shoda M, Kondo T. Prevalence of antibody to Japanese encephalitis virus nonstructural 1 protein among racehorses in Japan: indication of natural infection and need for continuous vaccination. Vaccine22(9–10), 1097–1103 (2004).
  • Mackenzie JS, Lindsay MD, Coelen RJ, Broom AK, Hall RA, Smith DW. Arboviruses causing human disease in the Australasian zoogeographic region. Arch. Virol.136(3–4), 447–467 (1994).
  • Reisen WK. Epidemiology of St. Louis encephalitis virus. Adv. Virus. Res.61, 139–183 (2003).
  • Mackenzie JS, Gubler DJ, Petersen LR. Emerging flaviviruses: the spread and resurgence of Japanese encephalitis, West Nile and dengue viruses. Nat. Med.10(Suppl. 12), S98–S109 (2004).
  • Van Den Hurk AF, Ritchie SA, Mackenzie JS. Ecology and geographical expansion of Japanese encephalitis virus. Ann. Rev. Entomol.54, 17–35 (2009).
  • Colwell RR, Epstein PR, Gubler D et al. Climate change and human health. Science279(5353), 968–969 (1998).
  • Nett RJ, Campbell GL, Reisen WK. Potential for the emergence of Japanese encephalitis virus in California. Vector Borne Zoonotic Dis.9(5), 511–517 (2009).
  • Hammon WM, Sather GE. Immunity of hamsters to West Nile and Murray Valley viruses following immunization with St. Louis and Japanese B. Proc. Soc. Exp. Biol. Med.91(3), 521–524 (1956).
  • Price WH, Thind IS, O’Leary W, El Dadah AH. A protective mechanism induced by live group B arboviruses against heterologous group B arboviruses independent of serum neutralizing antibodies or interferon. Am. J. Epidemiol.86(1), 11–27 (1967).
  • Tesh RB, Travassos Da Rosa AP, Guzman H, Araujo TP, Xiao SY. Immunization with heterologous flaviviruses protective against fatal West Nile encephalitis. Emerg. Infect. Dis.8(3), 245–251 (2002).
  • Fang Y, Reisen WK. Previous infection with West Nile or St. Louis encephalitis viruses provides cross protection during reinfection in house finches. Am. J. Trop. Med. Hyg.75(3), 480–485 (2006).
  • Nemeth NM, Bosco-Lauth AM, Bowen RA. Cross-protection between West Nile and Japanese encephalitis viruses in red-winged blackbirds (Agelaius phoeniceus). Avian Dis.53(3), 421–425 (2009).
  • Williams DT, Daniels PW, Lunt RA, Wang LF, Newberry KM, Mackenzie JS. Experimental infections of pigs with Japanese encephalitis virus and closely related Australian flaviviruses. Am. J. Trop. Med. Hyg.65(4), 379–387 (2001).
  • Goverdhan MK, Kulkarni AB, Gupta AK, Tupe CD, Rodrigues JJ. Two-way cross-protection between West Nile and Japanese encephalitis viruses in bonnet macaques. Acta Virol.36, 277–283 (1992).
  • Midgley CM, Bajwa-Joseph M, Vasanawathana S et al. An in-depth analysis of original antigenic sin in dengue virus infection. J. Virol.85(1), 410–421 (2011).
  • Kanesa-Thasan N, Putnak JR, Mangiafico JA, Saluzzo JE, Ludwig GV. Short report: absence of protective neutralizng antibodies to West Nile virus in subjects following vaccination with Japanese encephalitis or dengue vaccines. Am. J. Trop. Med. Hyg.66(2), 115–116 (2002).
  • Yamshchikov G, Borisevich V, Kwok CW et al. The suitability of yellow fever and Japanese encephalitis vaccines for immunization against West Nile virus. Vaccine23(39), 4785–4792 (2005).
  • Pulendran B. Learning immunology from the yellow fever vaccine: innate immunity to systems vaccinology. Nat. Rev. Immunol.9(10), 741–747 (2009).
  • Guirakhoo F, Kitchener S, Morrison D et al. Live attenuated chimeric yellow fever dengue type 2 (ChimeriVax-DEN2) vaccine: Phase 1 clinical trial for safety and immunogenicity: effect of yellow fever pre-immunity in induction of cross neutralizing antibody responses to all 4 dengue serotypes. Hum. Vaccin.2(2), 60–67 (2006).
  • Beasley DW, Lewthwaite P, Solomon T. Current use and development of vaccines for Japanese encephalitis. Exp. Opin. Biol. Ther.8(1), 95–106 (2008).
  • Tang F, Zhang JS, Liu W et al. Failure of Japanese encephalitis vaccine and infection in inducing neutralizing antibodies against West Nile virus, People’s Republic of China. Am. J. Trop. Med. Hyg.78(6), 999–1001 (2008).
  • Lobigs M, Larena M, Alsharifi M, Lee E, Pavy M. Live chimeric and inactivated Japanese encephalitis virus vaccines differ in their cross-protective values against murray valley encephalitis virus. J. Virol.83(6), 2436–2445 (2009).
  • Appaiahgari MB, Vrati S. IMOJEV((R)): a yellow fever virus-based novel Japanese encephalitis vaccine. Expert Rev. Vaccines9(12), 1371–1384 (2010).
  • Guy B, Guirakhoo F, Barban V, Higgs S, Monath TP, Lang J. Preclinical and clinical development of YFV 17D-based chimeric vaccines against dengue, West Nile and Japanese encephalitis viruses. Vaccine28(3), 632–649 (2010).
  • Lobigs M, Mullbacher A, Wang Y, Pavy M, Lee E. Role of Type 1 and Type 2 interferon responses in recovery from infection with an encephalitic flavivirus. J. Gen. Virol.84(Pt 3), 567–572 (2003).
  • Bosco-Lauth A, Mason G, Bowen R. Pathogenesis of Japanese encephalitis virus infection in a golden hamster model and evaluation of flavivirus cross-protective immunity. Am. J. Trop. Med. Hyg.84(5), 727–732 (2011).
  • Lim CK, Takasaki T, Kotaki A, Kurane I. Vero cell-derived inactivated West Nile (WN) vaccine induces protective immunity against lethal WN virus infection in mice and shows a facilitated neutralizing antibody response in mice previously immunized with Japanese encephalitis vaccine. Virology374(1), 60–70 (2008).
  • Takasaki T, Yabe S, Nerome R, Ito M, Yamada K, Kurane I. Partial protective effect of inactivated Japanese encephalitis vaccine on lethal West Nile virus infection in mice. Vaccine21(31), 4514–4518 (2003).
  • Monath TP. Japanese encephalitis vaccines: current vaccines and future prospects. Curr. Top. Microbiol. Immunol.267, 105–138 (2002).
  • Lobigs M, Pavy M, Hall RA et al. An inactivated Vero cell-grown Japanese encephalitis vaccine formulated with Advax, a novel inulin-based adjuvant, induces protective neutralizing antibody against homologous and heterologous flaviviruses. J. Gen. Virol.91(Pt 6), 1407–1417 (2010).
  • Petrovsky N. Freeing vaccine adjuvants from dangerous immunological dogma. Expert Rev. Vaccines7(1), 7–10 (2008).
  • Barrett AT, Gould EA. Antibody-mediated early death in vivo after infection with yellow fever virus. J. Gen. Virol.67, 2539–2542 (1986).
  • Gould EA, Buckley A. Antibody-dependent enhancement of yellow fever and Japanese encephalitis virus neurovirulence. J. Gen. Virol.70, 1605–1608 (1989).
  • Hawkes RA. Enhancement of the infectivity of arboviruses by specific antisera produced in domestic fowls. Aust. J. Exp. Biol. Med. Sci.42, 465–482 (1964).
  • Peiris JS, Porterfield JS. Antibody-dependent plaque enhancement: its antigenic specificity in relation to Togaviridae. J. Gen. Virol.58, 291–296 (1982).
  • Murphy BR, Whitehead SS. Immune response to dengue virus and prospects for a vaccine. Ann. Rev. Immunol.29, 587–619 (2011).
  • Reisen WK, Lothrop HD, Wheeler SS et al. Persistent West Nile virus transmission and the apparent displacement St. Louis encephalitis virus in southeastern California, 2003–2006. J. Med. Entomol.45(3), 494–508 (2008).
  • Lobigs M, Pavy M, Hall RA. Cross-protective and infection-enhancing immunity in mice vaccinated against flaviviruses belonging to the Japanese encephalitis virus serocomplex. Vaccine21, 1572–1579 (2003).
  • Broom AK, Wallace MJ, Mackenzie JS, Smith DW, Hall RA. Immunization with γ globulin of Murray Valley encephalitis virus and with an inactivated Japanese encephalitis virus vaccine as prophylaxis against Australian encephalitis: evaluation in a mouse model. J. Med. Virol.61, 259–265 (2000).
  • Wallace MJ, Smith DW, Broom AK et al. Antibody-dependent enhancement of Murray Valley encephalitis virus virulence in mice. J. Gen. Virol.84(Pt 7), 1723–1728 (2003).
  • Takada A, Kawaoka Y. Antibody-dependent enhancement of viral infection: molecular mechanisms and in vivo implications. Rev. Med. Virol.13(6), 387–398 (2003).
  • Chan KR, Zhang SL, Tan HC et al. Ligation of Fc γ receptor IIB inhibits antibody-dependent enhancement of dengue virus infection. Proc. Natl Acad. Sci. USA108(30), 12479–12484 (2011).
  • Ubol S, Halstead SB. How innate immune mechanisms contribute to antibody-enhanced viral infections. Clin. Vaccin. Immunol.17(12), 1829–1835 (2010).
  • Boonnak K, Dambach KM, Donofrio GC, Tassaneetrithep B, Marovich MA. Cell type specificity and host genetic polymorphisms influence antibody-dependent enhancement of dengue virus infection. J. Virol.85(4), 1671–1683 (2011).
  • Kou Z, Lim JY, Beltramello M et al. Human antibodies against dengue enhance dengue viral infectivity without suppressing type I interferon secretion in primary human monocytes. Virology410(1), 240–247 (2011).
  • Polack FP. Atypical measles and enhanced respiratory syncytial virus disease (ERD) made simple. Pediatr. Res.62(1), 111–115 (2007).
  • Marichal T, Ohata K, Bedoret D et al. DNA released from dying host cells mediates aluminum adjuvant activity. Nat. Med.17(8), 996–1002 (2011).
  • Rothman AL. Immunity to dengue virus: a tale of original antigenic sin and tropical cytokine storms. Nat. Rev. Immunol.11(8), 532–543 (2011).
  • Klein RS, Diamond MS. Immunological headgear: antiviral immune responses protect against neuroinvasive West Nile virus. Trends Mol. Med.14(7), 286–294 (2008).
  • Diamond MS, Mehlhop E, Oliphant T, Samuel MA. The host immunologic response to West Nile encephalitis virus. Front. Biosci.14, 3024–3034 (2009).
  • Samuel MA, Diamond MS. Pathogenesis of West Nile virus infection: a balance between virulence, innate and adaptive immunity, and viral evasion. J. Virol.80(19), 9349–9360 (2006).
  • Larena M, Lobigs M. Immunobiology of Japanese encephalitis virus. In: Flavivirus Encephalitis. Ruzek D (Ed.). InTech Open Access Publisher, Rijeka, Croatia, 339–382 (2011).
  • Samuel MA, Diamond MS. α/β interferon protects against lethal West Nile virus infection by restricting cellular tropism and enhancing neuronal survival. J. Virol.79(21), 13350–13361 (2005).
  • Diamond MS, Shrestha B, Marri A, Mahan D, Engle M. B cells and antibody play critical roles in the immediate defense of disseminated infection by West Nile encephalitis virus. J. Virol.77(4), 2578–2586 (2003).
  • Larena M, Regner M, Lee E, Lobigs M. Pivotal role of antibody and subsidiary contribution of CD8+ T cells to recovery from infection in a murine model of Japanese encephalitis. J. Virol.85(11), 5446–5455 (2011).
  • Sitati EM, Diamond MS. CD4+ T-cell responses are required for clearance of West Nile virus from the central nervous system. J. Virol.80(24), 12060–12069 (2006).
  • Diamond MS, Sitati EM, Friend LD, Higgs S, Shrestha B, Engle M. A critical role for induced IgM in the protection against West Nile virus infection. J. Exp. Med.198(12), 1853–1862 (2003).
  • Shrestha B, Diamond MS. Role of CD8+ T cells in control of West Nile virus infection. J. Virol.78(15), 8312–8321 (2004).
  • Shrestha B, Samuel MA, Diamond MS. CD8+ T cells require perforin to clear West Nile virus from infected neurons. J. Virol.80(1), 119–129 (2006).
  • Brien JD, Uhrlaub JL, Nikolich-Zugich J. Protective capacity and epitope specificity of CD8+ T cells responding to lethal West Nile virus infection. Eur. J. Immunol.37(7), 1855–1863 (2007).
  • Brien JD, Uhrlaub JL, Nikolich-Zugich J. West Nile virus-specific CD4 T cells exhibit direct antiviral cytokine secretion and cytotoxicity and are sufficient for antiviral protection. J. Immunol.181(12), 8568–8575 (2008).
  • Purtha WE, Myers N, Mitaksov V et al. Antigen-specific cytotoxic T lymphocytes protect against lethal West Nile virus encephalitis. Eur. J. Immunol.37(7), 1845–1854 (2007).
  • Licon Luna RM, Lee E, Müllbacher A, Blanden RV, Langman R, Lobigs M. Lack of both Fas ligand and perforin protects from flavivirus-mediated encephalitis in mice. J. Virol.76, 3202–3211 (2002).
  • Konishi E, Ajiro N, Nukuzuma C, Mason PW, Kurane I. Comparison of protective efficacies of plasmid DNAs encoding Japanese encephalitis virus proteins that induce neutralizing antibody or cytotoxic T lymphocytes in mice. Vaccine21(25–26), 3675–3683 (2003).
  • Pan CH, Chen HW, Huang HW, Tao MH. Protective mechanisms induced by Japanese encephalitis virus DNA vaccine: requirement for antibody but not CD8+ cytotoxic T-cell responses. J. Virol.75, 11457–11463 (2001).
  • Shrestha B, Ng T, Chu HJ, Noll M, Diamond MS. The relative contribution of antibody and CD8+ T cells to vaccine immunity against West Nile encephalitis virus. Vaccine26(16), 2020–2033 (2008).
  • Kim S, Li L, McMurtrey CP et al. Single-chain HLA-A2 MHC trimers that incorporate an immundominant peptide elicit protective T cell immunity against lethal West Nile virus infection. J. Immunol.184(8), 4423–4430 (2010).
  • Monath TP, Liu J, Kanesa-Thasan N et al. A live, attenuated recombinant West Nile virus vaccine. Proc. Natl Acad. Sci. USA103(17), 6694–6699 (2006).
  • Smith HL, Monath TP, Pazoles P et al. Development of antigen-specific memory CD8+ T cells following live-attenuated chimeric West Nile virus vaccination. J. Infect. Dis.203(4), 513–522 (2011).
  • Zhang Y, Corver J, Chipman PR et al. Structures of immature flavivirus particles. EMBO J.22(11), 2604–2613 (2003).
  • Kuhn RJ, Zhang W, Rossmann MG et al. Structure of dengue virus: implications for flavivirus organization, maturation, and fusion. Cell108(5), 717–725 (2002).
  • Li L, Lok SM, Yu IM et al. The flavivirus precursor membrane-envelope protein complex: structure and maturation. Science319(5871), 1830–1834 (2008).
  • Yu IM, Zhang W, Holdaway HA et al. Structure of the immature dengue virus at low pH primes proteolytic maturation. Science319(5871), 1834–1837 (2008).
  • Junjhon J, Edwards TJ, Utaipat U et al. Influence of pr-M cleavage on the heterogeneity of extracellular dengue virus particles. J. Virol.84(16), 8353–8358 (2010).
  • Nelson S, Jost CA, Xu Q et al. Maturation of West Nile virus modulates sensitivity to antibody-mediated neutralization. PLoS Pathog.4(5), e1000060 (2008).
  • Mukhopadhyay S, Kuhn RJ, Rossmann MG. A structural perspective of the flavivirus life cycle. Nat. Rev. Microbiol.3(1), 13–22 (2005).
  • Pierson TC, Diamond MS. Molecular mechanisms of antibody-mediated neutralisation of flavivirus infection. Expert Rev. Mol. Med.10(12), e12 (2008).
  • Bressanelli S, Stiasny K, Allison SL et al. Structure of a flavivirus envelope glycoprotein in its low-pH-induced membrane fusion conformation. EMBO J.23(4), 728–738 (2004).
  • Modis Y, Ogata S, Clements D, Harrison SC. Structure of the dengue virus envelope protein after membrane fusion. Nature427(6972), 313–319 (2004).
  • Bhardwaj S, Holbrook M, Shope RE, Barrett AD, Watowich SJ. Biophysical characterization and vector-specific antagonist activity of domain III of the tick-borne flavivirus envelope protein. J. Virol.75(8), 4002–4007 (2001).
  • Chu JJ, Rajamanonmani R, Li J, Bhuvanakantham R, Lescar J, Ng ML. Inhibition of West Nile virus entry by using a recombinant domain III from the envelope glycoprotein. J. Gen. Virol.86(Pt 2), 405–412 (2005).
  • Lee E, Lobigs M. Substitutions at the putative receptor-binding site of an encephalitic flavivirus alter virulence and host cell tropism and reveal a role for glycosaminoglycans in entry. J. Virol.74(19), 8867–8875 (2000).
  • Beasley DW, Barrett AD. Identification of neutralizing epitopes within structural domain III of the West Nile virus envelope protein. J. Virol.76(24), 13097–13100 (2002).
  • Oliphant T, Engle M, Nybakken GE et al. Development of a humanized monoclonal antibody with therapeutic potential against West Nile virus. Nat. Med.11(5), 522–530 (2005).
  • Sanchez MD, Pierson TC, Mcallister D et al. Characterization of neutralizing antibodies to West Nile virus. Virology336(1), 70–82 (2005).
  • Nybakken GE, Oliphant T, Johnson S, Burke S, Diamond MS, Fremont DH. Structural basis of West Nile virus neutralization by a therapeutic antibody. Nature437(7059), 764–769 (2005).
  • Oliphant T, Nybakken GE, Austin SK et al. Induction of epitope-specific neutralizing antibodies against West Nile virus. J. Virol.81(21), 11828–11839 (2007).
  • Throsby M, Geuijen C, Goudsmit J et al. Isolation and characterization of human monoclonal antibodies from individuals infected with West Nile Virus. J. Virol.80(14), 6982–6992 (2006).
  • Vogt MR, Dowd KA, Engle M et al. Poorly neutralizing cross-reactive antibodies against the fusion loop of West Nile virus envelope protein protect in vivo via Fc-γ receptor and complement-dependent effector mechanisms. J. Virol.85(22), 11567–11580 (2011).
  • Heinz FX, Holzmann H, Essl A, Kundi M. Field effectiveness of vaccination against tick-borne encephalitis. Vaccine25(43), 7559–7567 (2007).
  • Monath TP, Nichols R, Archambault WT et al. Comparative safety and immunogenicity of two yellow fever 17D vaccines (ARILVAX and YF-VAX) in a Phase 3 multicenter, double-blind clinical trial. Am. J. Trop. Med. Hyg.66(5), 533–541 (2002).
  • Van Gessel Y, Klade CS, Putnak R et al. Correlation of protection against Japanese encephalitis virus and JE vaccine (IXIARO(R)) induced neutralizing antibody titers. Vaccine29(35), 5925–5931 (2011).
  • Blaney JE Jr, Matro JM, Murphy BR, Whitehead SS. Recombinant, live-attenuated tetravalent dengue virus vaccine formulations induce a balanced, broad, and protective neutralizing antibody response against each of the four serotypes in rhesus monkeys. J. Virol.79(9), 5516–5528 (2005).
  • Schlesinger JJ, Foltzer M, Chapman S. The Fc portion of antibody to yellow fever virus NS1 is a determinant of protection against YF encephalitis in mice. Virology192, 132–141 (1993).
  • Mehlhop E, Nelson S, Jost CA et al. Complement protein C1q reduces the stoichiometric threshold for antibody-mediated neutralization of West Nile virus. Cell Host Microbe6(4), 381–391 (2009).
  • Hombach J, Solomon T, Kurane I, Jacobson J, Wood D. Report on a WHO consultation on immunological endpoints for evaluation of new Japanese encephalitis vaccines, WHO, Geneva, 2–3 September, 2004. Vaccine23(45), 5205–5211 (2005).
  • Dowd KA, Pierson TC. Antibody-mediated neutralization of flaviviruses: a reductionist view. Virology411(2), 306–315 (2011).
  • Nimmerjahn F, Ravetch JV. Divergent immunoglobulin g subclass activity through selective Fc receptor binding. Science310(5753), 1510–1512 (2005).
  • Mehlhop E, Ansarah-Sobrinho C, Johnson S et al. Complement protein C1q inhibits antibody-dependent enhancement of flavivirus infection in an IgG subclass-specific manner. Cell Host Microbe2(6), 417–426 (2007).
  • Nimmerjahn F, Ravetch JV. Fcγ receptors as regulators of immune responses. Nat. Rev. Immunol.8(1), 34–47 (2008).
  • Hofmeister Y, Planitzer CB, Farcet MR et al. Human IgG subclasses: in vitro neutralization of and in vivo protection against West Nile virus. J. Virol.85(4), 1896–1899 (2011).
  • Monath TP. Editorial: Jennerian vaccination against West Nile virus. Am. J. Trop. Med. Hyg.66(2), 113–114 (2002).
  • Halstead SB, Thomas SJ. New Japanese encephalitis vaccines: alternatives to production in mouse brain. Expert Rev. Vaccines10(3), 355–364 (2011).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.