117
Views
6
CrossRef citations to date
0
Altmetric
Perspective

Prostate cancer vaccines: moving therapeutic vaccination forward in the post-Provenge™ era

&
Pages 287-302 | Published online: 09 Jan 2014

References

  • Siegel R, Ward E, Brawley O, Jemal A. Cancer statistics, 2011: the impact of eliminating socioeconomic and racial disparities on premature cancer deaths. CA Cancer J. Clin. 61(4), 212–236 (2011).
  • Oesterling JE. Prostate specific antigen: a critical assessment of the most useful tumor marker for adenocarcinoma of the prostate.J. Urol. 145(5), 907–923 (1991).
  • Finke LH, Wentworth K, Blumenstein B et al. Lessons from randomized phase III studies with active cancer immunotherapies—outcomes from the 2006 meeting of the Cancer Vaccine Consortium (CVC). Vaccine 25, B97–B109 (2007).
  • Slovin SF, Ragupathi G, Musselli C et al. Fully synthetic carbohydrate-based vaccines in biochemically relapsed prostate cancer: clinical trial results with α-N-acetylgalactosamine-O-serine/threonine conjugate vaccine. J. Clin. Oncol. 21(23), 4292–4298 (2003).
  • Kantoff PW, Higano CS, Shore ND et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer.N. Engl. J. Med. 363(5), 411–422 (2010).
  • Higano CS, Schellhammer PF, Small EJ et al. Integrated data from 2 randomized, double-blind, placebo-controlled phase 3 trials of active cellular immunotherapy with sipuleucel-T in advanced prostate cancer. Cancer 115, 3670–3679 (2009).
  • Tannock IF, de Wit R, Berry WR et al. Docetaxel plus predisone or mitoxantrone plus prednisone for advanced prostate cancer. N. Engl. J. Med. 351(15), 1502–1512 (2004).
  • Petrylak DP, Tangen CM, Hussain MHA et al. Docetaxel and estramustine compared with mitoxantrone and prednisone for advanced refractory prostate cancer.N. Engl. J. Med. 351(15), 1513–1520 (2004).
  • Small EJ, Schellhammer PF, Higano CS et al. Placebo-controlled phase III trial of immunologic therapy with sipuleucel-T (APC8015) in patients with metastatic, asymptomatic hormone refractory prostate cancer. J. Clin. Oncol. 24, 3089–3094 (2006).
  • Sin JI, Hong SH, Park YJ, Park JB, Choi YS, Kim MS. Antitumor therapeutic effects of e7 subunit and DNA vaccines in an animal cervical cancer model: antitumor efficacy of e7 therapeutic vaccines is dependent on tumor sizes, vaccine doses, and vaccine delivery routes. DNA Cell Biol. 25, 277–286 (2006).
  • Berinstein NL. Strategies to enhance the therapeutic activity of cancer vaccines: using melanoma as a model. Ann. NY Acad. Sci. 1174, 107–117 (2009).
  • Small E, Demkow T, Gerritsen W et al. A Phase III trial of GVAX immunotherapy for prostate cancer in combination with docetaxel versus docetaxel plus prednisone in symptomatic, castration-resistant prostate cancer (CRPC). Program and Abstracts of the Genitourinary Cancers Symposium. Orlando, FL, USA (2009) (Abstract 7).
  • Sasada T, Komatsu N, Suekane S et al. Overcoming the hurdles of randomized clinical trials of therapeutic cancer vaccines. Eur. J. Cancer. 46(9), 1514–1519 (2010).
  • Halabi S, Small EJ, Kantoff PW et al. Prognostic model for predicting survival in men with hormone-refractory metastatic prostate cancer. J. Clin. Oncol. l21, 1232–1237 (2003).
  • Corman JSE, Smith D et al. Immunotherapy with GVAX® vaccine for prostate cancer improves predicted survival in metastatic hormone refractory prostate cancer: results from two phase 2 studies. Proceedings of the American Urological Association Annual Meeting. Atlanta, GA, USA 2006 (Abstract 976)
  • Armstrong AJ, Garrett-Mayer ES, Yang YO et al. A contemporary prognostic nomogram for men with hormone-refractory metastatic prostate cancer:a TAX327 study analysis. Clin. Canc. Res. 13(21), 6396–6343 (2007).
  • Ciezki JP, Reddy CA, Garcia J et al. PSA kinetics after prosate brachytherapy: PSA bounce phenomenon and its implications for PSA doubling time. Int. J. Radiat. Oncol. Biol. Phys. 64(2), 512–517 (2006).
  • Arlen PM, Bianoc F, Dahut WL et al. Prostate specific antigen working group guidelines on prostate specific antigen doubling time. J. Urol. 179, 2181–2186 (2008).
  • McNeel DG, Dunphy EJ, Davies JG et al. Safety and immunological efficacy of a DNA vaccine encoding prostatic acid phosphatase in patients with stage D0 prostate cancer. J. Clin. Oncol. 27(25), 4047–4054 (2009).
  • Wheeler CJ, Black CL. DCVax-Brain and D vaccines in the treatment of GBM. Expert Opin. Invest. Drugs. 28(4), 509–519 (2009).
  • Gustafson MP, Knutson KL, Dietz AB. Therapeutic vaccines for malignant brain tumors. Biologics 2(4), 753–761 (2008).
  • Schlom J, Arlen PM, Gulley JL. Cancer vaccines: moving beyond current paradigms. Clin. Cancer Res. 13, 3776–3782 (2007).
  • Tani K, Azuma M, Nakazaki Y et al. Phase I study of autologous tumor vaccines transduced with the GM-CSF gene in four patients with stage IV renal cell cancer in Japan: clinicaland immunological findings. Mol. Ther. 10, 799–816 (2004).
  • Hobeika AC, Clay TM, Mosca PJ, Lyerly HK, Morse MA. Quantitating therapeutically relevant T-cell responses to cancer vaccines. Crit. Rev. Immunol. 21, 287–297 (2001).
  • Suto R, Srivastava PK. A mechanism for the specific immunogenicity of heat shock protein-chaperoned peptides. Science. 269, 1585–1588 (1995).
  • Finn OJ. Cancer immunology. N. Engl.J. Med. 358, 2704–2715 (2008).
  • Kiessling A, Fussel S, Wehner R et al.: Advances in specific immunotherapy for prostate cancer. Eur. Urol. 53, 694–708 (2008).
  • Tanaka Y, Koido S, Chen D,Gendler SJ, Kufe D, Gong J: Vaccination with allogeneic dendritic cells fused to carcinoma cells induces antitumor immunity in MUC1 transgenic mice. Clin. Immunol. 101, 192–200 (2001).
  • Higano CS, Smal EJ, Schellhammer P et al. Sipuleucel-T. Nat. Rev. Drug Discov. 9(7), 513–514 (2010).
  • Beer TM, Bernstein GT, Corman JM et al. Randomized trial of autologous cellular immunotherapy with sipuleucel-T in androgen-dependent prostate cancer. Clin. Cancer Res. 17(13), 4558–4567 (2011).
  • Rice J, Ottensmeier CH, Stevenson FK. DNA vaccines: precision tools for activating effective immunity against cancer. Nat. Rev. Cancer. 8, 108–120 (2008).
  • Petrovsky N, Aguilar JC. Vaccine adjuvants: current state and future trends. Immunol. Cell Biol. 82, 499–496 (2004).
  • Allison AC, Byars NE. Immunological adjuvants: desirable properties and side effects. Mol. Immunol. 28(3), 279–284 (1991).
  • Wood L, Dahut WL, Gulley JL et al. Therapeutic vaccination with epitope-enhanced and wild type TARP peptides in stage D0 prostate cancer. Proceedings of the 102nd Annual Meeting of the American Association for Cancer Research. Philadelphia, PA, USA, 2–6 April 2011 (Abstract 5520).
  • Essand M, Vasmatizis G, Brinkmann U et al. High expression of a specific T-cell receptor g transcript in epithelial cells of the prostate. Proc. Natl Acad. Sci. USA 96, 9287–9299 (1999).
  • Wolfgang CD, Essand M, Vincent JJ, Lee B, Pastan I. TARP: a nuclear protein expressed in prostate and breast cancer cells derived from an alternate reading frame of the T cell receptor g chain locus. Proc. Natl Acad. Sci. USA. 97(17), 9437–9442 (2000).
  • Wolfgang1 CD, Essand M, Lee B, Pastan I. T-cell receptor g chain alternate reading frame protein (TARP) expression in prostate cancer cells leads to an increased growth rate and induction of caveolins and amphiregulin. Cancer Res. 61, 8122–8126 (2001).
  • Oh SK, Terabe M, Pendleton CD et al. Human CTLs to wild-type and enhanced epitopes of a novel prostate and breast tumor-associated protein, TARP, lyse human breast cancer cells. Cancer Res. 64, 2610–2618 (2004).
  • Eder JP, Kantoff PW, Roper K et al. A phase I trial of a recombinant vaccinia virus expressing prostate-specific antigen in advanced prostate cancer. Clin. Cancer Res. 6, 1632–1638 (2000).
  • Cooney EL, Collier AC, Greenberg PD et al. Safety of and immunological response to a recombinant vaccinia virus vaccine expressing HIV envelope glycoprotein. Lancet 337, 567–72 (1991).
  • Marshall1 JL, Gulley JL, Arlen PM et al. Phase I study of sequential vaccinations with fowlpox-CEA(6D)-TRICOM alone and sequentially with vaccinia-CEA(6D)-TRICOM, with and without granulocyte-macrophage colony-stimulating factor, in patients with carcinoembryonic antigen-expressing carcinomas. J. Clin. Oncol. 23, 720–31 (2005).
  • Kaufman HL, Wang W, Manola J et al. Phase II randomized study of vaccine treatment of advanced prostate cancer (E7897): a trial of the Eastern Cooperative Oncology Group. J. Clin. Oncol. 22, 2122–2132 (2004).
  • Gulley JL, Arlen PM, Madan RA et al. Immunologic and prognostic factors associated with overall survival employing a poxviral-based PSA vaccine in metastatic castrate-resistant prostate cancer. Cancer Immunol. Immunother. 59(5), 663–674 (2010).
  • Kantoff PW, Schuetz TJ, Blumenstein BA et al. Overall survival analysis of a phase II randomized controlled trial of a poxvial-based PSA-targeted immunotherapy in metastatic castration-resistant prostate cancer. J. Clin. Oncol. 28(7), 1099–1105 (2010).
  • Zhai Y, Yang JC, Kawakami Y et al. Development and characterization of recombinant adenoviruses encoding MART-1 or GP100 for cancer therapy. J. Immunol. 156, 700–710 (1996).
  • Plog MS, Guyre CA, Roberts BL, Goldberg M, St George JA, Perricone MA. Preclinical safety and biodistribution of adenovirus-based cancer vaccines after intradermal delivery. Hum. Gene Ther. 17(7), 705–716 (2006).
  • Zhang L, Tang Y, Akbulut H et al. An adenoviral vector cancer vaccine that delivers a tumor-associated antigen/CD40-ligand fusion protein to dendritic cells. Proc. Natl Acad. Sci. USA. 100(25), 15101–15106 (2003).
  • Antonia SJ, Mirza N, Fricke I et al. Combination p53 cancer vaccine with chemotherapy in patients with extensive stage small cell lung cancer. Clin. Cancer Res. 12(3), 878–887 (2006).
  • Pandha HS, Stockwin LH, Eaton J et al. Coxsackie B and adenovirus receptor, integrin and major histocompatibility complex class I expression in human prostate cancer cell lines: implications for gene therapy strategies. Prostate Cancer Prostatic Dis. 6(1), 6–11 (2003).
  • Lubaroff DM, Konety BR, Link B et al. Phase I clinical trial of an adenovirus/PSA vaccine for prostate cancer: safety and immunologic results. Clin. Cancer Res. 15(23), 7375–7380 (2009).
  • Lubaroff DM, Vaena DA, Williams RD et al. A phase II trial of an adenovirus/PSA vaccine for prostate cancer. J. Clin. Oncol. 27(15s), (Suppl) Abstract 3065 (2009).
  • Sridhara R, Johnson JR, Justice R et al. Review of oncology and hematology drug product approvals at the US Food and Drug Administration between July 2005 and December 2007. J. Natl. Cancer Inst. 102(4), 230–243 (2010).
  • Van Cutsen E, Peeters M, Siena S et al. Open-label phase III trial of panitumumab plus best supportive care compared with best supportive care alone in patients with chemotherapy-refractory metastatic colorectal cancer. J. Clin. Oncol. 25(13), 1658–1664 (2007).
  • Gulley JL, Drake CG. Immunotherapy for prostate cancer: recent advances, lesions learned and areas for further research. Clin. Cancer Res. 17(12), 3884–3891 (2011).
  • Hodi FS, O’Day SJ, McDermott DF et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363(8), 711–723 (2010).
  • De Bono JS, Logothetis CJ, Molina A et al. Abiraterone and increased survival in metastatic prostate cancer. N. Engl. J. Med. 351(15), 1513–1520 (2011).
  • Ribas A, Chmielowski B, Glaspy JA. Do we need a different set of response assessment criteria for tumor immunotherapy? Clin. Cancer Res. 15(23), 7116–7118 (2009).
  • Wolchok JD, Hoos A, O’Day S et al. Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria. Clin. Cancer Res. 15(23), 7412–7420 (2009).
  • Therasse P, Arbuck SG, Eisenhauer EA et al. New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J. Natl Cancer Inst. 92, 205–216 (2000).
  • Eisenhauer EA, Therasse P, Bogaerts J et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur. J. Cancer. 45, 228–247 (2009).
  • Miller AB, Hoogstraten B, Staquet M, Winkler A. Reporting results of cancer treatment. Cancer 47, 207–214 (1981).
  • Stein WD, Gulley JL, Schlom J et al. Tumor regression and growth rates determined in five intramural NCI prostate cancer trials: the growth rate constant as an indicator of therapeutic efficacy. Clin. Cancer Res. 17(4), 907–917 (2011).
  • Hoos A, Eggermont AMM, Janetzki S et al. Improved endpoints for cancer immunotherapy trials. J. Natl. Cancer Inst. 102, 1388–1397 (2010).
  • Cayeux S, Richter G, Becker C et al. Lack of correlation between rejection of tumor cells co-expressing interleukin-2, B7.1 and vaccine efficacy. Eur. J. Immunol. 27(7), 1657–1662 (1997).
  • Lee KH, Wang E, Nielsen MB et al. Increased vaccine-specific T cell frequency after peptide-based vaccination correlates with increased susceptibility to in vitro stimulation but does not lead to tumor regression. J. Immunol. 163, 6292–6300 (1999).
  • Butterfield LH, Comin-Anduix B, Vujanovic L et al. Adenovirus MART-1-engineered autolotous dendritic cell vaccine for metastatic melanoma. J. Immunother. 31, 294–309 (2008).
  • Whiteside TL, Gulley JL, Clay TM, Tsang KY. Immunologic monitoring of cellular immune responses in cancer vaccine therapy. J. Biomed. Biotechnol. doi:10.1155/2011/370374 (2011) (Epub ahead of print).
  • Moodie Z, Price L, Gouttefangeas C et al. Response definition criteria for ELISPOT assays revisited. Cancer Immunol. Immunother. 59, 1489–1501 (2010).
  • Janetzki S, Panageas KS, Ben-Porat L et al. Results and harmonization guidelines from two large-scale international ELISPOT proficiency panels conducted by the Cancer Vaccine Consortium (CVC/SVI). Cancer Immunol. Immunother. 57, 303–315 (2008).
  • Butterfield LH, Palucka AK, Britten CM et al. Recommendations from the iSBTc-SITC/FDA/NCI Workshop on Immunotherapy Biomarkers. Clin. Cancer Res. 17(10), 3064–3076 (2011).
  • Mole RJ. Whole body irradiation-radiation or medicine? Br. J. Radiol. 26, 234–241 (1953).
  • Rees FJ. Abscopal regression in lymphoma: a mechanism in common with total body irradiation? Clin. Radiol. 32, 475–480 (1981).
  • Ehlers G, Fridman M. Abscopal effect of radiation in papillary adenocarcinoma. Br. J. Radiol. 46, 220–222 (1973).
  • Kingsley DP. An interesting case of possible abscopal effect in malignant melanoma. Br. J. Radiol. 48, 863–866 (1975).
  • Ohba K, Omagari K, Nakamura T et al. Abscopal regression of hepatocellular carcinoma after radiotherapy for bone metastasis. Gut 43, 575–577 (1998).
  • Demaria S, Ng B, Devitt ML et al. Ionizing radiation inhibition of distant untreated tumors (abscopal effect) is immune mediated. Int. J. Radiat. Oncol. Biol. Phys. 58(3), 862–870 (2004).
  • Watters D, Molecular mechanisms of ionizing radiation-induced apoptosis. Immunol. Cell Biol. 77, 263–271 (1999).
  • Hong JH, Chiang CS, Campbell IL et al. Induction of acute phase gene expression by brain irradiation. Int. J. Radiat. Oncol. Biol. Phys. 33, 619–626 (1995).
  • Hong JH, Chiang CS, Tsao CY et al. Rapid induction of cytokine gene expression in the lung after single and fractionated doses of radiation. Int. J. Radiat. Biol. 75, 1521–1427 (1999).
  • Quarnby S, Kumar P, Kumar S. Radiation-induced normal tissue injury: role of adhesion molecules in leukocyte-endothelial cell interactions. Int. J. Cancer 82, 385–395 (1999).
  • Nikitina EY, Gabrilovich DI. Combination of gamma-irradiation and dendritic cell administration induces a potent anti-tumor response in tumor-bearing mice: approach to treatment of advanced state cancer. Int. J. Cancer 94, 825–833 (2001).
  • Ganss R, Ryschich E, Klar E et al. Combination of T-cell therapy and trigger of inflammation induces remodeling of the vasculature and tumor eradication. Cancer Res. 62, 1462–1470 (2002).
  • Garnett CT, Palena C, Chakraborty M et al. Sublethal irradiation of human tumor cells modulates phenotype resulting in enhanced killing by cytotoxic T lymphocytes. Cancer Res. 64, 7985–7994 (2004).
  • Friedman EJ. Immune modulation by ionizing radiation and its implications for cancer immunotherapy. Curr. Pharm. Des. 8, 1765–1780 (2002).
  • Chakraborty M, Abrams SI, Camphausen K et al. Irradiation of tumor cells up-regulates Fas and enhances CTL lytic activity and CTL adoptive immunotherapy. J. Immunol. 170, 6338–6347 (2003).
  • Hodge JW, Guha C, Neefjes J, Gulley JL. Synergizing radiation therapy and immunotherapy for curing incurable cancers. Opportunities and challenges.Oncology (Williston Park) 22, 1064–1070; discussion 1075, 1080–1081, 1084 (2008).
  • Gulley JL, Arlen PM, Bastian A et al. Combining a recombinant cancer vaccine with standard definitive radiotherapy in patients with localized prostate cancer.Clin. Cancer Res. 11, 3353–3362 (2005).
  • Drake CG, Doody AD, Mihalyo MA et al. Androgen ablation mitigates tolerance to a prostate/prostate cancer-restricted antigen. Cancer Cell. 7, 239–249 (2005).
  • Aragon-Ching J, Williams K, Gulley J. Impact of androgen-deprivation therapy on the immune system: implications for combination therapy of prostate cancer.Front. Biosci. 12, 4957–4971 (2007).
  • Sutherland JS, Goldberg GL, Hammett MV et al. Activation of thymic regeneration in mice and humans following androgen blockade. J. Immunol. 175, 2741–2753 (2005).
  • Mercader M, Bodner BK, Moser MT et al. T cell infiltration of the prostate induced by androgen withdrawal in patients with prostate cancer. Proc. Natl Acad. Sci. USA. 98, 14565–14570 (2001).
  • Nesslinger NJ, Sahota RA, Stone B et al. Standard treatments induce antigen-specific immune responses in prostate cancer. Clin. Cancer Res. 13, 1493–1502 (2007).
  • Beer T, Bernstein G, Corman J et al.: Randomized trial of active cellular immunotherapy with sipuleucel-T in androgen dependent prostate cancer (ADPC) [Abstract]. J. Clin. Oncol. 25(18S), 5059 (2007).
  • Zitvogel L, Kepp O, Kroemer G. Immune parameters affecting the efficacy of chemotherapeutic regimens. Nat. Rev. Clin. Oncol. 8, 151–160 (2011).
  • Terando A, Mule JJ. On combining antineoplastic drugs with tumor vaccines. Cancer Immunol. Immunother. 52, 680–685 (2003).
  • Rubio V, Stuge TB, Singh N et al. Ex vivo identification, isolation and analysis of tumor-cytolytic T cells. Nat. Med. 9, 1377–11382 (2003).
  • Arlen PM, Gulley JL, Parker C et al. A randomized phase II study of concurrent docetaxel plus vaccine versus vaccine alone in metastatic androgen-independent prostate cancer. Clin. Cancer Res. 12, 1260–1269 (2006).
  • Park S, Jiang Z, Mortenson ED, Deng L et al. The therapeutic effect of anti-HER2/neu antibody depends on both innate and adaptive immunity. Cancer Cell. 18(2), 160–170 (2010).
  • Small EJ, Tchekmedyian NS, Rini BI et al. A pilot trial of CTLA-4 blockade with human anti-CTLA-4 in patients with hormone-refractory prostate cancer. Clin. Cancer Res. 13, 1810–1815 (2007).
  • Langer LF, Clay TM, Morse MA. Update on anti-CTLA-4 antibodies in clinical trials. Expert Opin. Biol. Ther. 7, 1245–1256 (2007).
  • O'Mahony D, Morris JC, Quinn C. et al. A pilot study of CTLA-4 blockade after cancer vaccine failure in patients with advanced malignancy. Clin. Cancer. Res. 13, 958–964 (2007).
  • Gulley JL, Dahut WL. Future directions in tumor immunotherapy: CTLA4 blockade. Nat. Clin. Pract. Oncol. 4, 136–7 (2007).
  • Gerritsen W, van den Eertwegh A, de Gruijl T et al. Expanded phase I combination trial of GVAX immunotherapy for prostate cancer and ipilimumab in patients with metastatic hormone-refractory prostate cancer (mHPRC) [Abstract].J. Clin. Oncol. 26, 5146 (2008).
  • Hoos A, Parmiani G, Hege K etal. A clinical development paradigm for cancer vaccines and related biologics. J. Immunother. 30(1), 1–15 (2007).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.