285
Views
13
CrossRef citations to date
0
Altmetric
Review

The strategic use of novel smallpox vaccines in the post-eradication world

&
Pages 1021-1035 | Published online: 09 Jan 2014

References

  • Moss B. Poxviruses and their replication. In: Fields Virology. Knipe DM, Howley PM (Eds). Lippincott, Williams and Wilkins, Philadelphia, PA, USA, 2905–2946 (2007).
  • Damon I. Poxviruses In: Fields Virology. Knipe DM, Howley PM (Eds). Lippencott, Williams and Wilkins, Philadelphia, PA, USA, 2947–2976 (2007).
  • Fenner F, Henderson D, Arita I, Jezek Z, Ladnyi ID. Smallpox and Its Eradication. World Health Organization, Geneva, Switzerland (1988).
  • Hopkins DR. The Greatest Killer: Smallpox in History, With a New Introduction. University of Chicago Press, Chicago, IL, USA (2002).
  • Barquet N, Domingo P. Smallpox: the triumph over the most terrible of the ministers of death. Ann. Intern. Med.127(8 Pt 1), 635–642 (1997).
  • Eyler JM. Smallpox in history: the birth, death, and impact of a dread disease. J. Lab. Clin. Med.142(4), 216–220 (2003).
  • Klebs AC, Lausanne MD. The historic evolution of variolation. The Johns Hopkins Hospital Bulletin24(265), 1–66 (1913).
  • Dinc G, Ulman YI. The introduction of variolation ‘A La Turca’ to the West by Lady Mary Montagu and Turkey’s contribution to this. Vaccine25(21), 4261–4265 (2007).
  • Jenner E. Inquiry into the Causes and Effects of the Variolae Vaccine. Murray and Highley, London, UK (1798).
  • Dudgeon JA. Development of smallpox vaccine in England in the eighteenth and nineteenth Centuries. BMJ1(5342), 1367–1372 (1963).
  • Nalca A, Hatkin JM, Garza NL et al. Evaluation of orally delivered ST-246 as postexposure prophylactic and antiviral therapeutic in an aerosolized rabbitpox rabbit model. Antiviral Res.79(2), 121–127 (2008).
  • Appleyard G, Hapel AJ, Boulter EA. An antigenic difference between intracellular and extracellular rabbitpox virus. J. Gen. Virol.13(1), 9–17 (1971).
  • Boulter EA. Protection against poxviruses. Proc. R. Soc. Med.62(3), 295–297 (1969).
  • Turner GS, Squires EJ. Inactivated smallpox vaccine: immunogenicity of inactivated intracellular and extracellular vaccinia virus. J. Gen Virol.13(1), 19–25 (1971).
  • Turner GS, Squires EJ, Murray HG. Inactivated smallpox vaccine. A comparison of inactivation methods. J. Hyg. (Lond.)68(2), 197–210 (1970).
  • Rivers TM, Ward SM. Jennerian prophylaxis by means of intradermal injections of culture vaccine virus. J. Exp. Med.62(4), 549–560 (1935).
  • Rivers TM, Ward SM, Baird RD. Amount and duration of immunity induced by intradermal inoculation of cultured vaccine virus. J. Exp. Med.69(6), 857–866 (1939).
  • Kempe CH, Fulginiti V, Minamitani M, Shinefield H. Smallpox vaccination of eczema patients with a strain of attenuated live vaccinia (CVI-78). Pediatrics42(6), 980–985 (1968).
  • Wesley RB, Speers WC, Neff JM, Ruben FL, Lourie B. Evaluation of two kinds of smallpox vaccine: CVI-78 and calf lymph vaccine. I. Clinical and serologic response to primary vaccination. Pediatric Res.9(8), 624–628 (1975).
  • Speers WC, Wesley RB, Neff JM, Goldstein J, Lourie B. Evaluation of two kinds of smallpox vaccine: CVI-78 and calf lymph vaccine. II. Clinical and serologic observations of response to revaccination with calf lymph vaccine. Pediatric Res.9(8), 628–632 (1975).
  • Hochstein-Mintzel V, Hanichen T, Huber HC, Stickl H. An attenuated strain of vaccinia virus (MVA). Successful intramuscular immunization against vaccinia and variola. Zentralbl. Bakteriol. Orig. A230(3), 283–297 (1975).
  • McCurdy LH, Larkin BD, Martin JE, Graham BS. Modified vaccinia Ankara: potential as an alternative smallpox vaccine. Clin. Infect. Dis.38(12), 1749–1753 (2004).
  • Slifka MK. The future of smallpox vaccination: is MVA the key? Med. Immunol. (Lond.)4(1), 2 (2005).
  • Hashizume S, Yoshizawa H, Morita M, Suzuki Kp-IGVQe, Vaccinia viruses as vectors for vaccine antigens. Properties of attenuated mutant of vaccinia virus, LC16m8, derived from Lister strain. In: Vaccinia Viruses as Vectors for Vaccine Antigens. Quainnan GV (Ed.). Elsevier Science Publishing Co, Amsterdam, The Netherlands, 421–428 (1985).
  • Kenner J, Cameron F, Empig C, Jobes DV, Gurwith M. LC16m8: an attenuated smallpox vaccine. Vaccine24(47–48), 7009–7022 (2006).
  • Center for Disease Control and Prevention. Epidemiology and Prevention of Vaccine-Preventable Diseases. Atkinson W, Wolfe S, Hamborsky J, McIntyre L (Eds). Public Health Foundation, Washington, DC, USA (2006).
  • Shooter RA. Report on the Investigation into the Cause of the 1978 Birmingham Smallpox Occurrence. Her Majesty’s Stationery Office, London, UK (1980).
  • World Health Organization. No smallpox. Wkly Epidemiol. Rec.54, 329–336 (1979).
  • Kortepeter MG, Parker GW. Potential biological weapons threats. Emerg. Infect. Dis.5(4), 523–527 (1999).
  • Fenn EA. Biological warfare in eighteenth-Century North America: beyond Jeffery Amherst. J. Am. Hist.86(4), 1552–1580 (2000).
  • Alibek K. Smallpox: a disease and a weapon. Int. J. Infect. Dis.8(Suppl. 2), S3–S8 (2004).
  • Frischknecht F. The history of biological warfare. Human experimentation, modern nightmares and lone madmen in the twentieth Century. EMBO Rep.4(Spec No.), S47–S52 (2003).
  • Shoham D, Wolfson Z. The Russian biological weapons program: vanished or disappeared?. Crit Rev. Microbiol.30(4), 241–261 (2004).
  • Graham B, Talent J. Bioterrorism: redefining prevention. Biosecur. Bioterror.7(2), 125–126 (2009).
  • Domi A, Moss B. Cloning the vaccinia virus genome as a bacterial artificial chromosome in Escherichia coli and recovery of infectious virus in mammalian cells. Proc. Natl Acad. Sci. USA99(19), 12415–12420 (2002).
  • Cello J, Paul AV, Wimmer E. Chemical synthesis of poliovirus cDNA: generation of infectious virus in the absence of natural template. Science (New York)297(5583), 1016–1018 (2002).
  • Wimmer E, Mueller S, Tumpey TM, Taubenberger JK. Synthetic viruses: a new opportunity to understand and prevent viral disease. Nat. Biotechnol.27(12), 1163–1172 (2009).
  • Smith GL, McFadden G. Smallpox: anything to declare? Nat. Rev. Immunol.2(7), 521–527 (2002).
  • Center for Diseaes Control and Prevention. Vaccinia (smallpox) vaccine: recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Morb. Mortal. Wkly Rep.50(RR-10), 1–25 (2001).
  • Center for Diseaes Control and Prevention. Recommendations for using smallpox vaccine in a prevent vaccinatino program: supplemental recommendation sof the Advisory Committee on Immunization Practices (ACIP) and the Healthcare Infection Control Practices Advisory Committee (HICPAC). MMWR Morb. Mortal. Wkly Rep.52(RR-7), 1–16 (2003).
  • Kwon N, Raven MC, Chiang WK et al. Emergency physicians’ perspectives on smallpox vaccination. Acad. Emerg. Med.10(6), 599–605 (2003).
  • Schraeder TL, Campion EW. Smallpox vaccination – the call to arms. N. Engl. J. Med.348(5), 381–382 (2003).
  • Yih WK, Lieu TA, Rego VH et al. Attitudes of healthcare workers in U.S. hospitals regarding smallpox vaccination. BMC Public Health3, 20 (2003).
  • Strikas RA, Neff LJ, Rotz L et al. US civilian smallpox preparedness and response program, 2003. Clin. Infect. Dis.46(Suppl. 3), S157–S167 (2008).
  • Casey CG, Iskander JK, Roper MH et al. Adverse events associated with smallpox vaccination in the United States, January–October 2003. JAMA294(21), 2734–2743 (2005).
  • Clark PT, Levin S. The Smallpox vaccine injury compensation program. Clin. Infect. Dis.46(Suppl. 3), S179–S181 (2008).
  • Kaplan EH, Craft DL, Wein LM. Emergency response to a smallpox attack: the case for mass vaccination. Proc. Natl Acad. Sci. USA99(16), 10935–10940 (2002).
  • Meltzer MI, Damon I, LeDuc JW, Millar JD. Modeling potential responses to smallpox as a bioterrorist weapon. Emerg. Infect. Dis.7(6), 959–969 (2001).
  • O’Toole T, Mair M, Inglesby TV. Shining light on “Dark Winter”. Clin. Infect. Dis.34(7), 972–983 (2002).
  • Bicknell WJ. The case for voluntary smallpox vaccination. N. Engl. J. Med.346(17), 1323–1325 (2002).
  • Handley L, Buller RM, Frey SE, Bellone C, Parker S. The new ACAM2000 vaccine and other therapies to control orthopoxvirus outbreaks and bioterror attacks. Expert Rev. Vaccines8(7), 841–850 (2009).
  • Mortimer PP. Can postexposure vaccination against smallpox succeed? Clin. Infect. Dis.36(5), 622–629 (2003).
  • Bicknell WJ, James K. Smallpox vaccination after a bioterrorism-based exposure. Clin. Infect. Dis.37(3), 467 (2003).
  • Bicknell W, James K. The new cell culture smallpox vaccine should be offered to the general population. Rev. Med. Virol.13(1), 5–15 (2003).
  • Fauci AS. Smallpox vaccination policy – the need for dialogue. N. Engl. J. Med.346(17), 1319–1320 (2002).
  • Hilleman MR. Overview: cause and prevention in biowarfare and bioterrorism. Vaccine20(25–26), 3055–3067 (2002).
  • Nalca A, Zumbrun EE. ACAM2000: the new smallpox vaccine for United States Strategic National Stockpile. Drug Des. Dev. Ther.4, 71–79 (2010).
  • Weltzin R, Liu J, Pugachev KV et al. Clonal vaccinia virus grown in cell culture as a new smallpox vaccine. Nat. Med.9(9), 1125–1130 (2003).
  • ACAM2000®, package insert. Acambis, Cambridge, UK.
  • Lane JM, Goldstein J. Adverse events occurring after smallpox vaccination. Semin. Pediatr. Infect. Dis.14(3), 189–195 (2003).
  • Copeman PW, Wallace HJ. Eczema vaccinatum. BMJ2(5414), 906–908 (1964).
  • Lane JM, Ruben FL, Neff JM, Millar JD. Complications of smallpox vaccination, 1968. N. Engl. J. Med.281(22), 1201–1208 (1969).
  • Centers for Disease Control and Prevention. Household transmission of vaccinia virus from contact with a military smallpox vaccinee – Illinois and Indiana, 2007. MMWR Morb. Mortal. Wkly Rep.56(19), 478–481 (2007).
  • Monath TP, Frey SE. Possible autoimmune reactions following smallpox vaccination: the biologic false positive test for syphilis. Vaccine27(10), 1645–1650 (2009).
  • Kennedy JS, Greenberg RN. IMVAMUNE: modified vaccinia Ankara strain as an attenuated smallpox vaccine. Expert Rev. Vaccines8(1), 13–24 (2009).
  • Earl PL, Americo JL, Wyatt LS et al. Immunogenicity of a highly attenuated MVA smallpox vaccine and protection against monkeypox. Nature428(6979), 182–185 (2004).
  • Ferrier-Rembert A, Drillien R, Tournier JN, Garin D, Crance JM. Short- and long-term immunogenicity and protection induced by non-replicating smallpox vaccine candidates in mice and comparison with the traditional 1st generation vaccine. Vaccine26(14), 1794–1804 (2008).
  • Earl PL, Americo JL, Wyatt LS et al. Recombinant modified vaccinia virus Ankara provides durable protection against disease caused by an immunodeficiency virus as well as long-term immunity to an orthopoxvirus in a non-human primate. Virology366(1), 84–97 (2007).
  • Antoine G, Scheiflinger F, Dorner F, Falkner FG. The complete genomic sequence of the modified vaccinia Ankara strain: comparison with other orthopoxviruses. Virology244(2), 365–396 (1998).
  • Meisinger-Henschel C, Schmidt M, Lukassen S et al. Genomic sequence of chorioallantois vaccinia virus Ankara, the ancestor of modified vaccinia virus Ankara. J. Gen. Virol.88(Pt 12), 3249–3259 (2007).
  • Meyer H, Sutter G, Mayr A. Mapping of deletions in the genome of the highly attenuated vaccinia virus MVA and their influence on virulence. J. Gen Virol.72(Pt 5), 1031–1038 (1991).
  • Meisinger-Henschel C, Spath M, Lukassen S et al. Introduction of the six major genomic deletions of modified vaccinia virus Ankara (MVA) into the parental vaccinia virus is not sufficient to reproduce an MVA-like phenotype in cell culture and in mice. J. Virol.84(19), 9907–9919 (2010).
  • Zwilling J, Sliva K, Schwantes A, Schnierle B, Sutter G. Functional F11L and K1L genes in modified vaccinia virus Ankara restore virus-induced cell motility but not growth in human and murine cells. Virology404(2), 231–239 (2010).
  • US FDA Fast Track status for IMVAMUNE. Hum. Vaccin.6(5), 368–372 (2010).
  • Kennedy RB, Ovsyannikova IG, Jacobson RM, Poland GA. The immunology of smallpox vaccines. Curr. Opin. Immunol.21(3), 314–320 (2009).
  • Good RA, Zak SJ, Condie RM, Bridges RA. Clinical investigation of patients with agammaglobulinemia and hypogammaglobulinemia. Pediatr. Clin. North Am.7, 397–433 (1960).
  • Fulginiti V, Kempe CH, Hathaway WE et al. Progressive vaccinia in immunologically deficient individuals. Birth Defects4, 129–145 (1968).
  • Edghill-Smith Y, Golding H, Manischewitz J et al. Smallpox vaccine-induced antibodies are necessary and sufficient for protection against monkeypox virus. Nat. Med.11(7), 740–747 (2005).
  • Panchanathan V, Chaudhri G, Karupiah G. Interferon function is not required for recovery from a secondary poxvirus infection. Proc. Natl Acad. Sci. USA102(36), 12921–12926 (2005).
  • Panchanathan V, Chaudhri G, Karupiah G. Protective immunity against secondary poxvirus infection is dependent on antibody but not on CD4 or CD8 T-cell function. J. Virol.80(13), 6333–6338 (2006).
  • Lustig S, Fogg C, Whitbeck JC, Eisenberg RJ, Cohen GH, Moss B. Combinations of polyclonal or monoclonal antibodies to proteins of the outer membranes of the two infectious forms of vaccinia virus protect mice against a lethal respiratory challenge. J. Virol.79(21), 13454–13462 (2005).
  • McCausland MM, Benhnia MR, Crickard L et al. Combination therapy of vaccinia virus infection with human anti-H3 and anti-B5 monoclonal antibodies in a small animal model. Antiviral Ther.15(4), 661–675 (2010).
  • Davies DH, Liang X, Hernandez JE et al. Profiling the humoral immune response to infection by using proteome microarrays: high-throughput vaccine and diagnostic antigen discovery. Proc. Natl Acad. Sci. USA102(3), 547–552 (2005).
  • Sette A, Grey H, Oseroff C et al. Definition of epitopes and antigens recognized by vaccinia specific immune responses: their conservation in variola virus sequences, and use as a model system to study complex pathogens. Vaccine27(Suppl. 6), G21–G26 (2009).
  • Xu RH, Cohen M, Tang Y et al. The orthopoxvirus type I IFN binding protein is essential for virulence and an effective target for vaccination. J. Exp. Med.205(4), 981–992 (2008).
  • Golden JW, Hooper JW. Evaluating the orthopoxvirus type I interferon binding molecule as a vaccine target in the vaccinia virus intranasal murine challenge model. Clin. Vaccine Immunol.17(11), 1656–1665 (2010).
  • Snyder JT, Belyakov IM, Dzutsev A, Lemonnier F, Berzofsky JA. Protection against lethal vaccinia virus challenge in HLA-A2 transgenic mice by immunization with a single CD8+ T-cell peptide epitope of vaccinia and variola viruses. J. Virol.78(13), 7052–7060 (2004).
  • Isaacs SN. Improved smallpox vaccines. In: New Generation Vaccines. Levine MM, Dougan G, Good MF et al. (Eds). Informa Helthcare, New York, NY, USA, 838–850 (2010).
  • Berhanu A, Wilson RL, Kirkwood-Watts DL et al. Vaccination of BALB/c mice with Escherichia coli -expressed vaccinia virus proteins A27L, B5R, and D8L protects mice from lethal vaccinia virus challenge. J. Virol.82(7), 3517–3529 (2008).
  • Davies DH, McCausland MM, Valdez C et al. Vaccinia virus H3L envelope protein is a major target of neutralizing antibodies in humans and elicits protection against lethal challenge in mice. J. Virol.79(18), 11724–11733 (2005).
  • Braxton CL, Puckett SH, Mizel SB, Lyles DS. Protection against lethal vaccinia virus challenge by using an attenuated matrix protein mutant vesicular stomatitis virus vaccine vector expressing poxvirus antigens. J. Virol.84(7), 3552–3561 (2010).
  • Buchman GW, Cohen ME, Xiao Y et al. A protein-based smallpox vaccine protects non-human primates from a lethal monkeypox virus challenge. Vaccine28(40), 6627–6636 (2010).
  • Fogg C, Lustig S, Whitbeck JC, Eisenberg RJ, Cohen GH, Moss B. Protective immunity to vaccinia virus induced by vaccination with multiple recombinant outer membrane proteins of intracellular and extracellular virions. J. Virol.78(19), 10230–10237 (2004).
  • Fogg CN, Americo JL, Lustig S et al. Adjuvant-enhanced antibody responses to recombinant proteins correlates with protection of mice and monkeys to orthopoxvirus challenges. Vaccine25(15), 2787–2799 (2007).
  • Heraud JM, Edghill-Smith Y, Ayala V et al. Subunit recombinant vaccine protects against monkeypox. J. Immunol.177(4), 2552–2564 (2006).
  • Hooper JW, Custer DM, Schmaljohn CS, Schmaljohn AL. DNA vaccination with vaccinia virus L1R and A33R genes protects mice against a lethal poxvirus challenge. Virology266(2), 329–339 (2000).
  • Hooper JW, Custer DM, Thompson E. Four-gene-combination DNA vaccine protects mice against a lethal vaccinia virus challenge and elicits appropriate antibody responses in nonhuman primates. Virology306(1), 181–195 (2003).
  • Hooper JW, Ferro AM, Golden JW et al. Molecular smallpox vaccine delivered by alphavirus replicons elicits protective immunity in mice and non-human primates. Vaccine28(2), 494–511 (2009).
  • Hooper JW, Golden JW, Ferro AM, King AD. Smallpox DNA vaccine delivered by novel skin electroporation device protects mice against intranasal poxvirus challenge. Vaccine25(10), 1814–1823 (2007).
  • Kaufman DR, Goudsmit J, Holterman L et al. Differential antigen requirements for protection against systemic and intranasal vaccinia virus challenges in mice. J. Virol.82(14), 6829–6837 (2008).
  • Pulford DJ, Gates A, Bridge SH, Robinson JH, Ulaeto D. Differential efficacy of vaccinia virus envelope proteins administered by DNA immunisation in protection of BALB/c mice from a lethal intranasal poxvirus challenge. Vaccine22(25–26), 3358–3366 (2004).
  • Sakhatskyy P, Wang S, Chou TH, Lu S. Immunogenicity and protection efficacy of monovalent and polyvalent poxvirus vaccines that include the D8 antigen. Virology355(2), 164–174 (2006).
  • Sakhatskyy P, Wang S, Zhang C, Chou TH, Kishko M, Lu S. Immunogenicity and protection efficacy of subunit-based smallpox vaccines using variola major antigens. Virology371(1), 98–107 (2007).
  • Xiao Y, Aldaz-Carroll L, Ortiz AM et al. A protein-based smallpox vaccine protects mice from vaccinia and ectromelia virus challenges when given as a prime and single boost. Vaccine25(7), 1214–1224 (2007).
  • Demkowicz WE, Maa JS, Esteban M. Identification and characterization of vaccinia virus genes encoding proteins that are highly antigenic in animals and are immunodominant in vaccinated humans. J. Virol.66(1), 386–398 (1992).
  • Galmiche MC, Goenaga J, Wittek R, Rindisbacher L. Neutralizing and protective antibodies directed against vaccinia virus envelope antigens. Virology254(1), 71–80 (1999).
  • Bell E, Shamim M, Whitbeck JC, Sfyroera G, Lambris JD, Isaacs SN. Antibodies against the extracellular enveloped virus B5R protein are mainly responsible for the EEV neutralizing capacity of vaccinia immune globulin. Virology325(2), 425–431 (2004).
  • Golden JW, Hooper JW. Heterogeneity in the A33 protein impacts the cross-protective efficacy of a candidate smallpox DNA vaccine. Virology377(1), 19–29 (2008).
  • Aldaz-Carroll L, Xiao Y, Whitbeck JC et al. Major neutralizing sites on vaccinia virus glycoprotein B5 are exposed differently on variola virus ortholog B6. J. Virol.81(15), 8131–8139 (2007).
  • Biswas S, Kalanidhi AP, Ashok MS, Reddy GS, Srinivasan VA, Rangarajan PN. Evaluation of rabies virus neutralizing antibody titres induced by intramuscular inoculation of rabies DNA vaccine in mice and Bonnet monkeys (Macaca radiata). Indian J. Exp. Biol.39(6), 533–536 (2001).
  • Jordan I, Vos A, Beilfuss S, Neubert A, Breul S, Sandig V. An avian cell line designed for production of highly attenuated viruses. Vaccine27(5), 748–756 (2009).
  • Carnes AE, Williams JA. Plasmid DNA manufacturing technology. Recent Pat. Biotechnol.1(2), 151–166 (2007).
  • Forde GM. Rapid-response vaccines – does DNA offer a solution? Nat. Biotechnol.23(9), 1059–1062 (2005).
  • Boni J, Stalder J, Reigel F, Schupbach J. Detection of reverse transcriptase activity in live attenuated virus vaccines. Clin. Diagn. Virol.5(1), 43–53 (1996).
  • Tsang SX, Switzer WM, Shanmugam V et al. Evidence of avian leukosis virus subgroup E and endogenous avian virus in measles and mumps vaccines derived from chicken cells: investigation of transmission to vaccine recipients. J. Virol.73(7), 5843–5851 (1999).
  • Grosenbach DW, Jordan R, King DS et al. Immune responses to the smallpox vaccine given in combination with ST-246, a small-molecule inhibitor of poxvirus dissemination. Vaccine26(7), 933–946 (2008).
  • Lu S. Heterologous prime-boost vaccination. Curr. Opin. Immunol.21(3), 346–351 (2009).
  • Wang S, Pal R, Mascola JR et al. Polyvalent HIV-1 Env vaccine formulations delivered by the DNA priming plus protein boosting approach are effective in generating neutralizing antibodies against primary human immunodeficiency virus type 1 isolates from subtypes A, B, C, D and E. Virology350(1), 34–47 (2006).
  • Hensley LE, Mulangu S, Asiedu C et al. Demonstration of cross-protective vaccine immunity against an emerging pathogenic Ebolavirus species. PLoS Pathog.6(5), e1000904 (2010).
  • Wei CJ, Boyington JC, McTamney PM et al. Induction of broadly neutralizing H1N1 influenza antibodies by vaccination. Science329(5995), 1060–1064 (2010).
  • Vaine M, Wang S, Hackett A, Arthos J, Lu S. Antibody responses elicited through homologous or heterologous prime-boost DNA and protein vaccinations differ in functional activity and avidity. Vaccine28(17), 2999–3007 (2010).
  • Wang S, Parker C, Taaffe J, Solorzano A, Garcia-Sastre A, Lu S. Heterologous HA DNA vaccine prime–inactivated influenza vaccine boost is more effective than using DNA or inactivated vaccine alone in eliciting antibody responses against H1 or H3 serotype influenza viruses. Vaccine26(29–30), 3626–3633 (2008).
  • Richmond JF, Lu S, Santoro JC et al. Studies of the neutralizing activity and avidity of anti-human immunodeficiency virus type 1 Env antibody elicited by DNA priming and protein boosting. J. Virol.72(11), p9092–p9100 (1998).
  • Wang S, Arthos J, Lawrence JM et al. Enhanced immunogenicity of gp120 protein when combined with recombinant DNA priming to generate antibodies that neutralize the JR-FL primary isolate of human immunodeficiency virus type 1. J. Virol.79(12), 7933–7937 (2005).
  • Essbauer S, Pfeffer M, Meyer H. Zoonotic poxviruses. Vet. Microbiol.140(3–4), 229–236 (2010).
  • Rimoin AW, Mulembakani PM, Johnston SC et al. Major increase in human monkeypox incidence 30 years after smallpox vaccination campaigns cease in the Democratic Republic of Congo. Proc. Natl Acad. Sci. USA107(37), 16262–16267 (2010).
  • Cho CT, Wenner HA. Monkeypox virus. Bacteriol. Rev.37(1), 1–18 (1973).
  • Di Giulio DB, Eckburg PB. Human monkeypox: an emerging zoonosis. Lancet Infect. Dis.4(1), 15–25 (2004).
  • Reed KD, Melski JW, Graham MB et al. The detection of monkeypox in humans in the Western Hemisphere. N. Engl. J. Med.350(4), 342–350 (2004).
  • Egberink HF, Willemse A, Horzinek MC. Isolation and identification of a poxvirus from a domestic cat and a human contact case. Zentralbl. Veterinarmed B33(3), 237–240 (1986).
  • Willemse A, Egberink HF. Transmission of cowpox virus infection from domestic cat to man. Lancet1(8444), 1515 (1985).
  • Kurth A, Wibbelt G, Gerber HP, Petschaelis A, Pauli G, Nitsche A. Rat-to-elephant-to-human transmission of cowpox virus. Emerg. Infect. Dis.14(4), 670–671 (2008).
  • Kurth A, Straube M, Kuczka A, Dunsche AJ, Meyer H, Nitsche A. Cowpox virus outbreak in banded mongooses (Mungos mungo) and jaguarundis (Herpailurus yagouaroundi) with a time-delayed infection to humans. PLoS ONE4(9), e6883 (2009).
  • Marennikova SS, Maltseva NN, Korneeva VI, Garanina VM. Pox infection in Carnivora of the family Felidae.Acta Virol.19(3), 260 (1975).
  • Marennikova SS, Shelukhina EM, Fimina VA. Pox infection in white rats. Lab. Anim.12(1), 33–36 (1978).
  • Glatz M, Richter S, Ginter-Hanselmayer G, Aberer W, Mullegger RR. Human cowpox in a veterinary student. Lancet Infect. Dis.10(4), 288 (2010).
  • Bhanuprakash V, Venkatesan G, Balamurugan V et al. Zoonotic Infections of Buffalopox in India. Zoonoses and Public Health57(7–8), e149–e155 (2009).
  • Trindade GS, Emerson GL, Carroll DS, Kroon EG, Damon IK. Brazilian vaccinia viruses and their origins. Emerg. Infect. Dis.13(7), 965–972 (2007).
  • Singh RK, Hosamani M, Balamurugan V, Bhanuprakash V, Rasool TJ, Yadav MP. Buffalopox: an emerging and re-emerging zoonosis. Anim. Health Res. Rev.8(1), 105–114 (2007).
  • Abrahao JS, Silva-Fernandes AT, Lima LS et al. Vaccinia virus infection in monkeys, Brazilian Amazon. Emerg. Infect. Dis.16(6), 976–979 (2010).
  • Medaglia ML, Pessoa LC, Sales ER, Freitas TR, Damaso CR. Spread of cantagalo virus to northern Brazil. Emerg. Infect. Dis.15(7), 1142–1143 (2009).
  • Silva-Fernandes AT, Travassos CE, Ferreira JM et al. Natural human infections with Vaccinia virus during bovine vaccinia outbreaks. J. Clin. Virol.44(4), 308–313 (2009).
  • Croft DR, Sotir MJ, Williams CJ et al. Occupational risks during a monkeypox outbreak, Wisconsin, 2003. Emerg. Infect. Dis.13(8), 1150–1157 (2007).
  • Kuntze A. Elephant pox and microsporum infection-two zoonoses of relevance to the zoo veterinarian. Presented at: European Association of Zoo- and Wildlife Veterinarians, Second scientific meeting. Chester, UK, 21–24 May 1998.
  • Drexler I, Heller K, Wahren B, Erfle V, Sutter G. Highly attenuated modified vaccinia virus Ankara replicates in baby hamster kidney cells, a potential host for virus propagation, but not in various human transformed and primary cells. J. Gen. Virol.79(Pt 2), 347–352 (1998).
  • Redding L, Weiner DB. DNA vaccines in veterinary use. Expert Rev. Vaccines8(9), 1251–1276 (2009).
  • Gronvall GK, Trent D, Borio L, Brey R, Nagao L. The FDA animal efficacy rule and biodefense. Nat. Biotechnol.25(10), 1084–1087 (2007).
  • Yang G, Pevear DC, Davies MH et al. An orally bioavailable antipoxvirus compound (ST-246) inhibits extracellular virus formation and protects mice from lethal orthopoxvirus challenge. J. Virol.79(20), 13139–13149 (2005).
  • Atlas R, Rubin C, Maloy S, Daszak P, Colwell R, Hyde B. One health-attaining optimal health for people, animals and the environment. Microbe5(9), 383–389 (2010).
  • Orent W. Will Monkeypox be the Next Smallpox? In: Los Angeles Times. Russ Stanton (Ed.). Los Angeles, CA, USA (2010).
  • Sassetti CM, Rubin EJ. The open book of infectious diseases. Nat. Med.13(3), 279–280 (2007).
  • Garza NL, Hatkin JM, Livingston V et al. Evaluation of the efficacy of modified vaccinia Ankara (MVA)/IMVAMUNE against aerosolized rabbitpox virus in a rabbit model. Vaccine27(40), 5496–5504 (2009).
  • Dupuy LC, Schmaljohn CS. DNA vaccines for biodefense. Expert Rev. Vaccines8(12), 1739–1754 (2009).
  • Golden JW, Josleyn MD, Hooper JW. Targeting the vaccinia virus L1 protein to the cell surface enhances production of neutralizing antibodies. Vaccine26(27–28), 3507–3515 (2008).
  • Rudraraju R, Ramsay AJ. Single-shot immunization with recombinant adenovirus encoding vaccinia virus glycoprotein A27L is protective against a virulent respiratory poxvirus infection. Vaccine28(31), 4997–5004 (2010).
  • Fang M, Cheng H, Dai Z, Bu Z, Sigal LJ. Immunization with a single extracellular enveloped virus protein produced in bacteria provides partial protection from a lethal orthopoxvirus infection in a natural host. Virology345(1), 231–243 (2006).
  • Shinoda K, Wyatt LS, Moss B. The neutralizing antibody response to the vaccinia virus A28 protein is specifically enhanced by its association with the H2 protein. Virology405(1), 41–49 (2010).
  • Graham BS, Koup RA, Roederer M et al. Phase 1 safety and immunogenicity evaluation of a multiclade HIV-1 DNA candidate vaccine. J. Infect. Dis.194(12), 1650–1660 (2006).
  • Geier MR, Geier DA, Zahalsky AC. A review of hepatitis B vaccination. Expert Opin. Drug Safety2(2), 113–122 (2003).
  • Abraham P, Mistry FP, Bapat MR et al. Evaluation of a new recombinant DNA hepatitis B vaccine (Shanvac-B). Vaccine17(9–10), 1125–1129 (1999).
  • Martin JE, Sullivan NJ, Enama ME et al. A DNA vaccine for Ebola virus is safe and immunogenic in a Phase I clinical trial. Clin. Vaccine Immunol.13(11), 1267–1277 (2006).
  • Martin JE, Pierson TC, Hubka S et al. A West Nile virus DNA vaccine induces neutralizing antibody in healthy adults during a Phase 1 clinical trial. J. Infect. Dis.196(12), 1732–1740 (2007).
  • Jones S, Evans K, McElwaine-Johnn H et al. DNA vaccination protects against an influenza challenge in a double-blind randomised placebo-controlled Phase 1b clinical trial. Vaccine27(18), 2506–2512 (2009).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.