144
Views
12
CrossRef citations to date
0
Altmetric
Review

Breast cancer vaccines: ongoing National Cancer Institute-registered clinical trials

, , , , &
Pages 755-774 | Published online: 09 Jan 2014

References

  • Burch PA, Breen JK, Buckner JC et al. Priming tissue-specific cellular immunity in a Phase I trial of autologous dendritic cells for prostate cancer. Clin. Cancer Res.6(6), 2175–2182 (2000).
  • Kantoff PW, Higano CS, Shore ND et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N. Engl. J. Med.363(5), 411–422 (2010).
  • Gianni L, Dafni U, Gelber RD et al. Treatment with trastuzumab for 1 year after adjuvant chemotherapy in patients with HER2-positive early breast cancer: a 4-year follow-up of a randomised controlled trial. Lancet Oncol.12(3), 236–244 (2011).
  • Piccart-Gebhart MJ, Procter M, Leyland-Jones B et al. Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N. Engl. J. Med.353(16), 1659–1672 (2005).
  • Romond EH, Perez EA, Bryant J et al. Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N. Engl. J. Med.353(16), 1673–1684 (2005).
  • Robson NC, Hoves S, Maraskovsky E, Schnurr M. Presentation of tumour antigens by dendritic cells and challenges faced. Curr. Opin. Immunol.22(1), 137–144 (2010).
  • Mittendorf EA, Czerniecki BJ, Peoples GE. Breast Cancer Vaccines. In: Kuerer’s Breast Surgical Oncology. Henry Kuerer (Ed.). McGraw-Hill, New York, NY, USA, 937–945 (2010).
  • Emens LA. Cancer vaccines: on the threshold of success. Expert Opin. Emerg. Drugs13(2), 295–308 (2008).
  • Satthaporn S, Robins A, Vassanasiri W et al. Dendritic cells are dysfunctional in patients with operable breast cancer. Cancer Immunol. Immunother53(6), 510–518 (2004).
  • Dees EC, McKinnon KP, Kuhns JJ et al. Dendritic cells can be rapidly expanded ex vivo and safely administered in patients with metastatic breast cancer. Cancer Immunol. Immunother.53(9), 777–785 (2004).
  • Slamon DJ, Clark GM, Wong SG et al. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science (New York NY)235(4785), 177–182 (1987).
  • Slamon DJ, Godolphin W, Jones LA et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science244(45), 707–712 (1989).
  • Fisk B, Blevins TL, Wharton JT, Ioannides CG. Identification of an immunodominant peptide of HER-2/neu protooncogene recognized by ovarian tumor-specific cytotoxic T lymphocyte lines. J. Exp. Med.181(6), 2109–2117 (1995).
  • Mittendorf EA, Holmes JP, Ponniah S, Peoples GE. The E75 HER2/neu peptide vaccine. Cancer Immunol. Immunother.57(10), 1511–1521 (2008).
  • Soliman H. Developing an effective breast cancer vaccine. Cancer Control17(3), 183–181 (2010).
  • Chang F, Syrjanen S, Syrjanen K. Implications of the p53 tumor-suppressor gene in clinical oncology. J. Clin. Oncol.13(4), 1009–1022 (1995).
  • Runnebaum IB, Nagarajan M, Bowman M, Soto D, Sukumar S. Mutations in p53 as potential molecular markers for human breast cancer. Proc. Natl Acad. Sci. USA88(23), 10657–10661 (1991).
  • Lutzker SG, Lattime EC. Use of dendritic cells to immunize against cancers overexpressing p53. Clin. Cancer Res.7(1), 2–4 (2001).
  • Nikitina EY, Clark JI, Van Beynen J et al. Dendritic cells transduced with full-length wild-type p53 generate antitumor cytotoxic T lymphocytes from peripheral blood of cancer patients. Clin. Cancer Res.7(1), 127–135 (2001).
  • Svane IM, Pedersen AE, Johnsen HE et al. Vaccination with p53-peptide-pulsed dendritic cells, of patients with advanced breast cancer: report from a Phase I study. Cancer Immunol. Immunother.53(7), 633–641 (2004).
  • Barfoed AM, Petersen TR, Kirkin AF et al. Cytotoxic T-lymphocyte clones, established by stimulation with the HLA-A2 binding p5365–73 wild type peptide loaded on dendritic cells in vitro, specifically recognize and lyse HLA-A2 tumour cells overexpressing the p53 protein. Scand. J. Immunol.51(2), 128–133 (2000).
  • Ropke M, Hald J, Guldberg P et al. Spontaneous human squamous cell carcinomas are killed by a human cytotoxic T lymphocyte clone recognizing a wild-type p53-derived peptide. Proc. Natl Acad. Sci. USA93(25), 14704–14707 (1996).
  • Wurtzen PA, Claesson MH. A HLA-A2 restricted human CTL line recognizes a novel tumor cell expressed p53 epitope. Int. J. Cancer99(4), 568–572 (2002).
  • Petersen TR, Buus S, Brunak S et al. Identification and design of p53-derived HLA-A2-binding peptides with increased CTL immunogenicity. Scand. J. Immunol.53(4), 357–364 (2001).
  • Peoples GE, Holmes JP, Hueman MT et al. Combined clinical trial results of a HER2/neu (E75) vaccine for the prevention of recurrence in high-risk breast cancer patients: U.S. Military Cancer Institute Clinical Trials Group Study I-01 and I-02. Clin. Cancer Res.14(3), 797–803 (2008).
  • Gillis S, Union NA, Baker PE, Smith KA. The in vitro generation and sustained culture of nude mouse cytolytic T-lymphocytes. J. Exp. Med.149(6), 1460–1476 (1979).
  • Malek TR, Castro I. Interleukin-2 receptor signaling: at the interface between tolerance and immunity. Immunity33(2), 153–165 (2010).
  • Morgan DA, Ruscetti FW, Gallo R. Selective in vitro growth of T lymphocytes from normal human bone marrows. Science193(4257), 1007–1008 (1976).
  • Goldstein AL, Badamchian M. Thymosins: chemistry and biological properties in health and disease. Expert Opin. Biol. Ther.4(4), 559–573 (2004).
  • Knutsen AP, Freeman JJ, Mueller KR, Roodman ST, Bouhasin JD. Thymosin-α1 stimulates maturation of CD34+ stem cells into CD3+4+ cells in an in vitro thymic epithelia organ coculture model. Int. J. Immunopharmacol.21(1), 15–26 (1999).
  • Romani L, Bistoni F, Gaziano R et al. Thymosin α 1 activates dendritic cells for antifungal Th1 resistance through Toll-like receptor signaling. Blood103(11), 4232–4239 (2004).
  • Mittendorf EA, Gurney JM, Storrer CE et al. Vaccination with a HER2/neu peptide induces intra- and inter-antigenic epitope spreading in patients with early stage breast cancer. Surgery139(3), 407–418 (2006).
  • Mittendorf EA, Peoples GE. HER-2/neu peptide breast cancer vaccines: current status and future directions. Breast Diseases: A Year Book Quarterly17(4), 318–320 (2007).
  • Knutson KL, Disis ML. Augmenting T helper cell immunity in cancer. Curr. Drug Targets5(4), 365–371 (2005).
  • Knutson KL, Schiffman K, Disis ML. Immunization with a HER-2/neu helper peptide vaccine generates HER-2/neu CD8 T-cell immunity in cancer patients. J. Clin. Invest.107(4), 477–484 (2001).
  • Karyampudi L, Formicola C, Erskine CL et al. A degenerate HLA-DR epitope pool of HER-2/neu reveals a novel in vivo immunodominant epitope, HER-2/neu88–102. Clin. Cancer Res.16(3), 825–834 (2010).
  • Karyampudi L, Krco CJ, Kalli KR et al. Identification of a broad coverage HLA-DR degenerate epitope pool derived from carcinoembryonic antigen. Cancer Immunol. Immunother.59(1), 161–171 (2010).
  • Mittendorf EA, Storrer CE, Foley RJ et al. Evaluation of the HER2/neu-derived peptide GP2 for use in a peptide-based breast cancer vaccine trial. Cancer106(11), 2309–2317 (2006).
  • Carmichael MG, Benavides LC, Holmes JP et al. Results of the first Phase 1 clinical trial of the HER-2/neu peptide (GP2) vaccine in disease-free breast cancer patients: United STATES Military Cancer Institute Clinical Trials Group Study I-04. Cancer116(2), 292–301 (2010).
  • Mittendorf EA, Holmes JP, Murray JL, von Hofe E, Peoples GE. CD4+ T cells in antitumor immunity: utility of an li-key HER2/neu hybrid peptide vaccine (AE37). Expert Opin. Biol. Ther.9(1), 71–78 (2009).
  • Adams S, Humphreys RE. Invariant chain peptides enhancing or inhibiting the presentation of antigenic peptides by major histocompatibility complex class II molecules. Eur. J. Immunol.25(6), 1693–1702 (1995).
  • Xu M, Li J, Gulfo JV, Von Hofe E, Humphreys RE. MHC class II allosteric site drugs: new immunotherapeutics for malignant, infectious and autoimmune diseases. Scand. J. Immunol.54(1–2), 39–44 (2001).
  • Gillogly ME, Kallinteris NL, Xu M et al. Ii-Key/HER-2/neu MHC class-II antigenic epitope vaccine peptide for breast cancer. Cancer Immunol. Immunother.53(6), 490–496 (2004).
  • Humphreys RE, Adams S, Koldzic G et al. Increasing the potency of MHC class II-presented epitopes by linkage to Ii-Key peptide. Vaccine18(24), 2693–2697 (2000).
  • Voutsas IF, Gritzapis AD, Mahaira LG et al. Induction of potent CD4+ T cell-mediated antitumor responses by a helper HER-2/neu peptide linked to the Ii-Key moiety of the invariant chain. Int. J. Cancer121(9), 2031–2041 (2007).
  • Holmes JP, Benavides LC, Gates JD et al. Results of the first Phase I clinical trial of the novel Ii-key hybrid preventive HER-2/neu peptide (AE37) vaccine. J. Clin. Oncol.26(20), 3426–3433 (2008).
  • Holmes JP, Clifton GT, Patil R et al. Use of booster inoculations to sustain the clinical effect of an adjuvant breast cancer vaccine: from US Military Cancer Institute Clinical Trials Group Study I-01 and I-02. Cancer117(3), 463–471 (2010).
  • Benavides LC, Gates JD, Carmichael MG et al. The impact of HER2/neu expression level on response to the E75 vaccine: from U.S. Military Cancer Institute Clinical Trials Group Study I-01 and I-02. Clin. Cancer Res.15(8), 2895–2824 (2009).
  • Knutson KL, Disis ML. Tumor antigen-specific T helper cells in cancer immunity and immunotherapy. Cancer Immunol. Immunother.54(8), 721–728 (2005).
  • Disis ML, Wallace DR, Gooley TA et al. Concurrent trastuzumab and HER2/neu-specific vaccination in patients with metastatic breast cancer. J. Clin. Oncol.27(28), 4685–4692 (2009).
  • Le Bon A, Etchart N, Rossmann C et al. Cross-priming of CD8+ T cells stimulated by virus-induced type I interferon. Nat. Immunol.4(10), 1009–1015 (2003).
  • Castellino F, Germain RN. Cooperation between CD4+ and CD8+ T cells: when, where, and how. Annu. Rev. Immunol.24, 519–540 (2006).
  • Drebin JA, Link VC, Stern DF, Weinberg RA, Greene MI. Down-modulation of an oncogene protein product and reversion of the transformed phenotype by monoclonal antibodies. Cell41(3), 697–706 (1985).
  • Hurwitz E, Klapper LN, Wilchek M, Yarden Y, Sela M. Inhibition of tumor growth by poly(ethylene glycol) derivatives of anti-ErbB2 antibodies. Cancer Immunol. Immunother.49(4–5), 226–234 (2000).
  • Klapper LN, Waterman H, Sela M, Yarden Y. Tumor-inhibitory antibodies to HER-2/ErbB-2 may act by recruiting c-Cbl and enhancing ubiquitination of HER-2. Cancer Res.60(13), 3384–3388 (2000).
  • zum Buschenfelde CM, Hermann C, Schmidt B, Peschel C, Bernhard H. Antihuman epidermal growth factor receptor 2 (HER2) monoclonal antibody trastuzumab enhances cytolytic activity of class I-restricted HER2-specific T lymphocytes against HER2-overexpressing tumor cells. Cancer Res.62(8), 2244–2247 (2002).
  • Mittendorf EA, Storrer CE, Shriver CD, Ponniah S, Peoples GE. Investigating the combination of trastuzumab and HER2/neu peptide vaccines for the treatment of breast cancer. Ann. Surg. Oncol.13(8), 1085–1098 (2006).
  • Cox AL, Skipper J, Chen Y et al. Identification of a peptide recognized by five melanoma-specific human cytotoxic T cell lines. Science264(5159), 716–719 (1994).
  • Van Der Bruggen P, Zhang Y, Chaux P et al. Tumor-specific shared antigenic peptides recognized by human T cells. Immunol. Rev.188, 51–64 (2002).
  • Huang AY, Bruce AT, Pardoll DM, Levitsky HI. In vivo cross-priming of MHC class I-restricted antigens requires the TAP transporter. Immunity4(4), 349–355 (1996).
  • Thomas AM, Santarsiero LM, Lutz ER et al. Mesothelin-specific CD8(+) T cell responses provide evidence of in vivo cross-priming by antigen-presenting cells in vaccinated pancreatic cancer patients. J. Exp. Med.200(3), 297–306 (2004).
  • Albert ML, Sauter B, Bhardwaj N. Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs. Nature392(6671), 86–89 (1998).
  • Huang AY, Golumbek P, Ahmadzadeh M et al. Role of bone marrow-derived cells in presenting MHC class I-restricted tumor antigens. Science264(5161), 961–965 (1994).
  • Inaba K, Inaba M, Romani N et al. Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J. Exp. Med.176(6), 1693–1702 (1992).
  • Dranoff G, Jaffee E, Lazenby A et al. Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc. Natl Acad. Sci. USA90(8), 3539–3543 (1993).
  • Jaffee EM, Hruban RH, Biedrzycki B et al. Novel allogeneic granulocyte-macrophage colony-stimulating factor-secreting tumor vaccine for pancreatic cancer: a Phase I trial of safety and immune activation. J. Clin. Oncol.19(1), 145–156 (2001).
  • Laheru D, Lutz E, Burke J et al. Allogeneic granulocyte macrophage colony-stimulating factor-secreting tumor immunotherapy alone or in sequence with cyclophosphamide for metastatic pancreatic cancer: a pilot study of safety, feasibility, and immune activation. Clin. Cancer Res.14(5), 1455–1463 (2008).
  • Nemunaitis J, Sterman D, Jablons D et al. Granulocyte-macrophage colony-stimulating factor gene-modified autologous tumor vaccines in non-small-cell lung cancer. J. Natl Cancer Inst.96(4), 326–331 (2004).
  • Simons JW, Carducci MA, Mikhak B et al. Phase I/II trial of an allogeneic cellular immunotherapy in hormone-naive prostate cancer. Clin. Cancer Res.12(11 Pt 1), 3394–3401 (2006).
  • Simons JW, Jaffee EM, Weber CE et al. Bioactivity of autologous irradiated renal cell carcinoma vaccines generated by ex vivo granulocyte-macrophage colony-stimulating factor gene transfer. Cancer Res.57(8), 1537–1546 (1997).
  • Machiels JP, Reilly RT, Emens LA et al. Cyclophosphamide, doxorubicin, and paclitaxel enhance the antitumor immune response of granulocyte/macrophage-colony stimulating factor-secreting whole-cell vaccines in HER-2/neu tolerized mice. Cancer Res.61(9), 3689–3697 (2001).
  • Salem ML, Kadima AN, El-Naggar SA et al. Defining the ability of cyclophosphamide preconditioning to enhance the antigen-specific CD8+ T-cell response to peptide vaccination: creation of a beneficial host microenvironment involving type I IFNs and myeloid cells. J. Immunother30(1), 40–53 (2007).
  • Emens LA, Asquith JM, Leatherman JM et al. Timed sequential treatment with cyclophosphamide, doxorubicin, and an allogeneic granulocyte-macrophage colony-stimulating factor-secreting breast tumor vaccine: a chemotherapy dose-ranging factorial study of safety and immune activation. J. Clin. Oncol.27(35), 5911–5918 (2009).
  • Davis-Sproul JM, Harris MP, Davidson NE et al. Cost-effective manufacture of an allogeneic GM-CSF-secreting breast tumor vaccine in an academic cGMP facility. Cytotherapy7(1), 46–56 (2005).
  • Mescher MF. Surface contact requirements for activation of cytotoxic T lymphocytes. J. Immunol.149(7), 2402–2405 (1992).
  • Rogers J, Mescher MF. Augmentation of in vivo cytotoxic T lymphocyte activity and reduction of tumor growth by large multivalent immunogen. J. Immunol.149(1), 269–276 (1992).
  • Mitchell MS, Kan-Mitchell J, Morrow PR et al. Phase I trial of large multivalent immunogen derived from melanoma lysates in patients with disseminated melanoma. Clin. Cancer Res.10(1 Pt 1), 76–83 (2004).
  • Hodge JW, McLaughlin JP, Kantor JA, Schlom J. Diversified prime and boost protocols using recombinant vaccinia virus and recombinant non-replicating avian pox virus to enhance T-cell immunity and antitumor responses. Vaccine15(6–7), 759–768 (1997).
  • Marshall JL, Hoyer RJ, Toomey MA et al. Phase I study in advanced cancer patients of a diversified prime-and-boost vaccination protocol using recombinant vaccinia virus and recombinant nonreplicating avipox virus to elicit anti-carcinoembryonic antigen immune responses. J. Clin. Oncol.18(23), 3964–3973 (2000).
  • Tsang KY, Palena C, Gulley J, Arlen P, Schlom J. A human cytotoxic T-lymphocyte epitope and its agonist epitope from the nonvariable number of tandem repeat sequence of MUC-1. Clin. Cancer Res.10(6), 2139–2149 (2004).
  • Tsang KY, Zaremba S, Nieroda CA et al. Generation of human cytotoxic T cells specific for human carcinoembryonic antigen epitopes from patients immunized with recombinant vaccinia-CEA vaccine. J. Natl Cancer Inst.87(13), 982–989 (1995).
  • Garnett CT, Greiner JW, Tsang KY et al. TRICOM vector based cancer vaccines. Curr. Pharm. Des.12(3), 351–361 (2006).
  • Hodge JW, Chakraborty M, Kudo-Saito C, Garnett CT, Schlom J. Multiple costimulatory modalities enhance CTL avidity. J. Immunol.174(10), 5994–6004 (2005).
  • Hodge JW, Sabzevari H, Yafal AG et al. A triad of costimulatory molecules synergize to amplify T-cell activation. Cancer Res.59(22), 5800–5807 (1999).
  • Gulley JL, Arlen PM, Tsang KY et al. Pilot study of vaccination with recombinant CEA-MUC-1-TRICOM poxviral-based vaccines in patients with metastatic carcinoma. Clin. Cancer Res.14(10), 3060–3069 (2008).
  • Rosenberg SA, Yang JC, Restifo NP. Cancer immunotherapy: moving beyond current vaccines. Nat. Med.10(9), 9–915 (2004).
  • Mittendorf EA, Peoples GE, Singletary SE. Breast cancer vaccines: promise for the future or pipe dream? Cancer110(8), 1677–1686 (2007).
  • Mittendorf EA, Sharma P. Mechanisms of T-cell inhibition: implications for cancer immunotherapy. Expert Rev. Vaccines9(1), 89–105 (2010).
  • Chen W, Jin W, Hardegen N et al. Conversion of peripheral CD4+CD25- naive T cells to CD4+CD25+ regulatory T cells by TGF-β induction of transcription factor FOXP3. J. Exp. Med.198(12), 1875–1886 (2003).
  • Gabrilovich DI, Ishida T, Nadaf S, Ohm JE, Carbone DP. Antibodies to vascular endothelial growth factor enhance the efficacy of cancer immunotherapy by improving endogenous dendritic cell function. Clin. Cancer Res.5(10), 2963–2970 (1999).
  • Gorelik L, Flavell RA. Immune-mediated eradication of tumors through the blockade of transforming growth factor-β signaling in T cells. Nat. Med.7(10), 1118–1122 (2001).
  • Kawamura K, Bahar R, Natsume W, Sakiyama S, Tagawa M. Secretion of interleukin-10 from murine colon carcinoma cells suppresses systemic antitumor immunity and impairs protective immunity induced against the tumors. Cancer Gene Ther.9(1), 109–115 (2002).
  • McKallip R, Li R, Ladisch S. Tumor gangliosides inhibit the tumor-specific immune response. J. Immunol.163(7), 3718–3726 (1999).
  • Lutsiak ME, Semnani RT, De Pascalis R et al. Inhibition of CD4(+)25+ T regulatory cell function implicated in enhanced immune response by low-dose cyclophosphamide. Blood105(7), 2862–2868 (2005).
  • Ozao-Choy J, Ma G, Kao J et al. The novel role of tyrosine kinase inhibitor in the reversal of immune suppression and modulation of tumor microenvironment for immune-based cancer therapies. Cancer Res.69(6), 2514–2522 (2009).
  • Hodi FS, O’Day SJ, McDermott DF et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med.363(8), 711–723 (2010).
  • Vonderheide RH, LoRusso PM, Khalil M et al. Tremelimumab in combination with exemestane in patients with advanced breast cancer and treatment-associated modulation of inducible costimulator expression on patient T cells. Clin. Cancer Res.16(13), 3485–3494 (2010).
  • Liakou CI, Kamat A, Tang DN et al. CTLA-4 blockade increases IFNγ-producing CD4+ICOShi cells to shift the ratio of effector to regulatory T cells in cancer patients. Proc. Natl Acad. Sci. USA105(39), 14987–14992 (2008).
  • Peggs KS, Quezada SA, Allison JP. Cell intrinsic mechanisms of T-cell inhibition and application to cancer therapy. Immunol. Rev.224, 141–165 (2008).
  • Van der Burg SH. Therapeutic vaccines in cancer: moving from immunomonitoring to immunoguiding. Expert Rev. Vaccines7(1), 1–5 (2008).
  • Welters MJ, Piersma SJ, van der Burg SH. T-regulatory cells in tumour-specific vaccination strategies. Expert Opin. Biol. Ther.8(9), 1365–1379 (2008).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.