114
Views
5
CrossRef citations to date
0
Altmetric
Review

Neuroendocrine cancer vaccines in clinical trials

Pages 811-823 | Published online: 09 Jan 2014

References

  • Klimstra DS, Modlin IR, Coppola D, Lloyd RV, Suster S. The pathologic classification of neuroendocrine tumors: a review of nomenclature, grading, and staging systems. Pancreas39(6), 707–712 (2010).
  • Fujita T, Kobayashi S, Yui R. Paraneuron concept and its current implications. Adv. Biochem. Psychopharmacol.25, 321–325 (1980).
  • Le Douarin NM. On the origin of pancreatic endocrine cells. Cell53(2), 169–171 (1988).
  • Barakat MT, Meeran K, Bloom SR. Neuroendocrine tumours. Endocr. Relat. Cancer11(1), 1–18 (2004).
  • Yon L, Guillemot J, Montero-Hadjadje M et al. Identification of the secretogranin II-derived peptide EM66 in pheochromocytomas as a potential marker for discriminating benign versus malignant tumors. J. Clin. Endocrinol. Metab.88(6), 2579–2585 (2003).
  • Guillemot J, Anouar Y, Montero-Hadjadje M et al. Circulating EM66 is a highly sensitive marker for the diagnosis and follow-up of pheochromocytoma. Int. J. Cancer118(8), 2003–2012 (2006).
  • Kanehira K, Khoury T. Neuroendocrine markers expression in pancreatic serous cystadenoma. Appl. Immunohistochem. Mol. Morphol.19(2), 141–146 (2011).
  • Farinola MA, Weir EG, Ali SZ. CD56 expression of neuroendocrine neoplasms on immunophenotyping by flow cytometry: a novel diagnostic approach to fine-needle aspiration biopsy. Cancer99(4), 240–246 (2003).
  • Bahrami A, Gown AM, Baird GS, Hicks MJ, Folpe AL. Aberrant expression of epithelial and neuroendocrine markers in alveolar rhabdomyosarcoma: a potentially serious diagnostic pitfall. Mod. Pathol.21(7), 795–806 (2008).
  • Bonkhoff H. Neuroendocrine differentiation in human prostate cancer. Morphogenesis, proliferation and androgen receptor status. Ann. Oncol.12(Suppl. 2), S141–S144 (2001).
  • Slominski A. Neuroendocrine activity of the melanocyte. Exp. Dermatol.18(9), 760–763 (2009).
  • Slominski A, Wortsman J, Luger T, Paus R, Solomon S. Corticotropin releasing hormone and proopiomelanocortin involvement in the cutaneous response to stress. Physiol. Rev.80(3), 979–1020 (2000).
  • Slominski A, Tobin DJ, Shibahara S, Wortsman J. Melanin pigmentation in mammalian skin and its hormonal regulation. Physiol. Rev.84(4), 1155–1228 (2004).
  • Slominski A, Wortsman J, Tobin DJ. The cutaneous serotoninergic/melatoninergic system: securing a place under the sun. FASEB J.19(2), 176–194 (2005).
  • Eyden B, Pandit D, Banerjee SS. Malignant melanoma with neuroendocrine differentiation: clinical, histological, immunohistochemical and ultrastructural features of three cases. Histopathology47(4), 402–409 (2005).
  • Navalkele P, O’Dorisio MS, O’Dorisio TM, Zamba GK, Lynch CF. Incidence, survival, and prevalence of neuroendocrine tumors versus neuroblastoma in children and young adults: nine standard SEER registries, 1975–2006. Pediatr. Blood Cancer56(1), 50–57 (2011).
  • Modlin IM, Oberg K, Chung DC et al. Gastroenteropancreatic neuroendocrine tumours. Lancet Oncol.9(1), 61–72 (2008).
  • Dworakowska D, Grossman AB. Are neuroendocrine tumours a feature of tuberous sclerosis? A systematic review. Endocr. Relat. Cancer16(1), 45–58 (2009).
  • Duerr EM, Chung DC. Molecular genetics of neuroendocrine tumors. Best Pract. Res. Clin. Endocrinol. Metab.21(1), 1–14 (2007).
  • Almeida MQ, Stratakis CA. Solid tumors associated with multiple endocrine neoplasias. Cancer Genet. Cytogenet.203(1), 30–36 (2010).
  • Garland SM, Smith JS. Human papillomavirus vaccines: current status and future prospects. Drugs70(9), 1079–1098 (2010).
  • Wirnsberger G, Hinterberger M, Klein L. Regulatory T-cell differentiation versus clonal deletion of autoreactive thymocytes. Immunol. Cell Biol.89(1), 45–53 (2011).
  • Caballero OL, Chen YT. Cancer/testis (CT) antigens: potential targets for immunotherapy. Cancer Sci.100(11), 2014–2021 (2009).
  • Coggin JH Jr, Barsoum AL, Rohrer JW, Thurnher M, Zeis M. Contemporary definitions of tumor specific antigens, immunogens and markers as related to the adaptive responses of the cancer-bearing host. Anticancer Res.25(3c), 2345–2355 (2005).
  • Morran MP, Casu A, Arena VC et al. Humoral autoimmunity against the extracellular domain of the neuroendocrine autoantigen IA-2 heightens the risk of Type 1 diabetes. Endocrinology151(6), 2528–2537 (2010).
  • Ray S, Chhabra A, Mehrotra S et al. Obstacles to and opportunities for more effective peptide-based therapeutic immunization in human melanoma. Clin. Dermatol.27(6), 603–613 (2009).
  • Hofman FM, Stathopoulos A, Kruse CA, Chen TC, Schijns VE. Immunotherapy of malignant gliomas using autologous and allogeneic tissue cells. Anticancer Agents Med. Chem.10(6), 462–470 (2010).
  • Luo W, Hsu JC, Kieber-Emmons T, Wang X, Ferrone S. Human tumor associated antigen mimicry by xenoantigens, anti-idiotypic antibodies and peptide mimics: implications for immunotherapy of malignant diseases. Cancer Chemother. Biol. Response Modif.22, 769–787 (2005).
  • Liu MA. Immunologic basis of vaccine vectors. Immunity33(4), 504–515 (2010).
  • Shurin MR, Gregory M, Morris JC, Malyguine AM. Genetically modified dendritic cells in cancer immunotherapy: a better tomorrow? Expert Opin. Biol. Ther.10(11), 1539–1553 (2010).
  • Maris JM. Recent advances in neuroblastoma. N. Engl. J. Med.362(23), 2202–2211 (2010).
  • Maris JM, Hogarty MD, Bagatell R, Cohn SL. Neuroblastoma. Lancet369(9579), 2106–2120 (2007).
  • Jacobs JF, Coulie PG, Figdor CG, Adema GJ, De Vries IJ, Hoogerbrugge PM. Targets for active immunotherapy against pediatric solid tumors. Cancer Immunol. Immunother.58(6), 831–841 (2009).
  • Modak S, Cheung NK. Disialoganglioside directed immunotherapy of neuroblastoma. Cancer Invest.25(1), 67–77 (2007).
  • Hakomori S. Tumor-associated carbohydrate antigens defining tumor malignancy: basis for development of anti-cancer vaccines. Adv. Exp. Med. Biol.491, 369–402 (2001).
  • Cheung NK, Kushner BH, Cheung IY et al. Anti-G(D2) antibody treatment of minimal residual stage 4 neuroblastoma diagnosed at more than 1 year of age. J. Clin. Oncol.16(9), 3053–3060 (1998).
  • Cheung NK, Saarinen UM, Neely JE, Landmeier B, Donovan D, Coccia PF. Monoclonal antibodies to a glycolipid antigen on human neuroblastoma cells. Cancer Res.45(6), 2642–2649 (1985).
  • Simon T, Hero B, Faldum A et al. Infants with stage 4 neuroblastoma: the impact of the chimeric anti-GD2-antibody ch14.18 consolidation therapy. Klin. Padiatr.217(3), 147–152 (2005).
  • Simon T, Hero B, Faldum A et al. Consolidation treatment with chimeric anti-GD2-antibody ch14.18 in children older than 1 year with metastatic neuroblastoma. J. Clin. Oncol.22(17), 3549–3557 (2004).
  • Yu AL, Gilman AL, Ozkaynak MF et al. Anti-GD2 antibody with GM-CSF, interleukin-2, and isotretinoin for neuroblastoma. N. Engl. J. Med.363(14), 1324–1334 (2010).
  • Morgan RA, Dudley ME, Rosenberg SA. Adoptive cell therapy: genetic modification to redirect effector cell specificity. Cancer J.16(4), 336–341 (2010).
  • Savai R, Schermuly RT, Pullamsetti SS et al. A combination hybrid-based vaccination/adoptive cellular therapy to prevent tumor growth by involvement of T cells. Cancer Res.67(11), 5443–5453 (2007).
  • Raffaghello L, Prigione I, Airoldi I et al. Mechanisms of immune evasion of human neuroblastoma. Cancer Lett.228(1–2), 155–161 (2005).
  • Cartellieri M, Bachmann M, Feldmann A et al. Chimeric antigen receptor-engineered T cells for immunotherapy of cancer. J. Biomed. Biotechnol.2010, 956304 (2010).
  • Navid F, Santana VM, Barfield RC. Anti-GD2 antibody therapy for GD2-expressing tumors. Curr. Cancer Drug Targets10(2), 200–209 (2010).
  • Leen AM, Myers GD, Sili U et al. Monoculture-derived T lymphocytes specific for multiple viruses expand and produce clinically relevant effects in immunocompromised individuals. Nat. Med.12(10), 1160–1166 (2006).
  • Pule MA, Savoldo B, Myers GD et al. Virus-specific T cells engineered to coexpress tumor-specific receptors: persistence and antitumor activity in individuals with neuroblastoma. Nat. Med.14(11), 1264–1270 (2008).
  • Geiger JD, Hutchinson RJ, Hohenkirk LF et al. Vaccination of pediatric solid tumor patients with tumor lysate-pulsed dendritic cells can expand specific T cells and mediate tumor regression. Cancer Res.61(23), 8513–8519 (2001).
  • Caruso DA, Orme LM, Neale AM et al. Results of a Phase 1 study utilizing monocyte-derived dendritic cells pulsed with tumor RNA in children and young adults with brain cancer. Neuro. Oncol.6(3), 236–246 (2004).
  • Caruso DA, Orme LM, Amor GM et al. Results of a Phase I study utilizing monocyte-derived dendritic cells pulsed with tumor RNA in children with Stage 4 neuroblastoma. Cancer103(6), 1280–1291 (2005).
  • Russell HV, Strother D, Mei Z et al. A Phase 1/2 study of autologous neuroblastoma tumor cells genetically modified to secrete IL-2 in patients with high-risk neuroblastoma. J. Immunother.31(9), 812–819 (2008).
  • Russell HV, Strother D, Mei Z et al. Phase I trial of vaccination with autologous neuroblastoma tumor cells genetically modified to secrete IL-2 and lymphotactin. J. Immunother.30(2), 227–233 (2007).
  • Bowman LC, Grossmann M, Rill D et al. Interleukin-2 gene-modified allogeneic tumor cells for treatment of relapsed neuroblastoma. Hum. Gene Ther.9(9), 1303–1311 (1998).
  • Bowman L, Grossmann M, Rill D et al. IL-2 adenovector-transduced autologous tumor cells induce antitumor immune responses in patients with neuroblastoma. Blood92(6), 1941–1949 (1998).
  • Ragupathi G, Meyers M, Adluri S, Howard L, Musselli C, Livingston PO. Induction of antibodies against GD3 ganglioside in melanoma patients by vaccination with GD3-lactone-KLH conjugate plus immunological adjuvant QS-21. Int. J. Cancer85(5), 659–666 (2000).
  • Ragupathi G, Livingston PO, Hood C et al. Consistent antibody response against ganglioside GD2 induced in patients with melanoma by a GD2 lactone-keyhole limpet hemocyanin conjugate vaccine plus immunological adjuvant QS-21. Clin. Cancer Res.9(14), 5214–5220 (2003).
  • Chapman PB, Morrissey DM, Panageas KS et al. Induction of antibodies against GM2 ganglioside by immunizing melanoma patients using GM2-keyhole limpet hemocyanin + QS21 vaccine: a dose-response study. Clin. Cancer Res.6(3), 874–879 (2000).
  • Ahlman H. Malignant pheochromocytoma: state of the field with future projections. Ann. NY Acad. Sci.1073, 449–464 (2006).
  • Chong S, Lee KS, Chung MJ, Han J, Kwon OJ, Kim TS. Neuroendocrine tumors of the lung: clinical, pathologic, and imaging findings. Radiographics26(1), 41–57; discussion 57–48 (2006).
  • Toh CK, Gao F, Lim WT et al. Differences between small-cell lung cancer and non-small-cell lung cancer among tobacco smokers. Lung Cancer56(2), 161–166 (2007).
  • Zereu M, Vinholes JJ, Zettler CG. p53 and Bcl-2 protein expression and its relationship with prognosis in small-cell lung cancer. Clin. Lung Cancer4(5), 298–302 (2003).
  • Chiappori AA, Soliman H, Janssen WE, Antonia SJ, Gabrilovich DI. INGN-225: a dendritic cell-based p53 vaccine (Ad.p53-DC) in small cell lung cancer: observed association between immune response and enhanced chemotherapy effect. Expert Opin. Biol. Ther.10(6), 983–991 (2010).
  • Antonia SJ, Mirza N, Fricke I et al. Combination of p53 cancer vaccine with chemotherapy in patients with extensive stage small cell lung cancer. Clin. Cancer Res.12(3 Pt 1), 878–887 (2006).
  • Jones PC, Sze LL, Liu PY, Morton DL, Irie RF. Prolonged survival for melanoma patients with elevated IgM antibody to oncofetal antigen. J. Natl Cancer Inst.66(2), 249–254 (1981).
  • Livingston PO, Wong GY, Adluri S et al. Improved survival in stage III melanoma patients with GM2 antibodies: a randomized trial of adjuvant vaccination with GM2 ganglioside. J. Clin. Oncol.12(5), 1036–1044 (1994).
  • Neninger E, Diaz RM, De La Torre A et al. Active immunotherapy with 1E10 anti-idiotype vaccine in patients with small cell lung cancer: report of a Phase I trial. Cancer Biol. Ther.6(2), 145–150 (2007).
  • Grant SC, Kris MG, Houghton AN, Chapman PB. Long survival of patients with small cell lung cancer after adjuvant treatment with the anti-idiotypic antibody BEC2 plus bacillus Calmette–Guérin. Clin. Cancer Res.5(6), 1319–1323 (1999).
  • Giaccone G, Debruyne C, Felip E et al. Phase III study of adjuvant vaccination with BEC2/bacille Calmette–Guérin in responding patients with limited-disease small-cell lung cancer (European Organisation for Research and Treatment of Cancer 08971–08971B; Silva Study). J. Clin. Oncol.23(28), 6854–6864 (2005).
  • Bottomley A, Debruyne C, Felip E et al. Symptom and quality of life results of an international randomised Phase III study of adjuvant vaccination with BEC2/BCG in responding patients with limited disease small-cell lung cancer. Eur. J. Cancer44(15), 2178–2184 (2008).
  • Shariat SF, Chade DC, Karakiewicz PI, Scherr DS, Dalbagni G. Update on intravesical agents for non-muscle-invasive bladder cancer. Immunotherapy2(3), 381–392 (2010).
  • Vural B, Chen LC, Saip P et al. Frequency of SOX Group B (SOX1, 2, 3) and ZIC2 antibodies in Turkish patients with small cell lung carcinoma and their correlation with clinical parameters. Cancer103(12), 2575–2583 (2005).
  • Livingston PO, Hood C, Krug LM et al. Selection of GM2, fucosyl GM1, globo H and polysialic acid as targets on small cell lung cancers for antibody mediated immunotherapy. Cancer Immunol. Immunother.54(10), 1018–1025 (2005).
  • Abraham DT, Low TH, Messina M et al. Medullary thyroid carcinoma: long-term outcomes of surgical treatment. Ann. Surg. Oncol.18(1), 219–225 (2011).
  • Marinoni I, Pellegata NS. p27kip1: a new multiple endocrine neoplasia gene? Neuroendocrinology93(1), 19–28 (2011).
  • Traugott A, Moley JF. Medullary thyroid cancer: medical management and follow-up. Curr. Treat. Options Oncol.6(4), 339–346 (2005).
  • Kebebew E, Greenspan FS, Clark OH, Woeber KA, Grunwell J. Extent of disease and practice patterns for medullary thyroid cancer. J. Am. Coll. Surg.200(6), 890–896 (2005).
  • Bachleitner-Hofmann T, Friedl J, Hassler M et al. Pilot trial of autologous dendritic cells loaded with tumor lysate(s) from allogeneic tumor cell lines in patients with metastatic medullary thyroid carcinoma. Oncol. Rep.21(6), 1585–1592 (2009).
  • Papewalis C, Wuttke M, Jacobs B et al. Dendritic cell vaccination induces tumor epitope-specific Th1 immune response in medullary thyroid carcinoma. Horm. Metab. Res.40(2), 108–116 (2008).
  • Lien MH, Baldwin BT, Thareja SK, Fenske NA. Merkel cell carcinoma: clinical characteristics, markers, staging and treatment. J. Drugs Dermatol.9(7), 779–784 (2010).
  • Ramqvist T, Dalianis T. Lessons from immune responses and vaccines against murine polyomavirus infection and polyomavirus-induced tumours potentially useful for studies on human polyomaviruses. Anticancer Res.30(2), 279–284 (2010).
  • Tadmor T, Aviv A, Polliack A. Merkel cell carcinoma, chronic lymphocytic leukemia and other lymphoproliferative disorders: an old bond with possible new viral ties. Ann. Oncol.22(2), 250–256 (2011).
  • Pastrana DV, Tolstov YL, Becker JC, Moore PS, Chang Y, Buck CB. Quantitation of human seroresponsiveness to Merkel cell polyomavirus. PLoS Pathog.5(9), e1000578 (2009).
  • Paulson KG, Carter JJ, Johnson LG et al. Antibodies to merkel cell polyomavirus T antigen oncoproteins reflect tumor burden in merkel cell carcinoma patients. Cancer Res.70(21), 8388–8397 (2010).
  • Pastrana DV, Gambhira R, Buck CB et al. Cross-neutralization of cutaneous and mucosal Papillomavirus types with anti-sera to the amino terminus of L2. Virology337(2), 365–372 (2005).
  • Rindi G, Inzani F, Solcia E. Pathology of gastrointestinal disorders. Endocrinol. Metab. Clin. North Am.39(4), 713–727 (2010).
  • Alvarez MC, Macias AA, Saurez MG, Fernandez ML, Lage DA. Bronchial carcinoid tumor treated with interferon and a new vaccine against NeuGcGM3 antigen expressed in malignant carcinoid cells. Cancer Biol. Ther.6(6), 853–855 (2007).
  • Cheah PL, Looi LM. Biology and pathological associations of the human papillomaviruses: a review. Malays. J. Pathol.20(1), 1–10 (1998).
  • Joseph DA, Miller JW, Wu X et al. Understanding the burden of human papillomavirus-associated anal cancers in the US. Cancer113(Suppl. 10), 2892–2900 (2008).
  • Fendrich V, Waldmann J, Bartsch DK, Langer P. Surgical management of pancreatic endocrine tumors. Nat. Rev. Clin. Oncol.6(7), 419–428 (2009).
  • Hansel DE, House MG, Ashfaq R, Rahman A, Yeo CJ, Maitra A. MAGE1 is expressed by a subset of pancreatic endocrine neoplasms and associated lymph node and liver metastases. Int. J. Gastrointest. Cancer33(2–3), 141–147 (2003).
  • Van Baren N, Bonnet MC, Dreno B et al. Tumoral and immunologic response after vaccination of melanoma patients with an ALVAC virus encoding MAGE antigens recognized by T cells. J. Clin. Oncol.23(35), 9008–9021 (2005).
  • Morris-Stiff G, Teli M, Jardine N, Puntis MC. CA19–9 antigen levels can distinguish between benign and malignant pancreaticobiliary disease. Hepatobiliary Pancreat. Dis. Int.8(6), 620–626 (2009).
  • Yuan J, Gnjatic S, Li H et al. CTLA-4 blockade enhances polyfunctional NY-ESO-1 specific T cell responses in metastatic melanoma patients with clinical benefit. Proc. Natl Acad. Sci. USA105(51), 20410–20415 (2008).
  • Jacobs JF, Brasseur F, Hulsbergen-Van De Kaa CA et al. Cancer-germline gene expression in pediatric solid tumors using quantitative real-time PCR. Int. J. Cancer120(1), 67–74 (2007).
  • Old LJ. Cancer vaccines: an overview. Cancer Immun.8(Suppl. 1), 1 (2008).
  • Frick JS, Grunebach F, Autenrieth IB. Immunomodulation by semi-mature dendritic cells: a novel role of Toll-like receptors and interleukin-6. Int. J. Med. Microbiol.300(1), 19–24 (2010).
  • Ilarregui JM, Rabinovich GA. Tolerogenic dendritic cells in the control of autoimmune neuroinflammation: an emerging role of protein-glycan interactions. Neuroimmunomodulation17(3), 157–160 (2010).
  • Weissman D, Ni H, Scales D et al. HIV gag mRNA transfection of dendritic cells (DC) delivers encoded antigen to MHC class I and II molecules, causes DC maturation, and induces a potent human in vitro primary immune response. J. Immunol.165(8), 4710–4717 (2000).
  • Simon T, Fonteneau JF, Gregoire M. Dendritic cell preparation for immunotherapeutic interventions. Immunotherapy1(2), 289–302 (2009).
  • Mueller SN, Jones CM, Stock AT, Suter M, Heath WR, Carbone FR. CD4+ T cells can protect APC from CTL-mediated elimination. J. Immunol.176(12), 7379–7384 (2006).
  • Ludewig B, Bonilla WV, Dumrese T, Odermatt B, Zinkernagel RM, Hengartner H. Perforin-independent regulation of dendritic cell homeostasis by CD8(+) T cells in vivo: implications for adaptive immunotherapy. Eur. J. Immunol.31(6), 1772–1779 (2001).
  • Eroukhmanoff L, Oderup C, Ivars F. T-cell tolerance induced by repeated antigen stimulation: selective loss of FOXP3- conventional CD4 T cells and induction of CD4 T-cell anergy. Eur. J. Immunol.39(4), 1078–1087 (2009).
  • Badovinac VP, Messingham KA, Jabbari A, Haring JS, Harty JT. Accelerated CD8+ T-cell memory and prime-boost response after dendritic-cell vaccination. Nat. Med.11(7), 748–756 (2005).
  • Pham NL, Pewe LL, Fleenor CJ et al. Exploiting cross-priming to generate protective CD8 T-cell immunity rapidly. Proc. Natl Acad. Sci. USA107(27), 12198–12203 (2010).
  • Wong P, Lara-Tejero M,Ploss A, Leiner I, Pamer EG. Rapid development of T cell memory. J. Immunol.172(12), 7239–7245 (2004).
  • Reagan-Shaw S, Nihal M, Ahmad N. Dose translation from animal to human studies revisited. FASEB J.22(3), 659–661 (2008).
  • Butts CL, Sternberg EM. Neuroendocrine factors alter host defense by modulating immune function. Cell Immunol.252(1–2), 7–15 (2008).
  • Brubaker PL, Drucker DJ, Asa SL, Swallow C, Redston M, Greenberg GR. Prolonged gastrointestinal transit in a patient with a glucagon-like peptide (GLP)-1- and -2-producing neuroendocrine tumor. J. Clin. Endocrinol. Metab.87(7), 3078–3083 (2002).
  • Skinner MM, Nass R, Lopes B, Laws ER, Thorner MO. Growth hormone secretagogue receptor expression in human pituitary tumors. J. Clin. Endocrinol. Metab.83(12), 4314–4320 (1998).
  • Leontiou CA, Franchi G, Korbonits M. Ghrelin in neuroendocrine organs and tumours. Pituitary10(3), 213–225 (2007).
  • Taylor AW. Neuroimmunomodulation and immune privilege: the role of neuropeptides in ocular immunosuppression. Neuroimmunomodulation10(4), 189–198 (2002).
  • Garssen J, Buckley TL, Van Loveren H. A role for neuropeptides in UVB-induced systemic immunosuppression. Photochem. Photobiol.68(2), 205–210 (1998).
  • Seiffert K, Granstein RD. Neuropeptides and neuroendocrine hormones in ultraviolet radiation-induced immunosuppression. Methods28(1), 97–103 (2002).
  • Gonzalez-Rey E, Delgado M. Vasoactive intestinal peptide and regulatory T-cell induction: a new mechanism and therapeutic potential for immune homeostasis. Trends Mol. Med.13(6), 241–251 (2007).
  • Taylor AW, Yee DG, Nishida T, Namba K. Neuropeptide regulation of immunity. The immunosuppressive activity of α-melanocyte-stimulating hormone (α-MSH). Ann. NY Acad. Sci.917, 239–247 (2000).
  • Fabricius D, O’dorisio MS, Blackwell S, Jahrsdorfer B. Human plasmacytoid dendritic cell function: inhibition of IFN-α secretion and modulation of immune phenotype by vasoactive intestinal peptide. J. Immunol.177(9), 5920–5927 (2006).
  • Moreno AM, Castilla-Guerra L, Martinez-Torres MC, Torres-Olivera F, Fernandez E, Galera-Davidson H. Expression of neuropeptides and other neuroendocrine markers in human phaeochromocytomas. Neuropeptides33(2), 159–163 (1999).
  • Wai LE, Garcia JA, Martinez OM, Krams SM. Distinct roles for the NK cell-activating receptors in mediating interactions with dendritic cells and tumor cells. J. Immunol.186(1), 222–229 (2011).
  • Madan RA, Arlen PM, Mohebtash M, Hodge JW, Gulley JL. Prostvac-VF: a vector-based vaccine targeting PSA in prostate cancer. Expert Opin. Investig. Drugs18(7), 1001–1011 (2009).
  • Leon L, Areses MC, Anido U, Gomez A, Carballo AM. Poxviral-based prostate-specific antigen vaccine in prostate cancer. J. Clin. Oncol.28(24), e416; author reply e417 (2010).
  • Ottolino-Perry K, Diallo JS, Lichty BD, Bell JC, Mccart JA. Intelligent design: combination therapy with oncolytic viruses. Mol. Ther.18(2), 251–263 (2010).
  • Bridle BW, Hanson S, Lichty BD. Combining oncolytic virotherapy and tumour vaccination. Cytokine Growth Factor Rev.21(2–3), 143–148 (2010).
  • Morton CL, Houghton PJ, Kolb EA et al. Initial testing of the replication competent Seneca Valley virus (NTX-010) by the pediatric preclinical testing program. Pediatr. Blood Cancer55(2), 295–303 (2010).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.