96
Views
22
CrossRef citations to date
0
Altmetric
Review

Melanoma vaccines: developments over the past 10 years

, , , , &
Pages 853-873 | Published online: 09 Jan 2014

References

  • Parmiani G, Castelli C, Santinami M, Rivoltini L. Melanoma immunology: past, present and future. Curr. Opin. Oncol.19(2), 121–127 (2007).
  • Cebon J, Gedye C, John T, Davis ID. Immunotherapy of advanced or metastatic melanoma. Clin. Adv. Hematol. Oncol.5(12), 994–1006 (2007).
  • Morton DL, Eilber FR, Joseph WL, Wood WC, Trahan E, Ketcham AS. Immunological factors in human sarcomas and melanomas: a rational basis for immunotherapy. Ann. Surg.172(4), 740–749 (1970).
  • Rosenberg SA, Yang JC, Restifo NP. Cancer immunotherapy: moving beyond current vaccines. Nat. Med.10(9), 909–915 (2004).
  • Jandus C, Speiser D, Romero P. Recent advances and hurdles in melanoma immunotherapy. Pigment Cell Melanoma Res.22(6), 711–723 (2009).
  • Kirkwood JM, Ibrahim JG, Sosman JA et al. High-dose interferon α-2b significantly prolongs relapse-free and overall survival compared with the GM2-KLH/QS-21 vaccine in patients with resected stage IIB–III melanoma: results of intergroup trial E1694/S9512/C509801. J. Clin. Oncol.19(9), 2370–2380 (2001).
  • Hodi FS, O’Day SJ, Mcdermott DF et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med.363(8), 711–723 (2010).
  • Flaherty KT, Puzanov I, Kim KB et al. Inhibition of mutated, activated BRAF in metastatic melanoma. N. Engl. J. Med.363(9), 809–819 (2010).
  • Kono M, Dunn IS, Durda PJ et al. Role of the mitogen-activated protein kinase signaling pathway in the regulation of human melanocytic antigen expression. Mol. Cancer Res.4(10), 779–792 (2006).
  • Boni A, Cogdill AP, Dang P et al. Selective BRAFV600E inhibition enhances T-cell recognition of melanoma without affecting lymphocyte function. Cancer Res.70(13), 5213–5219 (2010).
  • Barrow C, Browning J, Macgregor D et al. Tumor antigen expression in melanoma varies according to antigen and stage. Clin. Cancer Res.12(3), 764–771 (2006).
  • Nicholaou T, Ebert LM, Davis ID et al. Regulatory T-cell-mediated attenuation of T-cell responses to the NY-ESO-1 ISCOMATRIX vaccine in patients with advanced malignant melanoma. Clin. Cancer Res.15, 2166–2173 (2009).
  • Chen Q, Daniel V, Maher DW, Hersey P. Production of IL-10 by melanoma cells: examination of its role in immunosuppression mediated by melanoma. Int. J. Cancer56, 755–760 (1994).
  • Seruga B, Zhang H, Bernstein LJ, Tannock IF. Cytokines and their relationship to the symptoms and outcome of cancer. Nat. Rev. Cancer8(11), 887–899 (2008).
  • Attig S, Hennenlotter J, Pawelec G et al. Simultaneous infiltration of polyfunctional effector and suppressor T cells into renal cell carcinomas. Cancer Res.69(21), 8412–8419 (2009).
  • Leonard JP, Sherman ML, Fisher GL et al. Effects of single-dose interleukin-12 exposure on interleukin-12-associated toxicity and interferon-γ production. Blood90(7), 2541–2548 (1997).
  • Suntharalingam G, Perry MR, Ward S et al. Cytokine storm in a Phase 1 trial of the anti-CD28 monoclonal antibody TGN1412. N. Engl. J. Med.355(10), 1018–1028 (2006).
  • Davis ID, Chen W, Jackson H et al. Recombinant NY-ESO-1 protein with ISCOMATRIX adjuvant induces broad integrated antibody and CD4+ and CD8+ T cell responses in humans. Proc. Natl Acad. Sci. USA101(29), 10697–10702 (2004).
  • Noguchi Y, Richards EC, Chen YT, Old LJ. Influence of interleukin 12 on p53 peptide vaccination against established Meth A sarcoma. Proc. Natl Acad. Sci. USA92(6), 2219–2223 (1995).
  • Gan HK, Grothey A, Pond GR, Moore MJ, Siu LL, Sargent D. Randomized Phase II trials: inevitable or inadvisable? J. Clin. Oncol.28(15), 2641–2647 (2010).
  • Brufsky A. Trastuzumab-based therapy for patients with HER2-positive breast cancer: from early scientific development to foundation of care. Am. J. Clin. Oncol.33(2), 186–195 (2010).
  • Karapetis CS, Khambata-Ford S, Jonker DJ et al. K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N. Engl. J. Med.359(17), 1757–1765 (2008).
  • Eisenhauer EA, Therasse P, Bogaerts J et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur. J. Cancer45(2), 228–247 (2009).
  • Wolchok JD, Hoos A, O’day S et al. Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria. Clin. Cancer Res.15(23), 7412–7420 (2009).
  • Hoos A, Eggermont AM, Janetzki S et al. Improved endpoints for cancer immunotherapy trials. J. Natl Cancer Inst.102(18), 1388–1397 (2010).
  • Slingluff CL Jr, Petroni GR, Chianese-Bullock KA et al. Immunologic and clinical outcomes of a randomized Phase II trial of two multipeptide vaccines for melanoma in the adjuvant setting. Clin. Cancer Res.13(21), 6386–6395 (2007).
  • Van Baren N, Bonnet MC, Dreno B et al. Tumoral and immunologic response after vaccination of melanoma patients with an ALVAC virus encoding MAGE antigens recognized by T cells. J. Clin. Oncol.23(35), 9008–9021 (2005).
  • Slingluff CL Jr, Yamshchikov GV, Hogan KT et al. Evaluation of the sentinel immunized node for immune monitoring of cancer vaccines. Ann. Surg. Oncol.15(12), 3538–3549 (2008).
  • Carrasco J, Van Pel A, Neyns B et al. Vaccination of a melanoma patient with mature dendritic cells pulsed with MAGE-3 peptides triggers the activity of nonvaccine anti-tumor cells. J. Immunol.180(5), 3585–3593 (2008).
  • Cebon J, Knights A, Ebert L, Jackson H, Chen W. Evaluation of cellular immune responses in cancer vaccine recipients: lessons from NY-ESO-1. Expert Rev. Vaccines9(6), 617–629 (2010).
  • Jung T, Schauer U, Heusser C, Neumann C, Rieger C. Detection of intracellular cytokines by flow cytometry. J. Immunol. Methods159(1–2), 197–207 (1993).
  • Jackson HM, Dimopoulos N, Chen Q et al. A robust human T-cell culture method suitable for monitoring CD8+ and CD4+ T-cell responses from cancer clinical trial samples. J. Immunol. Methods291(1–2), 51–62 (2004).
  • Czerkinsky CC, Nilsson LA, Nygren H, Ouchterlony O, Tarkowski A. A solid-phase enzyme-linked immunospot (ELISPOT) assay for enumeration of specific antibody-secreting cells. J. Immunol. Methods65(1–2), 109–121 (1983).
  • Fujihashi K, Mcghee JR, Beagley KW et al. Cytokine-specific ELISPOT assay. Single cell analysis of IL-2, IL-4 and IL-6 producing cells. J. Immunol. Methods160(2), 181–189 (1993).
  • Schmittel A, Keilholz U, Scheibenbogen C. Evaluation of the interferon-γ ELISPOT-assay for quantification of peptide specific T lymphocytes from peripheral blood. J. Immunol. Methods210(2), 167–174 (1997).
  • Gnjatic S, Jager E, Chen W et al. CD8+ T cell responses against a dominant cryptic HLA-A2 epitope after NY-ESO-1 peptide immunization of cancer patients. Proc. Natl Acad. Sci. USA99(18), 11813–11818 (2002).
  • Gnjatic S, Nagata Y, Jager E et al. Strategy for monitoring T cell responses to NY-ESO-1 in patients with any HLA class I allele. Proc. Natl Acad. Sci. USA97(20), 10917–10922 (2000).
  • Jackson H, Dimopoulos N, Mifsud NA et al. Striking immunodominance hierarchy of naturally occurring CD8+ and CD4+ T cell responses to tumor antigen NY-ESO-1. J. Immunol.176(10), 5908–5917 (2006).
  • Baumgaertner P, Rufer N, Devevre E et al. Ex vivo detectable human CD8 T-cell responses to cancer-testis antigens. Cancer Res.66(4), 1912–1916 (2006).
  • Bercovici N, Haicheur N, Massicard S et al. Analysis and characterization of antitumor T-cell response after administration of dendritic cells loaded with allogeneic tumor lysate to metastatic melanoma patients. J. Immunother.31(1), 101–112 (2008).
  • Chen W, Mccluskey J. Immunodominance and immunodomination: critical factors in developing effective CD8(+) T-cell-based cancer vaccines. Adv. Cancer Res.95, 203–247 (2006).
  • Yewdell JW, Bennink JR. Immunodominance in major histocompatibility complex class I-restricted T lymphocyte responses. Ann. Rev. Immunol.17, 51–88 (1999).
  • Altman JD, Moss PA, Goulder PJ et al. Phenotypic analysis of antigen-specific T lymphocytes. Science274(5284), 94–96. (1996).
  • Pittet MJ, Zippelius A, Speiser DE et al. Ex vivo IFN-γ secretion by circulating CD8 T lymphocytes: implications of a novel approach for T cell monitoring in infectious and malignant diseases. J. Immunol.166(12), 7634–7640 (2001).
  • Jandus C, Bioley G, Dojcinovic D et al. Tumor antigen-specific FOXP3+ CD4 T cells identified in human metastatic melanoma: peptide vaccination results in selective expansion of Th1-like counterparts. Cancer Res.69(20), 8085–8093 (2009).
  • Speiser DE, Baumgaertner P, Barbey C et al. A novel approach to characterize clonality and differentiation of human melanoma-specific T cell responses: spontaneous priming and efficient boosting by vaccination. J. Immunol.177(2), 1338–1348 (2006).
  • Walker EB, Haley D, Miller W et al. gp100(209–2M) peptide immunization of human lymphocyte antigen-A2+ stage I–III melanoma patients induces significant increase in antigen-specific effector and long-term memory CD8+ T cells. Clin. Cancer Res.10(2), 668–680 (2004).
  • Dimopoulos N, Jackson HM, Ebert L et al. Combining MHC tetramer and intracellular cytokine staining for CD8(+) T cells to reveal antigenic epitopes naturally presented on tumor cells. J. Immunol. Methods340(1), 90–94 (2009).
  • Yewdell JW. Designing CD8+ T cell vaccines: it’s not rocket science (yet). Curr. Opin. Immunol.22(3), 402–410 (2010).
  • Bijker MS, Van Den Eeden SJ, Franken KL, Melief CJ, Van Der Burg SH, Offringa R. Superior induction of anti-tumor CTL immunity by extended peptide vaccines involves prolonged, DC-focused antigen presentation. Eur. J. Immunol.38(4), 1033–1042 (2008).
  • Kenter GG, Welters MJ, Valentijn AR et al. Vaccination against HPV-16 oncoproteins for vulvar intraepithelial neoplasia. N. Engl. J. Med.361(19), 1838–1847 (2009).
  • Melief CJ, Van Der Burg SH. Immunotherapy of established (pre)malignant disease by synthetic long peptide vaccines. Nat. Rev.8(5), 351–360 (2008).
  • Engelhard VH, Altrich-Vanlith M, Ostankovitch M, Zarling AL. Post-translational modifications of naturally processed MHC-binding epitopes. Curr. Opin. Immunol.18(1), 92–97 (2006).
  • Petersen J, Purcell AW, Rossjohn J. Post-translationally modified T cell epitopes: immune recognition and immunotherapy. J. Molec. Med. (Berlin, Germany)87(11), 1045–1051 (2009).
  • Schnurr M, Chen Q, Shin A et al. Tumor antigen processing and presentation depend critically on dendritic cell type and the mode of antigen delivery. Blood105(6), 2465–2472 (2005).
  • Gnjatic S, Atanackovic D, Matsuo M et al. Cross-presentation of HLA class I epitopes from exogenous NY-ESO-1 polypeptides by nonprofessional APCs. J. Immunol.170(3), 1191–1196 (2003).
  • Valmori D, Souleimanian NE, Tosello V et al. Vaccination with NY-ESO-1 protein and CpG in Montanide induces integrated antibody/Th1 responses and CD8 T cells through cross-priming. Proc. Natl Acad. Sci. USA104(21), 8947–8952 (2007).
  • Poulin LF, Salio M, Griessinger E et al. Characterization of human DNGR-1+ BDCA3+ leukocytes as putative equivalents of mouse CD8α+ dendritic cells. J. Exp. Med.207(6), 1261–1271 (2010).
  • Caminschi I, Proietto AI, Ahmet F et al. The dendritic cell subtype-restricted C-type lectin Clec9A is a target for vaccine enhancement. Blood112(8), 3264–3273 (2008).
  • Joffre OP, Sancho D, Zelenay S, Keller AM, Reis E, Sousa C. Efficient and versatile manipulation of the peripheral CD4+ T-cell compartment by antigen targeting to DNGR-1/CLEC9A. Eur. J. Immunol.40(5), 1255–1265 (2010).
  • Kutzler MA, Weiner DB. DNA vaccines: ready for prime time? Nat. Rev. Genet.9(10), 776–788 (2008).
  • Dannull J, Lesher DT, Holzknecht R et al. Immunoproteasome down-modulation enhances the ability of dendritic cells to stimulate antitumor immunity. Blood110(13), 4341–4350 (2007).
  • Kastenmuller W, Gasteiger G, Gronau JH et al. Cross-competition of CD8+ T cells shapes the immunodominance hierarchy during boost vaccination. J. Exp. Med.204(9), 2187–2198 (2007).
  • Hansen TH, Bouvier M. MHC class I antigen presentation: learning from viral evasion strategies. Nat. Rev. Immunol.9(7), 503–513 (2009).
  • Pascolo S. Messenger RNA-based vaccines. Expert Opin. Biol. Therapy4(8), 1285–1294 (2004).
  • Kawakami Y, Rosenberg SA. Immunobiology of human melanoma antigens MART-1 and gp100 and their use for immuno-gene therapy. Int. Rev. Immunol.14(2–3), 173–192 (1997).
  • Kawakami Y, Robbins PF, Wang RF, Parkhurst M, Kang X, Rosenberg SA. The use of melanosomal proteins in the immunotherapy of melanoma. J. Immunother.21(4), 237–246 (1998).
  • Scanlan MJ, Simpson AJ, Old LJ. The cancer/testis genes: review, standardization, and commentary. Cancer Immun.4, 1 (2004).
  • Cebon J, Caballero O, John T, Klein O. Cancer Testis Antigens. In: Tumor-Associated Antigens. Gires O, Barbara S (Eds). Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 161–177 (2009).
  • Klein O, Ebert LM, Nicholaou T et al. Melan-A-specific cytotoxic T cells are associated with tumor regression and autoimmunity following treatment with anti-CTLA-4. Clin. Cancer Res.15(7), 2507–2513 (2009).
  • Yuan J, Gnjatic S, Li H et al. CTLA-4 blockade enhances polyfunctional NY-ESO-1 specific T cell responses in metastatic melanoma patients with clinical benefit. Proc. Natl Acad. Sci. USA105(51), 20410–20415 (2008).
  • Hoek KS, Eichhoff OM, Schlegel NC et al. In vivo switching of human melanoma cells between proliferative and invasive states. Cancer Res.68(3), 650–656 (2008).
  • Kurnick JT, Ramirez-Montagut T, Boyle LA et al. A novel autocrine pathway of tumor escape from immune recognition: melanoma cell lines produce a soluble protein that diminishes expression of the gene encoding the melanocyte lineage melan-A/MART-1 antigen through down-modulation of its promoter. J. Immunol.167(3), 1204–1211 (2001).
  • Dunn IS, Haggerty TJ, Kono M et al. Enhancement of human melanoma antigen expression by IFN-β. J. Immunol.179(4), 2134–2142 (2007).
  • De Smet C, Lurquin C, Lethe B, Martelange V, Boon T. DNA methylation is the primary silencing mechanism for a set of germ line- and tumor-specific genes with a CpG-rich promoter. Mol. Cell Biol.19(11), 7327–7335 (1999).
  • Weber J, Salgaller M, Samid D et al. Expression of the MAGE-1 tumor antigen is up-regulated by the demethylating agent 5-aza-2’-deoxycytidine. Cancer Res.54(7), 1766–1771 (1994).
  • Gedye C, Quirk J, Browning J et al. Cancer/testis antigens can be immunological targets in clonogenic CD133(+) melanoma cells. Cancer Immunol. Immunother.58(10), 1635–1646 (2009).
  • Banchereau J, Palucka AK, Dhodapkar M et al. Immune and clinical responses in patients with metastatic melanoma to CD34(+) progenitor-derived dendritic cell vaccine. Cancer Res.61(17), 6451–6458 (2001).
  • Francois V, Ottaviani S, Renkvist N et al. The CD4(+) T-cell response of melanoma patients to a MAGE-A3 peptide vaccine involves potential regulatory T cells. Cancer Res.69(10), 4335–4345 (2009).
  • Kruit WH, Van Ojik HH, Brichard VG et al. Phase 1/2 study of subcutaneous and intradermal immunization with a recombinant MAGE-3 protein in patients with detectable metastatic melanoma. Int. J. Cancer117(4), 596–604 (2005).
  • Thurner B, Haendle I, Roder C et al. Vaccination with mage-3A1 peptide-pulsed mature, monocyte-derived dendritic cells expands specific cytotoxic T cells and induces regression of some metastases in advanced stage IV melanoma. J. Exp. Med.190(11), 1669–1678 (1999).
  • Adams S, O’Neill DW, Nonaka D et al. Immunization of malignant melanoma patients with full-length NY-ESO-1 protein using TLR7 agonist imiquimod as vaccine adjuvant. J. Immunol.181(1), 776–784 (2008).
  • Davis ID, Chen Q, Morris L et al. Blood dendritic cells generated with Flt3 ligand and CD40 ligand prime CD8+ T cells efficiently in cancer patients. J. Immunother.29(5), 499–511 (2006).
  • Fourcade J, Kudela P, Sun Z et al. PD-1 is a regulator of NY-ESO-1-specific CD8+ T cell expansion in melanoma patients. J. Immunol.182(9), 5240–5249 (2009).
  • Nicholaou T, Ebert L, Davis ID et al. Directions in the immune targeting of cancer: lessons learned from the cancer-testis Ag NY-ESO-1. Immunol. Cell Biol.84(3), 303–317 (2006).
  • Shackleton M, Davis ID, Hopkins W et al. The impact of imiquimod, a Toll-like receptor-7 ligand (TLR7L), on the immunogenicity of melanoma peptide vaccination with adjuvant Flt3 ligand. Cancer Immun.4, 9 (2004).
  • Gnjatic S, Nishikawa H, Jungbluth AA et al. NY-ESO-1: review of an immunogenic tumor antigen. Adv. Cancer Res.95, 1–30 (2006).
  • Ritter G, Livingston PO. Ganglioside antigens expressed by human cancer cells. Semin. Cancer Biol.2(6), 401–409 (1991).
  • Chapman PB, Wu D, Ragupathi G et al. Sequential immunization of melanoma patients with GD3 ganglioside vaccine and anti-idiotypic monoclonal antibody that mimics GD3 ganglioside. Clin. Cancer Res.10(14), 4717–4723 (2004).
  • Chapman PB, Williams L, Salibi N, Hwu WJ, Krown SE, Livingston PO. A Phase II trial comparing five dose levels of BEC2 anti-idiotypic monoclonal antibody vaccine that mimics GD3 ganglioside. Vaccine22(21–22), 2904–2909 (2004).
  • Parmiani G, De Filippo A, Novellino L, Castelli C. Unique human tumor antigens: immunobiology and use in clinical trials. J. Immunol.178(4), 1975–1979 (2007).
  • Wolfel T, Hauer M, Schneider J et al. A p16INK4a-insensitive CDK4 mutant targeted by cytolytic T lymphocytes in a human melanoma. Science269(5228), 1281–1284 (1995).
  • Karanikas V, Colau D, Baurain JF et al. High frequency of cytolytic T lymphocytes directed against a tumor-specific mutated antigen detectable with HLA tetramers in the blood of a lung carcinoma patient with long survival. Cancer Res.61(9), 3718–3724 (2001).
  • Lennerz V, Fatho M, Gentilini C et al. The response of autologous T cells to a human melanoma is dominated by mutated neoantigens. Proc. Natl Acad. Sci. USA102(44), 16013–16018 (2005).
  • Sjoblom T, Jones S, Wood LD et al. The consensus coding sequences of human breast and colorectal cancers. Science314(5797), 268–274 (2006).
  • Yewdell JW. Confronting complexity: real-world immunodominance in antiviral CD8+ T cell responses. Immunity25(4), 533–543 (2006).
  • Segal NH, Parsons DW, Peggs KS et al. Epitope landscape in breast and colorectal cancer. Cancer Res.68(3), 889–892 (2008).
  • Van Stipdonk MJ, Hardenberg G, Bijker MS et al. Dynamic programming of CD8+ T lymphocyte responses. Nat. Immunol.4(4), 361–365 (2003).
  • Zehn D, Lee SY, Bevan MJ. Complete but curtailed T-cell response to very low-affinity antigen. Nature458(7235), 211–214 (2009).
  • Leignadier J, Labrecque N. Epitope density influences CD8+ memory T cell differentiation. PLoS ONE5(10), e13740 (2010).
  • Gallucci S, Lolkema M, Matzinger P. Natural adjuvants: endogenous activators of dendritic cells. Nat. Med.5(11), 1249–1255 (1999).
  • Feng H, Zeng Y, Whitesell L, Katsanis E. Stressed apoptotic tumor cells express heat shock proteins and elicit tumor-specific immunity. Blood97(11), 3505–3512 (2001).
  • Zitvogel L, Casares N, Pequignot MO, Chaput N, Albert ML, Kroemer G. Immune response against dying tumor cells. Adv. Immunol.84, 131–179 (2004).
  • Apetoh L, Ghiringhelli F, Tesniere A et al. Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat. Med.13(9), 1050–1059 (2007).
  • Ghiringhelli F, Apetoh L, Tesniere A et al. Activation of the NLRP3 inflammasome in dendritic cells induces IL-1β-dependent adaptive immunity against tumors. Nat. Med.15(10), 1170–1178 (2009).
  • Udono H, Srivastava PK. Heat shock protein 70-associated peptides elicit specific cancer immunity. J. Exp. Med.178(4), 1391–1396 (1993).
  • Blachere NE, Li Z, Chandawarkar RY et al. Heat shock protein-peptide complexes, reconstituted in vitro, elicit peptide-specific cytotoxic T lymphocyte response and tumor immunity. J. Exp. Med.186(8), 1315–1322 (1997).
  • Lev A, Takeda K, Zanker D et al. The exception that reinforces the rule: crosspriming by cytosolic peptides that escape degradation. Immunity28(6), 787–798 (2008).
  • Lev A, Dimberu P, Das SR et al. Efficient cross-priming of antiviral CD8+ T cells by antigen donor cells is GRP94 independent. J. Immunol.183(7), 4205–4210 (2009).
  • Neller MA, Lopez JA, Schmidt CW. Antigens for cancer immunotherapy. Semin. Immunol.20(5), 286–295 (2008).
  • Hanna MG Jr, Hoover HC Jr, Pinedo HM, Finer M. Active specific immunotherapy with autologous tumor cell vaccines for stage II colon cancer: logistics, efficacy, safety and immunological pharmacodynamics. Hum. Vaccin.2(4), 185–191 (2006).
  • Van Den Brenk HA. Autoimmunization in human malignant melanoma. Br. Med. J.4(5676), 171–172 (1969).
  • Currie GA, Lejeune F, Fairley GH. Immunization with irradiated tumour cells and specific lymphocyte cytotoxicity in malignant melanoma. Br. Med. J.2(5757), 305–310 (1971).
  • Bystryn JC, Zeleniuch-Jacquotte A, Oratz R, Shapiro RL, Harris MN, Roses DF. Double-blind trial of a polyvalent, shed-antigen, melanoma vaccine. Clin. Cancer Res.7(7), 1882–1887 (2001).
  • Dillman RO, Wiemann M, Nayak SK, Deleon C, Hood K, Depriest C. Interferon-γ or granulocyte-macrophage colony-stimulating factor administered as adjuvants with a vaccine of irradiated autologous tumor cells from short-term cell line cultures: a randomized Phase 2 trial of the cancer biotherapy research group. J. Immunother.26(4), 367–373 (2003).
  • Dillman RO, Depriest C, Deleon C et al. Patient-specific vaccines derived from autologous tumor cell lines as active specific immunotherapy: results of exploratory Phase I/II trials in patients with metastatic melanoma. Cancer Biother. Radiopharm22(3), 309–321 (2007).
  • Hanna MG Jr, Peters LC. Specific immunotherapy of established visceral micrometastases by BCG-tumor cell vaccine alone or as an adjunct to surgery. Cancer42(6), 2613–2625 (1978).
  • Berd D, Maguire HC Jr, Mastrangelo MJ. Induction of cell-mediated immunity to autologous melanoma cells and regression of metastases after treatment with a melanoma cell vaccine preceded by cyclophosphamide. Cancer Res.46(5), 2572–2577 (1986).
  • Berd D, Sato T, Cohn H, Maguire HC Jr, Mastrangelo MJ. Treatment of metastatic melanoma with autologous, hapten-modified melanoma vaccine: regression of pulmonary metastases. Int. J. Cancer94(4), 531–539 (2001).
  • Berd D, Sato T, Maguire HC Jr, Kairys J, Mastrangelo MJ. Immunopharmacologic analysis of an autologous, hapten-modified human melanoma vaccine. J. Clin. Oncol.22(3), 403–415 (2004).
  • Morton DL, Foshag LJ, Hoon DS et al. Prolongation of survival in metastatic melanoma after active specific immunotherapy with a new polyvalent melanoma vaccine. Ann. Surg.216(4), 463–482 (1992).
  • Faries MB, Morton DL. Therapeutic vaccines for melanoma: current status. BioDrugs19(4), 247–260 (2005).
  • Eggermont AM. Immunotherapy: vaccine trials in melanoma – time for reflection. Nat. Rev. Clin. Oncol.6(5), 256–258 (2009).
  • Faries MB, Hsueh EC, Ye X, Hoban M, Morton DL. Effect of granulocyte/macrophage colony-stimulating factor on vaccination with an allogeneic whole-cell melanoma vaccine. Clin. Cancer Res.15(22), 7029–7035 (2009).
  • Mitchell MS, Darrah D, Stevenson L. Therapy of melanoma with allogeneic melanoma lysates alone or with interferon-α. Cancer Invest.20(5–6), 759–768 (2002).
  • Sondak VK, Liu PY, Tuthill RJ et al. Adjuvant immunotherapy of resected, intermediate-thickness, node-negative melanoma with an allogeneic tumor vaccine: overall results of a randomized trial of the Southwest Oncology Group. J. Clin. Oncol.20(8), 2058–2066 (2002).
  • Mitchell MS, Harel W, Groshen S. Association of HLA phenotype with response to active specific immunotherapy of melanoma. J. Clin. Oncol.10(7), 1158–1164 (1992).
  • Sosman JA, Unger JM, Liu PY et al. Adjuvant immunotherapy of resected, intermediate-thickness, node-negative melanoma with an allogeneic tumor vaccine: impact of HLA class I antigen expression on outcome. J. Clin. Oncol.20(8), 2067–2075 (2002).
  • Wallack MK, Steplewski Z, Koprowski H et al. A new approach in specific, active immunotherapy. Cancer39(2), 560–564 (1977).
  • Wallack MK, Sivanandham M. Clinical trials with VMO for melanoma. Ann. N Y Acad. Sci.690, 178–189 (1993).
  • Wallack MK, Sivanandham M, Balch CM et al. Surgical adjuvant active specific immunotherapy for patients with stage III melanoma: the final analysis of data from a Phase III, randomized, double-blind, multicenter vaccinia melanoma oncolysate trial. J. Am. Coll. Surg.187(1), 69–77; discussion 77–69 (1998).
  • Hersey P, Coates AS, Mccarthy WH et al. Adjuvant immunotherapy of patients with high-risk melanoma using vaccinia viral lysates of melanoma: results of a randomized trial. J. Clin. Oncol.20(20), 4181–4190 (2002).
  • Palmer K, Moore J, Everard M et al. Gene therapy with autologous, interleukin 2-secreting tumor cells in patients with malignant melanoma. Hum. Gene Ther.10(8), 1261–1268 (1999).
  • Schreiber S, Kampgen E, Wagner E et al. Immunotherapy of metastatic malignant melanoma by a vaccine consisting of autologous interleukin 2-transfected cancer cells: outcome of a Phase I study. Hum. Gene Ther.10(6), 983–993 (1999).
  • Hege KM, Jooss K, Pardoll D. GM-CSF gene-modifed cancer cell immunotherapies: of mice and men. Int. Rev. Immunol.25(5–6), 321–352 (2006).
  • Pinzon-Charry A, Ho CS, Laherty R et al. A population of HLA-DR+ immature cells accumulates in the blood dendritic cell compartment of patients with different types of cancer. Neoplasia7(12), 1112–1122 (2005).
  • Nestle FO, Alijagic S, Gilliet M et al. Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nat. Med.4(3), 328–332 (1998).
  • O’Rourke MG, Johnson M, Lanagan C et al. Durable complete clinical responses in a Phase I/II trial using an autologous melanoma cell/dendritic cell vaccine. Cancer Immunol. Immunother.52(6), 387–395 (2003).
  • Dillman RO, Selvan SR, Schiltz PM. Patient-specific dendritic-cell vaccines for metastatic melanoma. N. Engl. J. Med.355(11), 1179–1181 (2006).
  • Dillman RO, Nanci AA, Williams ST et al. Durable complete response of refractory, progressing metastatic melanoma after treatment with a patient-specific vaccine. Cancer Biother. Radiopharm25(5), 553–557 (2010).
  • Lopez MN, Pereda C, Segal G et al. Prolonged survival of dendritic cell-vaccinated melanoma patients correlates with tumor-specific delayed type IV hypersensitivity response and reduction of tumor growth factor β-expressing T cells. J. Clin. Oncol.27(6), 945–952 (2009).
  • Markovic SN, Dietz AB, Greiner CW et al. Preparing clinical-grade myeloid dendritic cells by electroporation-mediated transfection of in vitro amplified tumor-derived mRNA and safety testing in stage IV malignant melanoma. J. Transl Med.4, 35 (2006).
  • Kyte JA, Mu L, Aamdal S et al. Phase I/II trial of melanoma therapy with dendritic cells transfected with autologous tumor-mRNA. Cancer Gene Ther.13(10), 905–918 (2006).
  • Van Nuffel AM, Corthals J, Neyns B, Heirman C, Thielemans K, Bonehill A. Immunotherapy of cancer with dendritic cells loaded with tumor antigens and activated through mRNA electroporation. Methods Mol. Biol.629, 405–452 (2010).
  • Heiser A, Coleman D, Dannull J et al. Autologous dendritic cells transfected with prostate-specific antigen RNA stimulate CTL responses against metastatic prostate tumors. J. Clin. Invest.109(3), 409–417 (2002).
  • Su Z, Dannull J, Heiser A et al. Immunological and clinical responses in metastatic renal cancer patients vaccinated with tumor RNA-transfected dendritic cells. Cancer Res.63(9), 2127–2133 (2003).
  • Kobayashi T, Yamanaka R, Homma J et al. Tumor mRNA-loaded dendritic cells elicit tumor-specific CD8(+) cytotoxic T cells in patients with malignant glioma. Cancer Immunol. Immunother.52(10), 632–637 (2003).
  • Schuurhuis DH, Verdijk P, Schreibelt G et al. In situ expression of tumor antigens by messenger RNA-electroporated dendritic cells in lymph nodes of melanoma patients. Cancer Res.69(7), 2927–2934 (2009).
  • Smith AL, Fazekas De St Groth B. Antigen-pulsed CD8α+ dendritic cells generate an immune response after subcutaneous injection without homing to the draining lymph node. J. Exp. Med.189(3), 593–598 (1999).
  • Dolan BP, Gibbs KD Jr, Ostrand-Rosenberg S. Tumor-specific CD4+ T cells are activated by “cross-dressed” dendritic cells presenting peptide-MHC class II complexes acquired from cell-based cancer vaccines. J. Immunol.176(3), 1447–1455 (2006).
  • Belli F, Testori A, Rivoltini L et al. Vaccination of metastatic melanoma patients with autologous tumor-derived heat shock protein gp96-peptide complexes: clinical and immunologic findings. J. Clin. Oncol.20(20), 4169–4180 (2002).
  • Di Pietro A, Tosti G, Ferrucci PF, Testori A. Heat shock protein peptide complex 96-based vaccines in melanoma: how far we are, how far we can get. Hum. Vaccin.5(11), 727–737 (2009).
  • Testori A, Richards J, Whitman E et al. Phase III comparison of vitespen, an autologous tumor-derived heat shock protein gp96 peptide complex vaccine, with physician’s choice of treatment for stage IV melanoma: the C-100–121 Study Group. J. Clin. Oncol.26(6), 955–962 (2008).
  • Cluff CW. Monophosphoryl lipid A (MPL) as an adjuvant for anti-cancer vaccines: clinical results. Adv. Exp. Med. Biol.667, 111–123 (2009).
  • Coffman RL, Sher A, Seder RA. Vaccine adjuvants: putting innate immunity to work. Immunity33(4), 492–503 (2010).
  • Urosevic M, Dummer R. Role of imiquimod in skin cancer treatment. Am. J. Clin. Dermatol.5(6), 453–458 (2004).
  • Pashenkov M, Goess G, Wagner C et al. Phase II trial of a Toll-like receptor 9-activating oligonucleotide in patients with metastatic melanoma. J. Clin. Oncol.24(36), 5716–5724 (2006).
  • Speiser DE, Lienard D, Rufer N et al. Rapid and strong human CD8+ T cell responses to vaccination with peptide, IFA, and CpG oligodeoxynucleotide 7909. J. Clin. Invest.115(3), 739–746 (2005).
  • Kruit WH, Suciu S, Dreno B et al. Immunization with recombinant MAGE-A3 protein combined with adjuvant systems AS15 or AS02B in patients with unresectable and progressive metastatic cutaneous melanoma: a randomized open-label Phase II study of the EORTC Melanoma Group. J. Clin. Oncolol26(Suppl.), (2008) (Abstract 9065s).
  • Maraskovsky E, Schnurr M, Wilson NS, Robson NC, Boyle J, Drane D. Development of prophylactic and therapeutic vaccines using the ISCOMATRIX adjuvant. Immunol. Cell Biol.87(5), 371–376 (2009).
  • Schnurr M, Orban M, Robson NC et al. ISCOMATRIX adjuvant induces efficient cross-presentation of tumor antigen by dendritic cells via rapid cytosolic antigen delivery and processing via tripeptidyl peptidase II. J. Immunol.182(3), 1253–1259 (2009).
  • Robson NC, Mcalpine T, Knights AJ et al. Processing and cross-presentation of individual HLA-A, -B, or -C epitopes from NY-ESO-1 or an HLA-A epitope for Melan-A differ according to the mode of antigen delivery. Blood116(2), 218–225 (2010).
  • Maraskovsky E, Sjolander S, Drane DP et al. NY-ESO-1 protein formulated in ISCOMATRIX adjuvant is a potent anticancer vaccine inducing both humoral and CD8+ T-cell-mediated immunity and protection against NY-ESO-1+ tumors. Clin. Cancer Res.10(8), 2879–2890 (2004).
  • Atkins MB, Lotze MT, Dutcher JP et al. High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993. J. Clin. Oncol.17(7), 2105–2116 (1999).
  • Mocellin S, Pasquali S, Rossi CR, Nitti D. Interferon α adjuvant therapy in patients with high-risk melanoma: a systematic review and meta-analysis. J. Natl Cancer Inst.102(7), 493–501 (2010).
  • Gogas H, Ioannovich J, Dafni U et al. Prognostic significance of autoimmunity during treatment of melanoma with interferon. N. Engl. J. Med.354(7), 709–718 (2006).
  • Rosenberg SA, Yang JC, Schwartzentruber DJ et al. Immunologic and therapeutic evaluation of a synthetic peptide vaccine for the treatment of patients with metastatic melanoma. Nat. Med.4(3), 321–327 (1998).
  • Sosman JA, Carrillo C, Urba WJ et al. Three Phase II cytokine working group trials of gp100 (210M) peptide plus high-dose interleukin-2 in patients with HLA-A2-positive advanced melanoma. J. Clin. Oncol.26(14), 2292–2298 (2008).
  • Schwartzentruber DJ, Lawson D, Richards J et al. A Phase III multi-institutional randomized study of immunization with the gp100:209–217(210M) peptide followed by high-dose IL-2 compared with high-dose IL-2 alone in patients with metastatic melanoma. J. Clin. Oncol.27(Suppl.), 18s (2009) (Abstract CRA9011).
  • Mitchell MS, Abrams J, Thompson JA et al. Randomized trial of an allogeneic melanoma lysate vaccine with low-dose interferon α-2b compared with high-dose interferon α-2b for resected stage III cutaneous melanoma. J. Clin. Oncol.25(15), 2078–2085 (2007).
  • Kirkwood JM, Lee S, Moschos SJ et al. Immunogenicity and antitumor effects of vaccination with peptide vaccine+/-granulocyte-monocyte colony-stimulating factor and/or IFN-α2b in advanced metastatic melanoma: Eastern Cooperative Oncology Group Phase II Trial E1696. Clin. Cancer Res.15(4), 1443–1451 (2009).
  • Spitler LE, Grossbard ML, Ernstoff MS et al. Adjuvant therapy of stage III and IV malignant melanoma using granulocyte-macrophage colony-stimulating factor. J. Clin. Oncol.18(8), 1614–1621 (2000).
  • Daud AI, Mirza N, Lenox B et al. Phenotypic and functional analysis of dendritic cells and clinical outcome in patients with high-risk melanoma treated with adjuvant granulocyte macrophage colony-stimulating factor. J. Clin. Oncol.26(19), 3235–3241 (2008).
  • Weber J, Sondak VK, Scotland R et al. Granulocyte-macrophage-colony-stimulating factor added to a multipeptide vaccine for resected stage II melanoma. Cancer97(1), 186–200 (2003).
  • Slingluff CL Jr, Petroni GR, Olson WC et al. Effect of granulocyte/macrophage colony-stimulating factor on circulating CD8+ and CD4+ T-cell responses to a multipeptide melanoma vaccine: outcome of a multicenter randomized trial. Clin. Cancer Res.15(22), 7036–7044 (2009).
  • Davis ID, Brady B, Kefford RF et al. Clinical and biological efficacy of recombinant human interleukin-21 in patients with stage IV malignant melanoma without prior treatment: a Phase IIa trial. Clin. Cancer Res.15(6), 2123–2129 (2009).
  • Pellegrini M, Calzascia T, Elford AR et al. Adjuvant IL-7 antagonizes multiple cellular and molecular inhibitory networks to enhance immunotherapies. Nat. Med.15(5), 528–536 (2009).
  • Rosenberg SA, Sportes C, Ahmadzadeh M et al. IL-7 administration to humans leads to expansion of CD8+ and CD4+ cells but a relative decrease of CD4+ T-regulatory cells. J. Immunother.29(3), 313–319 (2006).
  • Sportes C, Hakim FT, Memon SA et al. Administration of rhIL-7 in humans increases in vivo TCR repertoire diversity by preferential expansion of naive T cell subsets. J. Exp. Med.205(7), 1701–1714 (2008).
  • Olivares J, Kumar P, Yu Y et al. Phase I trial of TGF-{β}2 antisense GM-CSF gene-modified autologous tumor cell (TAG) vaccine. Clin. Cancer Res.17(1), 183–192 (2011).
  • Schadendorf D, Ugurel S, Schuler-Thurner B et al. Dacarbazine (DTIC) versus vaccination with autologous peptide-pulsed dendritic cells (DC) in first-line treatment of patients with metastatic melanoma: a randomized Phase III trial of the DC study group of the DeCOG. Ann. Oncol.17(4), 563–570 (2006).
  • O’Neill DW, Adams S, Goldberg JD et al. Comparison of the immunogenicity of Montanide ISA 51 adjuvant and cytokine-matured dendritic cells in a randomized controlled clinical trial of melanoma vaccines J. Clin. Oncol.27, 15S (2009) (Abstract 3002).
  • Villadangos JA, Schnorrer P. Intrinsic and cooperative antigen-presenting functions of dendritic-cell subsets in vivo. Nat. Rev.7(7), 543–555 (2007).
  • Villadangos JA, Shortman K. Found in translation: the human equivalent of mouse CD8+ dendritic cells. J. Exp. Med.207(6), 1131–1134 (2010).
  • Tacken PJ, De Vries IJ, Torensma R, Figdor CG. Dendritic-cell immunotherapy: from ex vivo loading to in vivo targeting. Nat. Rev.7(10), 790–802 (2007).
  • Mahnke K, Qian Y, Fondel S, Brueck J, Becker C, Enk AH. Targeting of antigens to activated dendritic cells in vivo cures metastatic melanoma in mice. Cancer Res.65(15), 7007–7012 (2005).
  • Leach DR, Krummel MF, Allison JP. Enhancement of antitumor immunity by CTLA-4 blockade. Science (New York, NY)271(5256), 1734–1736 (1996).
  • Iwai Y, Ishida M, Tanaka Y, Okazaki T, Honjo T, Minato N. Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc. Natl Acad. Sci. USA99(19), 12293–12297 (2002).
  • Melero I, Martinez-Forero I, Dubrot J, Suarez N, Palazon A, Chen L. Palettes of vaccines and immunostimulatory monoclonal antibodies for combination. Clin. Cancer Res.15(5), 1507–1509 (2009).
  • Attia P, Phan GQ, Maker AV et al. Autoimmunity correlates with tumor regression in patients with metastatic melanoma treated with anti-cytotoxic T-lymphocyte antigen-4. J. Clin. Oncol.23(25), 6043–6053 (2005).
  • Hodi FS, Mihm MC, Soiffer RJ et al. Biologic activity of cytotoxic T lymphocyte-associated antigen 4 antibody blockade in previously vaccinated metastatic melanoma and ovarian carcinoma patients. Proc. Natl Acad. Sci. USA100(8), 4712–4717 (2003).
  • Ribas A, Comin-Anduix B, Chmielowski B et al. Dendritic cell vaccination combined with CTLA4 blockade in patients with metastatic melanoma. Clin. Cancer Res.15(19), 6267–6276 (2009).
  • Ahmadzadeh M, Johnson LA, Heemskerk B et al. Tumor antigen-specific CD8 T cells infiltrating the tumor express high levels of PD-1 and are functionally impaired. Blood114(8), 1537–1544 (2009).
  • Brahmer JR, Drake CG, Wollner I et al. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J. Clin. Oncol.28(19), 3167–3175 (2010).
  • Curran MA, Montalvo W, Yagita H, Allison JP. PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors. Proc. Natl Acad. Sci. USA107(9), 4275–4280
  • Gray JC, French RR, James S, Al-Shamkhani A, Johnson PW, Glennie MJ. Optimising anti-tumour CD8 T-cell responses using combinations of immunomodulatory antibodies. Eur. J. Immunol.38(9), 2499–2511 (2008).
  • Jandus C, Bioley G, Speiser DE, Romero P. Selective accumulation of differentiated FOXP3(+) CD4 (+) T cells in metastatic tumor lesions from melanoma patients compared to peripheral blood. Cancer Immunol. Immunother.57(12), 1795–1805 (2008).
  • Ahmadzadeh M, Felipe-Silva A, Heemskerk B et al. FOXP3 expression accurately defines the population of intratumoral regulatory T cells that selectively accumulate in metastatic melanoma lesions. Blood112(13), 4953–4960 (2008).
  • Filipazzi P, Valenti R, Huber V et al. Identification of a new subset of myeloid suppressor cells in peripheral blood of melanoma patients with modulation by a granulocyte-macrophage colony-stimulation factor-based antitumor vaccine. J. Clin. Oncol.25(18), 2546–2553 (2007).
  • Mandruzzato S, Solito S, Falisi E et al. IL4Rα+ myeloid-derived suppressor cell expansion in cancer patients. J. Immunol.182(10), 6562–6568 (2009).
  • Poschke I, Mougiakakos D, Hansson J, Masucci GV, Kiessling R. Immature immunosuppressive CD14+HLA-DR-/low cells in melanoma patients are Stat3hi and overexpress CD80, CD83, and DC-SIGN. Cancer Res.70(11), 4335–4345 (2010).
  • Zhou G, Drake CG, Levitsky HI. Amplification of tumor-specific regulatory T cells following therapeutic cancer vaccines. Blood107(2), 628–636 (2006).
  • Klages K, Mayer CT, Lahl K et al. Selective depletion of Foxp3+ regulatory T cells improves effective therapeutic vaccination against established melanoma. Cancer Res.70(20), 7788–7799 (2010).
  • Mahnke K, Schonfeld K, Fondel S et al. Depletion of CD4+CD25+ human regulatory T cells in vivo: kinetics of Treg depletion and alterations in immune functions in vivo and in vitro. Int. J. Cancer120(12), 2723–2733 (2007).
  • Jacobs JF, Punt CJ, Lesterhuis WJ et al. Dendritic cell vaccination in combination with anti-CD25 monoclonal antibody treatment: a Phase I/II study in metastatic melanoma patients. Clin. Cancer Res.16(20), 5067–5078 (2010).
  • Zhao J, Cao Y, Lei Z, Yang Z, Zhang B, Huang B. Selective depletion of CD4+CD25+Foxp3+ regulatory T cells by low-dose cyclophosphamide is explained by reduced intracellular ATP levels. Cancer Res.70(12), 4850–4858 (2010).
  • Kusmartsev S, Su Z, Heiser A et al. Reversal of myeloid cell-mediated immunosuppression in patients with metastatic renal cell carcinoma. Clin. Cancer Res.14(24), 8270–8278 (2008).
  • Marchand M, Punt CJ, Aamdal S et al. Immunisation of metastatic cancer patients with MAGE-3 protein combined with adjuvant SBAS-2: a clinical report. Eur. J. Cancer39(1), 70–77 (2003).
  • Soiffer R, Hodi FS, Haluska F et al. Vaccination with irradiated, autologous melanoma cells engineered to secrete granulocyte-macrophage colony-stimulating factor by adenoviral-mediated gene transfer augments antitumor immunity in patients with metastatic melanoma. J. Clin. Oncol.21(17), 3343–3350 (2003).
  • Luiten RM, Kueter EW, Mooi W et al. Immunogenicity, including vitiligo, and feasibility of vaccination with autologous GM-CSF-transduced tumor cells in metastatic melanoma patients. J. Clin. Oncol.23(35), 8978–8991 (2005).
  • O’rourke MG, Johnson MK, Lanagan CM et al. Dendritic cell immunotherapy for stage IV melanoma. Melanoma Res.17(5), 316–322 (2007).
  • Dillman RO, Selvan SR, Schiltz PM et al. Phase II trial of dendritic cells loaded with antigens from self-renewing, proliferating autologous tumor cells as patient-specific antitumor vaccines in patients with metastatic melanoma: final report. Cancer Biother. Radiopharm24(3), 311–319 (2009).
  • Morton DL, Mozzillo N, Thompson JF et al. An international, randomized, Phase III trial of bacillus Calmette–Guerin (BCG) plus allogeneic melanoma vaccine (MCV) or placebo after complete resection of melanoma metastatic to regional or distant sites. J. Clin. Oncol.25(18S), 474s (2007).
  • Bakker AB, Schreurs MW, De Boer AJ et al. Melanocyte lineage-specific antigen gp100 is recognized by melanoma-derived tumor-infiltrating lymphocytes. J. Exp. Med.179(3), 1005–1009 (1994).
  • Kawakami Y, Eliyahu S, Sakaguchi K et al. Identification of the immunodominant peptides of the MART-1 human melanoma antigen recognized by the majority of HLA-A2-restricted tumor infiltrating lymphocytes. J. Exp. Med.180(1), 347–352 (1994).
  • Hofmann O, Caballero OL, Stevenson BJ et al. Genome-wide analysis of cancer/testis gene expression. Proc. Natl Acad. Sci. USA105(51), 20422–20427 (2008).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.