379
Views
28
CrossRef citations to date
0
Altmetric
Review

Optimizing vaccine-induced CD8+ T-cell immunity: focus on recombinant adenovirus vectors

, &
Pages 1307-1319 | Published online: 09 Jan 2014

References

  • Welsh RM, Selin LK, Szomolanyi-Tsuda E. Immunological memory to viral infections. Ann. Rev. Immunol.22, 711–743 (2004).
  • Jacobs BL, Langland JO, Kibler KV et al. Vaccinia virus vaccines: past, present and future. Antiviral Res.84(1), 1–13 (2009).
  • Kappe SH, Vaughan AM, Boddey JA, Cowman AF. That was then but this is now: malaria research in the time of an eradication agenda. Science328(5980), 862–866 (2010).
  • Bejon P, Lusingu J, Olotu A et al. Efficacy of RTS,S/AS01E vaccine against malaria in children 5 to 17 months of age. N. Engl. J. Med.359(24), 2521–2532 (2008).
  • Russell DG, Barry CE 3rd, Flynn JL. Tuberculosis: what we don’t know can, and does, hurt us. Science328(5980), 852–856 (2010).
  • Kaufmann SH, Hussey G, Lambert PH. New vaccines for tuberculosis. Lancet375(9731), 2110–2119 (2010).
  • Watkins DI, Burton DR, Kallas EG, Moore JP, Koff WC. Nonhuman primate models and the failure of the Merck HIV-1 vaccine in humans. Nat. Med.14(6), 617–621 (2008).
  • Jones KE, Patel NG, Levy MA et al. Global trends in emerging infectious diseases. Nature451(7181), 990–993 (2008).
  • D’Elios MM, Del Prete G, Amedei A. New frontiers in cell-based immunotherapy of cancer. Expert. Opin. Ther. Pat.19(5), 623–641 (2009).
  • Klebanoff CA, Acquavella N, Yu Z, Restifo NP. Therapeutic cancer vaccines: are we there yet? Immunol. Rev.239(1), 27–44 (2011).
  • Palucka K, Ueno H, Banchereau J. Recent developments in cancer vaccines. J. Immunol.186(3), 1325–1331 (2011).
  • Rein DT, Breidenbach M, Curiel DT. Current developments in adenovirus-based cancer gene therapy. Future Oncol.2(1), 137–143 (2006).
  • Lambert PH, Liu M, Siegrist CA. Can successful vaccines teach us how to induce efficient protective immune responses? Nat. Med.11(Suppl. 4), S54–S62 (2005).
  • Plotkin SA. Vaccines: correlates of vaccine-induced immunity. Clin. Infect. Dis.47(3), 401–409 (2008).
  • Chen RT, Markowitz LE, Albrecht P et al. Measles antibody: reevaluation of protective titers. J. Infect. Dis.162(5), 1036–1042 (1990).
  • Powell TJ, Strutt T, Reome J et al. Priming with cold-adapted influenza A does not prevent infection but elicits long-lived protection against supralethal challenge with heterosubtypic virus. J. Immunol.178(2), 1030–1038 (2007).
  • Lee LY, Ha do LA, Simmons C et al. Memory T cells established by seasonal human influenza A infection cross-react with avian influenza A (H5N1) in healthy individuals. J. Clin. Invest.118(10), 3478–3490 (2008).
  • Kreijtz JH, de Mutsert G, van Baalen CA, Fouchier RA, Osterhaus AD, Rimmelzwaan GF. Cross-recognition of avian H5N1 influenza virus by human cytotoxic T-lymphocyte populations directed to human influenza A virus. J. Virol.82(11), 5161–5166 (2008).
  • Zinkernagel RM. On natural and artificial vaccinations. Ann. Rev. Immunol.21, 515–546 (2003).
  • Masopust D. Developing an HIV cytotoxic T-lymphocyte vaccine: issues of CD8 T-cell quantity, quality and location. J. Intern. Med.265(1), 125–137 (2009).
  • Cooper AM. T cells in mycobacterial infection and disease. Curr. Opin. Immunol.21(4), 378–384 (2009).
  • Reece ST, Kaufmann SH. Rational design of vaccines against tuberculosis directed by basic immunology. Int. J. Med. Microbiol.298(1–2), 143–150 (2008).
  • Santosuosso M, Zhang X, McCormick S, Wang J, Hitt M, Xing Z. Mechanisms of mucosal and parenteral tuberculosis vaccinations: adenoviral-based mucosal immunization preferentially elicits sustained accumulation of immune protective CD4 and CD8 T cells within the airway lumen. J. Immunol.174(12), 7986–7994 (2005).
  • Santosuosso M, McCormick S, Roediger E et al. Mucosal luminal manipulation of T cell geography switches on protective efficacy by otherwise ineffective parenteral genetic immunization. J. Immunol.178(4), 2387–2395 (2007).
  • Ngai P, McCormick S, Small C et al. Gamma interferon responses of CD4 and CD8 T-cell subsets are quantitatively different and independent of each other during pulmonary Mycobacterium bovis BCG infection. Infect. Immun.75(5), 2244–2252 (2007).
  • Woodworth JS, Wu Y, Behar SM. Mycobacterium tuberculosis-specific CD8+ T cells require perforin to kill target cells and provide protection in vivo. J. Immunol.181(12), 8595–8603 (2008).
  • Mu J, Jeyanathan M, Shaler CR et al. Respiratory mucosal immunization with adenovirus gene transfer vector induces helper CD4 T cell-independent protective immunity. J. Gene. Med.12(8), 693–704 (2010).
  • Jeyanathan M, Mu J, McCormick S et al. Murine airway luminal antituberculosis memory CD8 T cells by mucosal immunization are maintained via antigen-driven in situ proliferation, independent of peripheral T cell recruitment. Am. J. Respir. Crit. Care Med.181(8), 862–872 (2010).
  • Amanna IJ, Slifka MK. Wanted, dead or alive: new viral vaccines. Antiviral Res.84(2), 119–130 (2009).
  • Tatsis N, Ertl HC. Adenoviruses as vaccine vectors. Mol. Ther.10(4), 616–629 (2004).
  • Ng P, Parks RJ, Cummings DT, Evelegh CM, Graham FL. An enhanced system for construction of adenoviral vectors by the two-plasmid rescue method. Hum. Gene. Ther.11(5), 693–699 (2000).
  • Bangari DS, Mittal SK. Development of nonhuman adenoviruses as vaccine vectors. Vaccine24(7), 849–862 (2006).
  • Lasaro MO, Ertl HC. New insights on adenovirus as vaccine vectors. Mol. Ther.17(8), 1333–1339 (2009).
  • Mast TC, Kierstead L, Gupta SB et al. International epidemiology of human pre-existing adenovirus (Ad) type-5, type-6, type-26 and type-36 neutralizing antibodies: correlates of high Ad5 titers and implications for potential HIV vaccine trials. Vaccine28(4), 950–957 (2010).
  • Yang Y, Nunes FA, Berencsi K, Furth EE, Gonczol E, Wilson JM. Cellular immunity to viral antigens limits E1-deleted adenoviruses for gene therapy. Proc. Natl Acad. Sci. USA91(10), 4407–4411 (1994).
  • Buchbinder SP, Mehrotra DV, Duerr A et al. Efficacy assessment of a cell-mediated immunity HIV-1 vaccine (the Step Study): a double-blind, randomised, placebo-controlled, test-of-concept trial. Lancet372(9653), 1881–1893 (2008).
  • Ledgerwood JE, Costner P, Desai N et al. A replication defective recombinant Ad5 vaccine expressing Ebola virus GP is safe and immunogenic in healthy adults. Vaccine29(2), 304–313 (2010).
  • Draper SJ, Heeney JL. Viruses as vaccine vectors for infectious diseases and cancer. Nat. Rev. Microbiol.8(1), 62–73 (2010).
  • Lubaroff DM, Konety BR, Link B et al. Phase I clinical trial of an adenovirus/prostate-specific antigen vaccine for prostate cancer: safety and immunologic results. Clin. Cancer Res.15(23), 7375–7380 (2009).
  • Priddy FH, Brown D, Kublin J et al. Safety and immunogenicity of a replication-incompetent adenovirus type 5 HIV-1 clade B gag/pol/nef vaccine in healthy adults. Clin. Infect. Dis.46(11), 1769–1781 (2008).
  • Harro CD, Robertson MN, Lally MA et al. Safety and immunogenicity of adenovirus-vectored near-consensus HIV type 1 clade B gag vaccines in healthy adults. AIDS Res. Hum. Retroviruses25(1), 103–114 (2009).
  • Yang TC, Dayball K, Wan YH, Bramson J. Detailed analysis of the CD8+ T-cell response following adenovirus vaccination. J. Virol.77(24), 13407–13411 (2003).
  • Yang TC, Millar J, Groves T et al. The CD8+ T cell population elicited by recombinant adenovirus displays a novel partially exhausted phenotype associated with prolonged antigen presentation that nonetheless provides long-term immunity. J. Immunol.176(1), 200–210 (2006).
  • Tatsis N, Fitzgerald JC, Reyes-Sandoval A et al. Adenoviral vectors persist in vivo and maintain activated CD8+ T cells: implications for their use as vaccines. Blood110(6), 1916–1923 (2007).
  • Kaufman DR, Liu J, Carville A et al. Trafficking of antigen-specific CD8+ T lymphocytes to mucosal surfaces following intramuscular vaccination. J. Immunol.181(6), 4188–4198 (2008).
  • Reyes-Sandoval A, Sridhar S, Berthoud T et al. Single-dose immunogenicity and protective efficacy of simian adenoviral vectors against Plasmodium berghei. Eur. J. Immunol.38(3), 732–741 (2008).
  • Finn JD, Bassett J, Millar JB et al. Persistence of transgene expression influences CD8+ T-cell expansion and maintenance following immunization with recombinant adenovirus. J. Virol.83(23), 12027–12036 (2009).
  • Kemball CC, Lee ED, Vezys V, Pearson TC, Larsen CP, Lukacher AE. Late priming and variability of epitope-specific CD8+ T cell responses during a persistent virus infection. J. Immunol.174(12), 7950–7960 (2005).
  • Obar JJ, Fuse S, Leung EK, Bellfy SC, Usherwood EJ. Gammaherpesvirus persistence alters key CD8 T-cell memory characteristics and enhances antiviral protection. J. Virol.80(17), 8303–8315 (2006).
  • Gold MC, Munks MW, Wagner M et al. Murine cytomegalovirus interference with antigen presentation has little effect on the size or the effector memory phenotype of the CD8 T cell response. J. Immunol.172(11), 6944–6953 (2004).
  • Bachmann MF, Wolint P, Schwarz K, Jager P, Oxenius A. Functional properties and lineage relationship of CD8+ T cell subsets identified by expression of IL-7 receptor α and CD62L. J. Immunol.175(7), 4686–4696 (2005).
  • Liu J, Ewald BA, Lynch DM et al. Magnitude and phenotype of cellular immune responses elicited by recombinant adenovirus vectors and heterologous prime–boost regimens in rhesus monkeys. J. Virol.82(10), 4844–4852 (2008).
  • Geisbert TW, Bailey M, Geisbert JB et al. Vector choice determines immunogenicity and potency of genetic vaccines against Angola Marburg virus in nonhuman primates. J. Virol.84(19), 10386–10394 (2010).
  • Lasaro MO, Haut LH, Zhou X et al. Vaccine-induced T cells provide partial protection against high-dose rectal SIVmac239 challenge of rhesus macaques. Mol. Ther.19(2), 417–426 (2011).
  • Makedonas G, Hutnick N, Haney D et al. Perforin and IL-2 upregulation define qualitative differences among highly functional virus-specific human CD8 T cells. PLoS Pathog.6(3), e1000798 (2010).
  • Hutnick NA, Carnathan D, Demers K, Makedonas G, Ertl HC, Betts MR. Adenovirus-specific human T cells are pervasive, polyfunctional, and cross-reactive. Vaccine28(8), 1932–1941 (2010).
  • Hutnick NA, Carnathan DG, Dubey SA et al. Vaccination with Ad5 vectors expands Ad5-specific CD8 T cells without altering memory phenotype or functionality. PLoS One5(12), e14385 (2010).
  • McElrath MJ, De Rosa SC, Moodie Z et al. HIV-1 vaccine-induced immunity in the test-of-concept step study: a case-cohort analysis. Lancet372(9653), 1894–1905 (2008).
  • Sallusto F, Lenig D, Forster R, Lipp M, Lanzavecchia A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature401(6754), 708–712 (1999).
  • Huster KM, Busch V, Schiemann M et al. Selective expression of IL-7 receptor on memory T cells identifies early CD40L- dependent generation of distinct CD8+ memory T cell subsets. Proc. Natl Acad. Sci. USA101(15), 5610–5615 (2004).
  • Wherry EJ, Teichgraber V, Becker TC et al. Lineage relationship and protective immunity of memory CD8 T cell subsets. Nat. Immunol.4(3), 225–234 (2003).
  • Huster KM, Koffler M, Stemberger C, Schiemann M, Wagner H, Busch DH. Unidirectional development of CD8+ central memory T cells into protective listeria-specific effector memory T cells. Eur. J. Immunol.36(6), 1453–1464 (2006).
  • Hansen SG, Vieville C, Whizin N et al. Effector memory T cell responses are associated with protection of rhesus monkeys from mucosal simian immunodeficiency virus challenge. Nat. Med.15(3), 293–299 (2009).
  • Ahlers JD, Belyakov IM. Memories that last forever: strategies for optimizing vaccine T-cell memory. Blood115(9), 1678–1689 (2010).
  • Li Q, Skinner PJ, Ha SJ et al. Visualizing antigen-specific and infected cells in situ predicts outcomes in early viral infection. Science323(5922), 1726–1729 (2009).
  • Stock AT, Jones CM, Heath WR, Carbone FR. Cutting edge: central memory T cells do not show accelerated proliferation or tissue infiltration in response to localized herpes simplex virus-1 infection. J. Immunol.177(3), 1411–1415 (2006).
  • Robinson HL, Amara RR. T cell vaccines for microbial infections. Nat. Med.11(Suppl. 4), S25–S32 (2005).
  • Liu J, O’Brien KL, Lynch DM et al. Immune control of an SIV challenge by a T-cell-based vaccine in rhesus monkeys. Nature457(7225), 87–91 (2009).
  • Seder RA, Darrah PA, Roederer M. T-cell quality in memory and protection: implications for vaccine design. Nat. Rev. Immunol.8(4), 247–258 (2008).
  • Moskophidis D, Lechner F, Pircher H, Zinkernagel RM. Virus persistence in acutely infected immunocompetent mice by exhaustion of antiviral cytotoxic effector T cells. Nature362(6422), 758–761 (1993).
  • Doherty PC. Immune exhaustion: driving virus-specific CD8+ T cells to death. Trends Microbiol.1(6), 207–209 (1993).
  • Zajac AJ, Blattman JN, Murali-Krishna K et al. Viral immune evasion due to persistence of activated T cells without effector function. J. Exp. Med.188(12), 2205–2213 (1998).
  • Wherry EJ, Blattman JN, Murali-Krishna K, van der Most R, Ahmed R. Viral persistence alters CD8 T-cell immunodominance and tissue distribution and results in distinct stages of functional impairment. J. Virol.77(8), 4911–4927 (2003).
  • Betts MR, Nason MC, West SM et al. HIV nonprogressors preferentially maintain highly functional HIV-specific CD8+ T cells. Blood107(12), 4781–4789 (2006).
  • Migueles SA, Laborico AC, Shupert WL et al. HIV-specific CD8+ T cell proliferation is coupled to perforin expression and is maintained in nonprogressors. Nat. Immunol.3(11), 1061–1068 (2002).
  • Migueles SA, Osborne CM, Royce C et al. Lytic granule loading of CD8+ T cells is required for HIV-infected cell elimination associated with immune control. Immunity29(6), 1009–1021 (2008).
  • Sun Y, Santra S, Schmitz JE, Roederer M, Letvin NL. Magnitude and quality of vaccine-elicited T-cell responses in the control of immunodeficiency virus replication in rhesus monkeys. J. Virol.82(17), 8812–8819 (2008).
  • Hersperger AR, Pereyra F, Nason M et al. Perforin expression directly ex vivo by HIV-specific CD8 T-cells is a correlate of HIV elite control. PLoS Pathog.6(5), e1000917 (2010).
  • Reyes-Sandoval A, Berthoud T, Alder N et al. Prime–boost immunization with adenoviral and modified vaccinia virus Ankara vectors enhances the durability and polyfunctionality of protective malaria CD8+ T-cell responses. Infect. Immun.78(1), 145–153 (2010).
  • Narni-Mancinelli E, Campisi L, Bassand D et al. Memory CD8+ T cells mediate antibacterial immunity via CCL3 activation of TNF/ROI+ phagocytes. J. Exp. Med.204(9), 2075–2087 (2007).
  • Singh A, Suresh M. A role for TNF in limiting the duration of CTL effector phase and magnitude of CD8 T cell memory. J. Leukoc. Biol.82(5), 1201–1211 (2007).
  • Rochman Y, Spolski R, Leonard WJ. New insights into the regulation of T cells by γ(c) family cytokines. Nat. Rev. Immunol.9(7), 480–490 (2009).
  • D’Souza WN, Lefrancois L. IL-2 is not required for the initiation of CD8 T cell cycling but sustains expansion. J. Immunol.171(11), 5727–5735 (2003).
  • Williams MA, Tyznik AJ, Bevan MJ. Interleukin-2 signals during priming are required for secondary expansion of CD8+ memory T cells. Nature441(7095), 890–893 (2006).
  • Pipkin ME, Sacks JA, Cruz-Guilloty F, Lichtenheld MG, Bevan MJ, Rao A. Interleukin-2 and inflammation induce distinct transcriptional programs that promote the differentiation of effector cytolytic T cells. Immunity32(1), 79–90 (2010).
  • Woodland DL, Kohlmeier JE. Migration, maintenance and recall of memory T cells in peripheral tissues. Nat. Rev. Immunol.9(3), 153–161 (2009).
  • Jelley-Gibbs DM, Brown DM, Dibble JP, Haynes L, Eaton SM, Swain SL. Unexpected prolonged presentation of influenza antigens promotes CD4 T cell memory generation. J. Exp. Med.202(5), 697–706 (2005).
  • Zammit DJ, Turner DL, Klonowski KD, Lefrancois L, Cauley LS. Residual antigen presentation after influenza virus infection affects CD8 T cell activation and migration. Immunity24(4), 439–449 (2006).
  • Jelley-Gibbs DM, Dibble JP, Brown DM, Strutt TM, McKinstry KK, Swain SL. Persistent depots of influenza antigen fail to induce a cytotoxic CD8 T cell response. J. Immunol.178(12), 7563–7570 (2007).
  • Khanna KM, Aguila CC, Redman JM, Suarez-Ramirez JE, Lefrancois L, Cauley LS. In situ imaging reveals different responses by naive and memory CD8 T cells to late antigen presentation by lymph node DC after influenza virus infection. Eur. J. Immunol.38(12), 3304–3315 (2008).
  • Wherry EJ, Barber DL, Kaech SM, Blattman JN, Ahmed R. Antigen-independent memory CD8 T cells do not develop during chronic viral infection. Proc. Natl Acad. Sci. USA101(45), 16004–16009 (2004).
  • Shin H, Blackburn SD, Blattman JN, Wherry EJ. Viral antigen and extensive division maintain virus-specific CD8 T cells during chronic infection. J. Exp. Med.204(4), 941–949 (2007).
  • Kaech SM, Wherry EJ. Heterogeneity and cell-fate decisions in effector and memory CD8+ T cell differentiation during viral infection. Immunity27(3), 393–405 (2007).
  • Cush SS, Anderson KM, Ravneberg DH, Weslow-Schmidt JL, Flano E. Memory generation and maintenance of CD8+ T cell function during viral persistence. J. Immunol.179(1), 141–153 (2007).
  • Vezys V, Masopust D, Kemball CC et al. Continuous recruitment of naive T cells contributes to heterogeneity of antiviral CD8 T cells during persistent infection. J. Exp. Med.203(10), 2263–2269 (2006).
  • Snyder CM, Cho KS, Bonnett EL, van Dommelen S, Shellam GR, Hill AB. Memory inflation during chronic viral infection is maintained by continuous production of short-lived, functional T cells. Immunity29(4), 650–659 (2008).
  • Boyman O, Letourneau S, Krieg C, Sprent J. Homeostatic proliferation and survival of naive and memory T cells. Eur. J. Immunol.39(8), 2088–2094 (2009).
  • Sierro S, Rothkopf R, Klenerman P. Evolution of diverse antiviral CD8+ T cell populations after murine cytomegalovirus infection. Eur. J. Immunol.35(4), 1113–1123 (2005).
  • Iwasaki A. Local advantage: skin DCs prime; skin memory T cells protect. Nat. Immunol.10(5), 451–453 (2009).
  • Jeyanathan M, Heriazon A, Xing Z. Airway luminal T cells: a newcomer on the stage of TB vaccination strategies. Trends Immunol.31(7), 247–252 (2010).
  • Gebhardt T, Wakim LM, Eidsmo L, Reading PC, Heath WR, Carbone FR. Memory T cells in nonlymphoid tissue that provide enhanced local immunity during infection with herpes simplex virus. Nat. Immunol.10(5), 524–530 (2009).
  • Liu L, Zhong Q, Tian T, Dubin K, Athale SK, Kupper TS. Epidermal injury and infection during poxvirus immunization is crucial for the generation of highly protective T cell-mediated immunity. Nat. Med.16(2), 224–227 (2010).
  • McGill J, Legge KL. Cutting edge: contribution of lung-resident T cell proliferation to the overall magnitude of the antigen-specific CD8 T cell response in the lungs following murine influenza virus infection. J. Immunol.183(7), 4177–4181 (2009).
  • Masopust D, Choo D, Vezys V et al. Dynamic T cell migration program provides resident memory within intestinal epithelium. J. Exp. Med.207(3), 553–564 (2010).
  • Wakim LM, Woodward-Davis A, Bevan MJ. Memory T cells persisting within the brain after local infection show functional adaptations to their tissue of residence. Proc. Natl Acad. Sci. USA107(42), 17872–17879 (2010).
  • Khanna KM, Bonneau RH, Kinchington PR, Hendricks RL. Herpes simplex virus-specific memory CD8+ T cells are selectively activated and retained in latently infected sensory ganglia. Immunity18(5), 593–603 (2003).
  • McGill J, Van Rooijen N, Legge KL. Protective influenza-specific CD8 T cell responses require interactions with dendritic cells in the lungs. J. Exp. Med.205(7), 1635–1646 (2008).
  • Bassett JD, Yang TC, Bernard D et al. CD8+ T cell expansion and maintenance following recombinant adenovirus immunization rely upon co-operation between hematopoietic and non-hematopoietic antigen-presenting cells. Blood117(4), 1146–1155 (2011).
  • Grinshtein N, Yang TC, Parsons R et al. Recombinant adenovirus vaccines can successfully elicit CD8(+) T Cell immunity under conditions of extreme leukopenia. Mol. Ther.13(2), 270–279 (2006).
  • Thomas S, Kolumam GA, Murali-Krishna K. Antigen presentation by nonhemopoietic cells amplifies clonal expansion of effector CD8 T cells in a pathogen-specific manner. J. Immunol.178(9), 5802–5811 (2007).
  • Wakim LM, Waithman J, van Rooijen N, Heath WR, Carbone FR. Dendritic cell-induced memory T cell activation in nonlymphoid tissues. Science319(5860), 198–202 (2008).
  • Kim TS, Hufford MM, Sun J, Fu YX, Braciale TJ. Antigen persistence and the control of local T cell memory by migrant respiratory dendritic cells after acute virus infection. J. Exp. Med.207(6), 1161–1172 (2010).
  • Reynoso ED, Turley SJ. Unconventional antigen-presenting cells in the induction of peripheral CD8(+) T cell tolerance. J. Leukoc. Biol.86(4), 795–801 (2009).
  • Laouar A, Haridas V, Vargas D et al. CD70+ antigen-presenting cells control the proliferation and differentiation of T cells in the intestinal mucosa. Nat. Immunol.6(7), 698–706 (2005).
  • Garnett CT, Erdman D, Xu W, Gooding LR. Prevalence and quantitation of species C adenovirus DNA in human mucosal lymphocytes. J. Virol.76(21), 10608–10616 (2002).
  • Garnett CT, Talekar G, Mahr JA et al. Latent species C adenoviruses in human tonsil tissues. J. Virol.83(6), 2417–2428 (2009).
  • Calcedo R, Vandenberghe LH, Roy S, Somanathan S, Wang L, Wilson JM. Host immune responses to chronic adenovirus infections in human and nonhuman primates. J. Virol.83(6), 2623–2631 (2009).
  • Shirota H, Petrenko L, Hong C, Klinman DM. Potential of transfected muscle cells to contribute to DNA vaccine immunogenicity. J. Immunol.179(1), 329–336 (2007).
  • Cohen JN, Guidi CJ, Tewalt EF et al. Lymph node-resident lymphatic endothelial cells mediate peripheral tolerance via AIRE-independent direct antigen presentation. J. Exp. Med.207(4), 681–688 (2010).
  • Junt T, Moseman EA, Iannacone M et al. Subcapsular sinus macrophages in lymph nodes clear lymph-borne viruses and present them to antiviral B cells. Nature450(7166), 110–114 (2007).
  • Hickman HD, Takeda K, Skon CN et al. Direct priming of antiviral CD8+ T cells in the peripheral interfollicular region of lymph nodes. Nat. Immunol.9(2), 155–165 (2008).
  • Steinman RM. Dendritic cells in vivo: a key target for a new vaccine science. Immunity29(3), 319–324 (2008).
  • Worgall S, Busch A, Rivara M et al. Modification to the capsid of the adenovirus vector that enhances dendritic cell infection and transgene-specific cellular immune responses. J. Virol.78(5), 2572–2580 (2004).
  • Bonifaz LC, Bonnyay DP, Charalambous A et al.In vivo targeting of antigens to maturing dendritic cells via the DEC-205 receptor improves T cell vaccination. J. Exp. Med.199(6), 815–824 (2004).
  • Nchinda G, Kuroiwa J, Oks M et al. The efficacy of DNA vaccination is enhanced in mice by targeting the encoded protein to dendritic cells. J. Clin. Invest.118(4), 1427–1436 (2008).
  • Hsu C, Boysen M, Gritton LD, Frosst PD, Nemerow GR, Von Seggern DJ. In vitro dendritic cell infection by pseudotyped adenoviral vectors does not correlate with their in vivo immunogenicity. Virology332(1), 1–7 (2005).
  • Pereboev AV, Asiedu CK, Kawakami Y et al. Coxsackievirus-adenovirus receptor genetically fused to anti-human CD40 scFv enhances adenoviral transduction of dendritic cells. Gene. Ther.9(17), 1189–1193 (2002).
  • Korokhov N, de Gruijl TD, Aldrich WA et al. High efficiency transduction of dendritic cells by adenoviral vectors targeted to DC-SIGN. Cancer Biol. Ther.4(3), 289–294 (2005).
  • Huang D, Pereboev AV, Korokhov N et al. Significant alterations of biodistribution and immune responses in Balb/c mice administered with adenovirus targeted to CD40(+) cells. Gene. Ther.15(4), 298–308 (2008).
  • Nicklin SA, Wu E, Nemerow GR, Baker AH. The influence of adenovirus fiber structure and function on vector development for gene therapy. Mol. Ther.12(3), 384–393 (2005).
  • Ophorst OJ, Kostense S, Goudsmit J et al. An adenoviral type 5 vector carrying a type 35 fiber as a vaccine vehicle: DC targeting, cross neutralization, and immunogenicity. Vaccine22(23–24), 3035–3044 (2004).
  • Hsieh CJ, Kim TW, Hung CF et al. Enhancement of vaccinia vaccine potency by linkage of tumor antigen gene to gene encoding calreticulin. Vaccine22(29–30), 3993–4001 (2004).
  • Mikkelsen M, Holst PJ, Bukh J, Thomsen AR, Christensen JP. Enhanced and sustained CD8+ T cell responses with an adenoviral vector-based hepatitis C virus vaccine encoding NS3 linked to the MHC class II chaperone protein invariant chain. J. Immunol.186(4), 2355–2364 (2011).
  • Cervantes-Barragan L, Zust R, Maier R et al. Dendritic cell-specific antigen delivery by coronavirus vaccine vectors induces long-lasting protective antiviral and antitumor immunity. MBio1(4), e00171–10 (2010).
  • Barouch DH. Novel adenovirus vector-based vaccines for HIV-1. Curr. Opin. HIV AIDS5(5), 386–390 (2010).
  • Hill AV, Reyes-Sandoval A, O’Hara G et al. Prime–boost vectored malaria vaccines: progress and prospects. Hum. Vaccine6(1), 78–83 (2010).
  • Xing Z, Charters TJ. Heterologous boost vaccines for bacillus calmette-guerin prime immunization against tuberculosis. Expert Rev. Vaccines6(4), 539–546 (2007).
  • Xing Z, McFarland CT, Sallenave JM, Izzo A, Wang J, McMurray DN. Intranasal mucosal boosting with an adenovirus-vectored vaccine markedly enhances the protection of BCG-primed guinea pigs against pulmonary tuberculosis. PLoS One4(6), e5856 (2009).
  • Capone S, Reyes-Sandoval A, Naddeo M et al. Immune responses against a liver-stage malaria antigen induced by simian adenoviral vector AdCh63 and MVA prime–boost immunisation in non-human primates. Vaccine29(2), 256–265 (2010).
  • Koup RA, Roederer M, Lamoreaux L et al. Priming immunization with DNA augments immunogenicity of recombinant adenoviral vectors for both HIV-1 specific antibody and T-cell responses. PLoS One5(2), e9015 (2010).
  • Asmuth DM, Brown EL, DiNubile MJ et al. Comparative cell-mediated immunogenicity of DNA/DNA, DNA/adenovirus type 5 (Ad5), or Ad5/Ad5 HIV-1 clade B gag vaccine prime–boost regimens. J. Infect. Dis.201(1), 132–141 (2010).
  • Kibuuka H, Kimutai R, Maboko L et al. A Phase 1/2 study of a multiclade HIV-1 DNA plasmid prime and recombinant adenovirus serotype 5 boost vaccine in HIV-Uninfected East Africans (RV 172). J. Infect. Dis.201(4), 600–607 (2010).
  • Barouch DH, Liu J, Lynch DM et al. Protective efficacy of a single immunization of a chimeric adenovirus vector-based vaccine against simian immunodeficiency virus challenge in rhesus monkeys. J. Virol.83(18), 9584–9590 (2009).
  • Araki K, Youngblood B, Ahmed R. The role of mTOR in memory CD8 T-cell differentiation. Immunol. Rev.235(1), 234–243 (2010).
  • Araki K, Turner AP, Shaffer VO et al. mTOR regulates memory CD8 T-cell differentiation. Nature460(7251), 108–112 (2009).
  • Wullschleger S, Loewith R, Hall MN. TOR signaling in growth and metabolism. Cell124(3), 471–484 (2006).
  • Pearce EL, Walsh MC, Cejas PJ et al. Enhancing CD8 T-cell memory by modulating fatty acid metabolism. Nature460(7251), 103–107 (2009).
  • Harrison JM, Bertram EM, Boyle DB, Coupar BE, Ranasinghe C, Ramshaw IA. 4–1BBL coexpression enhances HIV-specific CD8 T cell memory in a poxvirus prime–boost vaccine. Vaccine24(47–48), 6867–6874 (2006).
  • Xiao C, Jin H, Hu Y et al. Enhanced protective efficacy and reduced viral load of foot-and-mouth disease DNA vaccine with co-stimulatory molecules as the molecular adjuvants. Antiviral Res.76(1), 11–20 (2007).
  • Liu MA. Immunologic basis of vaccine vectors. Immunity33(4), 504–515 (2010).
  • Shiver JW, Fu TM, Chen L et al. Replication-incompetent adenoviral vaccine vector elicits effective anti-immunodeficiency-virus immunity. Nature415(6869), 331–335 (2002).
  • Letvin NL, Mascola JR, Sun Y et al. Preserved CD4+ central memory T cells and survival in vaccinated SIV-challenged monkeys. Science312(5779), 1530–1533 (2006).
  • Fitzgerald DW, Janes H, Robertson M et al. An Ad5-vectored HIV-1 vaccine elicits cell-mediated immunity but does not affect disease progression in HIV-1-infected male subjects: results from a randomized placebo-controlled trial (The step study). J. Infect. Dis.203(6), 765–772 (2011).
  • Schagen FH, Graat HC, Carette JE et al. Replacement of native adenovirus receptor-binding sites with a new attachment moiety diminishes hepatic tropism and enhances bioavailability in mice. Hum. Gene. Ther.19(8), 783–794 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.