389
Views
19
CrossRef citations to date
0
Altmetric
Review

Molecular studies of the Oka varicella vaccine

, &
Pages 1321-1336 | Published online: 09 Jan 2014

References

  • Mori I, Nishiyama Y. Herpes simplex virus and varicella zoster virus: why do these human alphaherpesviruses behave so differently from one another? Rev. Med. Virol.15, 393–406 (2005).
  • McGeoch DJ, Rixon FJ, Davison AJ. Topics in herpesvirus genomics and evolution. Virus. Res.117, 90–104 (2006).
  • Quinlivan M, Breuer J. Molecular and therapeutic aspects of varicella zoster virus infection. Expert Rev. Mol. Med.7, 1–24 (2005).
  • Arvin AM, Moffat JF, Redman R. Varicella zoster virus: aspects of pathogenesis and host response to natural infection and varicella vaccine. Adv. Virus Res.46, 263–309 (1996).
  • Ku CC, Padilla JA, Grose C, Butcher EC, Arvin AM. Tropism of varicella zoster virus for human tonsillar CD4(+) T lymphocytes that express activation, memory, and skin homing markers. J. Virol.76, 11425–11433 (2002).
  • Ito Y, Kimura H, Hara S et al. Investigation of varicella zoster virus DNA in lymphocyte subpopulations by quantitative PCR assay. Microbiol. Immunol.45, 267–269 (2001).
  • Lungu O, Panagiotidis CA, Annunziato PW, Gershon AA, Silverstein SJ. Abbarent intracellular localization of varicella zoster virus regulatory proteins during latency. Proc. Natl Acad. Sci. USA95, 7080–7085 (1998).
  • Mahalingam R, Wellish M, Cohrs R et al. Expression of protein encoded by varicella zoster virus open reading frame 63 in latently infected human ganglionic neurons. Proc. Natl Acad. Sci. USA93, 2122–2124 (1996).
  • Cohrs RJ, Gilden DH, Kinchington PR, Grinfeld E, Kennedy PG. Varicella zoster virus gene 66 transcription and translation in latently infected human ganglia. J. Virol.77, 6660–6665 (2003).
  • Quinlivan ML, Ayres KL, Kelly PJ et al. Persistence of varicella zoster virus viraemia in patients with herpes zoster. J. Clin. Virol.50, 130–135 (2011).
  • Weinberg A, Lazar AA, Zerbe GO et al. Influence of age and nature of primary infection on varicella zoster virus-specific cell-mediated immune responses. J. Infect. Dis.201, 1024–1030 (2010).
  • Hayward AR, Herberger M. Lymphocyte responses to varicella zoster virus in the elderly. J. Clin. Immunol.7, 174–178 (1987).
  • Offidani M, Corvatta L, Olivieri A et al. A predictive model of varicella zoster virus infection after autologous peripheral blood progenitor cell transplantation. Clin. Infect. Dis.32, 1414–1422 (2001).
  • Herr W, Plachter B. Cytomegalovirus and varicella zoster virus vaccines in hematopoietic stem cell transplantation. Expert Rev. Vaccines8(8), 999–1021 (2009).
  • Zambelli A, Montagna D, Da Prada GA et al. Evaluation of infectious complications and immune recovery following high-dose chemotherapy (HDC) and autologous peripheral blood progenitor cell transplantation (PBPC-T) in 148 breast cancer patients. Anticancer Res.22, 3701–3708 (2002).
  • Takahashi M, Otsuka T, Okuno Y, Asano Y, Yazaki T. Live vaccine used to prevent the spread of varicella in children in hospital. Lancet2, 1288–1290 (1974).
  • Singhvi R, Markusen JF, Ky B, Horvath BJ, Aunins JG. Assessment of virus infection in cultured cells using metabolic monitoring. Cytotechnology22, 79–85 (1986).
  • D’Hondt E, Berge E, Colinet G, Duchene M, Peetermans J. Production and quality control of the Oka-strain live varicella vaccine. Postgrad. Med. J.61(Suppl. 4), 53–56 (1985).
  • Galea SA, Sweet A, Beninger P et al. The safety profile of varicella vaccine: a 10-year review. J. Infect. Dis.197(Suppl. 2), S165–S169 (2008).
  • Bonanni P, Breuer J, Gershon A et al. Varicella vaccination in Europe – taking the practical approach. BMC Med.7, 26 (2009).
  • Goulleret N, Mauvisseau E, Essevaz-Roulet M, Quinlivan M, Breuer J. Safety profile of live varicella virus vaccine (Oka/Merck): five-year results of the European Varicella Zoster Virus Identification Program (EU VZVIP). Vaccine28, 5878–5882 (2010).
  • Clements DA, Moreira SP, Coplan PM, Bland CL, Walter EB. Postlicensure study of varicella vaccine effectiveness in a day-care setting. Pediatr. Infect. Dis. J.18, 1047–1050 (1999).
  • Marin M, Meissner HC, Seward JF. Varicella prevention in the United States: a review of successes and challenges. Pediatrics122, 744–751 (2008).
  • Meurice F, De Bouver JL, Vandevoorde D, Woods S, Bogaerts H. Immunogenicity and safety of a live attenuated varicella vaccine (Oka/SB Bio) in healthy children. J. Infect. Dis.174(Suppl. 3), S324–S329 (1996).
  • White CJ, Kuter BJ, Hildebrand CS et al. Varicella vaccine (Varivax) in healthy children and adolescents results from clinical trials, 1987 to 1989. Pediatrics87, 604–610 (1991).
  • Takahashi M, Okuno Y, Otsuka T, Osame J, Takamizawa A. Development of a live attenuated varicella vaccine. Biken J.18, 25–33 (1975).
  • Kuter BJ, Ngai A, Patterson CM et al. Safety, tolerability, and immunogenicity of two regimens of Oka/Merck varicella vaccine (Varivax) in healthy adolescents and adults. Oka/Merck varicella vaccine study group. Vaccine13, 967–972 (1995).
  • Wutzler P, Knuf M, Liese J. Varicella: efficacy of two-dose vaccination in childhood. Dtsch. Arztebl. Int.105, 567–572 (2008).
  • Chaves SS, Gargiullo P, Zhang JX et al. Loss of vaccine-induced immunity to varicella over time. N. Engl. J. Med.356, 1121–1129 (2007).
  • Kuter B, Matthews H, Shinefield H et al. Study group for Varivax. Ten year follow-up of healthy children who received one or two injections of varicella vaccine. Pediatr. Infect. Dis. J.23, 132–137 (2004).
  • Ampofo K, Saiman L, LaRussa P, Steinberg S, Annunziato P, Garson A. Persistence of immunity to live attenuated varicella vaccine in healthy adults. Clin. Infect. Dis.34, 774–779 (2002).
  • Ozaki T, Nishimura N, Kajita Y. Experience with live attenuated varicella vaccine (Oka strain) in healthy Japanese subjects; 10-year survey at pediatric clinic. Vaccine18, 2375–2380 (2000).
  • Sharrar RG, LaRussa P, Galea SA et al. The postmarketing safety profile of varicella vaccine. Vaccine19, 916–923 (2000).
  • Bernstein HH, Rothstein EP, Watson BM et al. Clinical survey of natural varicella compared with breakthrough varicella after immunization with live attenuated Oka/Merck varicella vaccine. Pediatrics92, 833–837 (1993).
  • Huang WC, Huang LM, Chang IS, Tsai FY, Chang LY. Varicella breakthrough infection and vaccine effectiveness in Taiwan. Vaccine29, 2756–2760 (2011).
  • Pahud BA, Glaser CA, Dekker CL, Arvin AM, Schmid DS. Varicella zoster disease of the central nervous system: epidemiological, clinical, and laboratory features 10 years after the introduction of the varicella vaccine. J. Infect. Dis.203, 316–323 (2011).
  • Chouliaras G, Spoulou V, Quinlivan M, Breuer J, Theodoridou M. Vaccine-associated herpes zoster ophthalmicus [correction of opthalmicus] and encephalitis in an immunocompetent child. Pediatrics125, 969–972 (2009).
  • Lyer S, Mittal MK, Hodinka RL. Herpes zoster and meningitis resulting from reactivation of varicella vaccine virus in an immunocompetent child. Ann. Emerg. Med.53, 792–795 (2009).
  • Chaves SS, Haber P, Walton K et al. Safety of varicella vaccine after licensure in the United States: experience from reports to the vaccine adverse event reporting system, 1995–2005. J. Infect. Dis.197(Suppl. 2), S170–S177 (2008).
  • Levin MJ, DeBiasi RL, Bostik V, Schmid DS. Herpes zoster with skin lesions and meningitis caused by 2 different genotypes of the Oka varicella zoster virus vaccine. J. Infect. Dis.198, 1444–1447 (2008).
  • Levin MJ, Dahl KM, Weinberg A, Giller R, Patel A, Krause PR. Development of resistance to acyclovir during chronic infection with the Oka vaccine strain of varicella zoster virus, in an immunosuppressed child. J. Infect. Dis.188, 954–959 (2003).
  • Gan L, Wang M, Yang S, Gershon AA, Chen JJ. Transmission of varicella vaccine virus to a non-family member in China. Vaccine29(11), 2015–2017 (2010).
  • LaRussa P, Steinberg S, Meurice F, Gershon A. Transission of vaccine strain varicella zoster virus from a healthy adult with vaccine-associated rash to susceptible household contacts. J. Infect. Dis.176, 1072–1075 (1997).
  • Grossberg R, Harpaz R, Rubtcova E, Loparev V, Seward JF, Schmid DS. Secondary transmission of varicella vaccine virus in a chronic care facility for children. J. Pediatr.148, 842–844 (2006).
  • Weibel RE, Neff BJ, Kuter BJ et al. Live attenuated varicella virus vaccine. Efficacy trail in healthy children. N. Engl. J. Med.310, 1409–1415 (1984).
  • Arbeter AM, Starr SE, Plotkin SA. Varicella vaccine studies in healthy children and adults. Paediatrics78, 748–756 (1986).
  • Gershon AA, Steinberg SP, Gelb L et al. Live attenuated varicella vaccine. Efficacy for children with leukemia in remission. JAMA252, 355–362 (1984).
  • Breuer J. Oka vaccine for varicella zoster virus. Herpes4, 62–67 (1997).
  • Weinmann S, Chun C, Riedlinger K et al. Herpes zoster in the varicella vaccine era. Presented at: 48th Annual Meeting of the Infectious Diseases Society of America (IDSA), Vacouver, Canada, 21–24 October 2010.
  • Civen R, Chaves SS, Jumaan A et al. The incidence and clinical characteristics of herpes zoster among children and adolescents after implementation of varicella vaccination. Pediatr. Infect. Dis. J.28, 954–959 (2009).
  • Lawrence R, Gershon AA, Holzman R, Steinberg SP. The risk of zoster after varicella vaccination in children with leukemia. N. Engl. J. Med.318, 543–548 (1988).
  • Hardy I, Gershon AA, Steinberg SP, LaRussa P. The incidence of zoster after immunization with live attenuated varicella vaccine. A study in children with leukemia. Varicella Vaccine Collaborative Study Group. N . Engl. J. Med.325, 1545–1550 (1991).
  • Gomi Y, Imagawa T, Takahashi M, Yamanishi K. Oka varicella vaccine is distinguishable from its parental virus in DNA sequence of open reading frame 62 and its transactivation activity. J. Med. Virol.61, 497–503 (2000).
  • Argaw T, Cohen JI, Klutch M et al. Nucleotide sequences that distinguish Oka vaccine from parental Oka and other varicella zoster isolates. J. Infect. Dis.181, 1153–1157 (2000).
  • Gomi Y, Sunamachi H, Mori Y, Nagaike K, Takahashi M, Yamanishi K. Comparison of the complete DNA sequences of the Oka varicella vaccine and its parental virus. J. Virol.76, 11447–11459 (2002).
  • Tillieux SL, Halsey WS, Thomas ES, Voycik JJ, Sathe GM, Vassilev V. Complete DNA sequences of two oka strain varicella zoster virus genomes. J. Virol.82, 11023–11044 (2008).
  • Schmid DS. Varicella zoster virus vaccine. molecular genetics. Curr. Top. Microbiol. Immunol.342, 323–340 (2010).
  • Quinlivan ML, Gershon AA, Al Bassam MM et al. Natural selection for rash-forming genotypes of the varicella zoster vaccine virus detected within immunized human hosts. Proc. Natl Acad. Sci. USA104, 208–212 (2007).
  • Kanda RK, Quinlivan ML, Gershon AA, Nichols RA, Breuer J. Population diversity in batches of the varicella Oka vaccine. Vaccine29(17), 3293–3298 (2011).
  • Kreth HW, Hoeger PH. Members of the VZV-AD study group. Safety, reactogenicity, and immunogenicity of live attenuated varicella vaccine in children between 1 and 9 years of age with atopic dermatitis. Eur. J. Pediatr.165, 677–683 (2006).
  • Takahashi M. 25 years’ experience with the Biken Oka strain varicella vaccine: a clinical overview. Paediatr. Drugs3, 285–292 (2001).
  • Lau YL, Vessey SJ, Chan IS et al. A comparison of safety, tolerability and immunogenicity of Oka/Merck varicella vaccine and VARILRIX in healthy children. Vaccine20, 2942–2949 (2002).
  • Spackova M, Wiese-Posselt M, Dehnert M, Matysiak-Klose D, Heininger U, Siedler A. Comparative varicella vaccine effectiveness during outbreaks in day-care centres. Vaccine28, 686–691 (2010).
  • Seward JF, Marin M, Vázquez M. Varicella vaccine effectiveness in the US vaccination program: a review. J. Infect. Dis.197(Suppl. 2), S82–S89 (2008).
  • Kreth HW, Lee BW, Kosuwon P et al. Sixteen years of global experience with the first refrigerator-stable varicella vaccine (Varilrix). BioDrugs22, 387–402 (2008).
  • Bayer O, Heininger U, Heiligensetzer C, von Kries R. Metaanalysis of vaccine effectiveness in varicella outbreaks. Vaccine25, 6655–6660 (2007).
  • Sen N, Sommer M, Che X, White K, Ruyechan WT, Arvin AM. Varicella zoster virus immediate-early protein 62 blocks interferon regulatory factor 3 (IRF3) phosphorylation at key serine residues: a novel mechanism of IRF3 inhibition among herpesviruses. J. Virol.84, 9240–9253 (2010).
  • Cohen JI. Infection of cells with varicella zoster virus down-regulates surface expression of class I major histocompatibility complex antigens. J. Infect. Dis.177, 1390–1393 (1998).
  • Abendroth A, Lin I, Slobedman B, Ploegh H, Arvin AM. Varicella zoster virus retains major histocompatibility complex class I proteins in the Golgi compartment of infected cells. J. Virol.75, 4878–4888 (2001).
  • Black AP, Jones L, Malavige GN, Ogg GS. Immune evasion during varicella zoster virus infection of keratinocytes. Clin. Exp. Dermatol.34, 941–944 (2009).
  • Gutzeit C, Raftery MJ, Peiser M et al. Identification of an important immunological difference between virulent varicella zoster virus and its avirulent vaccine: viral disruption of dendritic cell instruction. J. Immunol.185, 488–497 (2010).
  • Morrow G, Slobedman B, Cunningham AL, Abendroth A. Varicella zoster virus productively infects mature dendritic cells and alters their immune function. J. Virol.77, 4950–4959 (2003).
  • Abendroth A, Slobedman B, Lee E, Mellins E, Wallace M, Arvin AM. Modulation of major histocompatability class II protein expression by varicella zoster virus. J. Virol.74, 1900–1907 (2000).
  • Koropchak CM, Graham G, Palmer J et al. Investigation of varicela-zoster virus infection by polymerase chain reaction in the immunocompetent host with acute varicella. J. Infect. Dis.163, 1016–1022 (1991).
  • Mainka C, Fuss B, Geiger H, Hofelmayr H, Wolff MH. Characterization of viraemia at different stages of varicella zoster virus infection. J. Med. Virol.56, 91–98 (1998).
  • Hawrami K, Breuer J. Development of a flurogenic polymerase chain reaction assay (TaqMan) for the detection and quantitation of varicella zoster virus. J. Virological Methods79, 33–40 (1999).
  • Sawyer MH, Wu NY, Chamberlin CJ et al. Detection of varicella zoster virus DNA in the orphopharynx and blood of patients with varicella. J. Infect. Dis.166, 885–888 (1992).
  • Ozaki T, Kajita Y, Asano Y, Aono T, Yamanishi K. Detection of varicella zoster virus DNA in blood of children with varicella. J. Med. Virol.44, 263–265 (1994).
  • Gomi Y, Ozaki T, Nishimura N. DNA sequence analysis of varicella zoster virus gene 62 from subclinical infections in healthy children immunized with the Oka varicella vaccine. Vaccine26, 5627–5632 (2008).
  • Moffat JF, Stein MD, Kaneshima H, Arvin AM. Tropism of varicella zoster virus for human CD4+ and CD8+ T lymphocytes and epidermal cells in SCID-hu mice. J. Virol.69, 5236–5242 (1995).
  • Soong W, Schultz JC, Patera AC, Sommer MH, Cohen JI. Infection of human T lymphocytes with varicella zoster virus: an analysis with viral mutants and clinical isolates. J. Virol.74, 1864–1870 (2000).
  • Pathogenetic tropism of varicella zoster virus to primary human hepatocytes and attenuating tropism of Oka varicella vaccine strain to neonatal dermal fibroblasts. J. Infect. Dis.188, 1875–1877 (2003).
  • Chen JJ, Zhu Z, Gershon AA, Gershon MD. Mannose 6-phosphate receptor dependence of varicella zoster virus infection in vitro and in the epidermis during varicella and zoster. Cell119, 915–926 (2004).
  • Mahalingam R, Smith D, Wellish M et al. Simian varicella virus DNA in dorsal root ganglia. Proc. Natl Acad. Sci. USA88, 2750–2752 (1991).
  • Arvin A. Varicella zoster virus. In: Virology. Fields BN, Knipe DM (Eds). Lippincott-Raven Publishers, Philadelphia, PA, USA 2547–4587 (1998).
  • Zerboni L, Ku CC, Jones CD, Zehnder JL, Arvin AM. Varicella zoster virus infection of human dorsal root ganglia in vivo. Proc. Natl Acad. Sci. USA102, 6490–6495 (2005).
  • Gershon AA, Gershon MD. Perspectives on vaccines against varicella zoster virus infections. Curr. Top. Microbiol. Immunol.342, 359–372 (2010).
  • Schmidt M, Kress M, Heinemann S, Fickenscher H. Varicella zoster virus isolates, but not the vaccine strain Oka, induce sensitivity to α-1 and β-1 adrenergic stimulation of sensory neurons in culture. J. Med. Virol.70(Suppl. 1), S82–S89 (2003).
  • Kress M, Fickenscher H. Infection by human varicella zoster virus confers norepinephrine sensitivity to sensory neurons from rat dorsal root ganglia. FASEB J.15, 1037–1043 (2001).
  • Moffat JF, Zerboni L, Kinchington PR, Grose C, Kaneshima H, Arvin AM. Attenuation of the vaccine Oka strain of varicella zoster virus and role of glycoprotein C in alphaherpesvirus virulence demonstrated in the SCID-hu mouse. J. Virol.72, 965–974 (1998).
  • Jones JO, Arvin AM. Microarray analysis of host cell gene transcription in response to varicella zoster virus infection of human T cells and fibroblasts in vitro and SCIDhu skin xenografts in vivo. J. Virol.77, 1268–1280 (2003).
  • Zhang Z, Selariu A, Warden C et al. Genome-wide mutagenesis reveals that ORF7 is a novel VZV skin-tropic factor. PLoS Pathog.6(7), e1000971 (2010).
  • Che X, Reichelt M, Sommer MH, Rajamani J, Zerboni L, Arvin AM. Functions of the ORF9-to-ORF12 gene cluster in varicella zoster virus replication and in the pathogenesis of skin infection. J. Virol.82, 5825–5834 (2008).
  • Sato B, Ito H, Hinchliffe S, Sommer MH, Zerboni L, Arvin AM. Mutational analysis of open reading frames 62 and 71, encoding varicella zoster virus immediate-early transactivating protein, IE62, and effects on replication in vitro and in skin xenografts in the SCID-hu mouse in vivo. J. Virol.77, 5607–5620 (2003).
  • Moriuchi H, Moriuchi M, Cohen JI. Proteins and cis-acting elements associated with transactivation of the varicella zoster virus (VZV) immediate-early gene 62 promoter by VZV open reading frame 10 protein. J. Virol.69, 4693–4701 (1995).
  • Kinchington PR, Hougland JK, Arvin AM, Ruyechan WT, Hay J. The varicella zoster virus immediate-early protein IE62 is a major component of virus particles. J. Virol.66, 359–366 (1992).
  • Moriuchi H, Moriuchi M, Straus SE, Cohen JI. Varicella zoster virus (VZV) virion-associated transactivator open reading frame 62 protein enhances the infectivity of VZV DNA. Virology200, 297–300 (1994).
  • Gomi Y, Imagawa T, Takahashi M, Yamanishi K. Comparison of DNA sequence and transactivation activity of open reading frame 62 of Oka varicella vaccine and its parental virus. Arch. Virol.17, 49–56 (2001).
  • Perera LP, Mosca JD, Ruyechan WT, Hay J. Regulation of varicella zoster virus gene expression in human T lymphocytes. J. Virol.66, 5298–5304 (1992).
  • Perera LP. The TATA motif specifies the differential activation of minimal promoters by varicella zoster virus immediate-early regulatory protein IE62. J. Biol. Chem.275, 487–496 (2000).
  • Folster JM, Jensen NJ, Ruyechan WT, Inoue N, Schmid DS. Regulation of the expression of the varicella zoster virus open reading frame 66 gene. Virus. Res.155, 334–342 (2011).
  • Baudoux L, Defechereux P, Schoonbroodt S, Merville MP, Rentier B, Piette J. Mutational analysis of varicella zoster virus major immediate-early protein IE62. Nucleic Acids Res.23, 1341–1349 (1995).
  • Eisfeld AJ, Turse SE, Jackson SA, Lerner EC, Kinchington PR. Phosphorylation of the varicella zoster virus (VZV) major transcriptional regulatory protein IE62 by the VZV open reading frame 66 protein kinase. J. Virol.80, 1710–1723 (2006).
  • Cilloniz C, Jackson W, Grose C, Czechowski D, Hay J, Ruyechan WT. The varicella zoster virus (VZV) ORF9 protein interacts with the IE62 major VZV transactivator. J. Virol.81, 761–774 (2007).
  • Peng H, He H, Hay J, Ruyechan WT. Interaction between the varicella zoster virus IE62 major transactivator and cellular transcription factor Sp1. J. Biol. Chem.278, 38068–38075 (2003).
  • Kinchington PR, Fite K, Turse SE. Nuclear accumulation of IE62, the varicella zoster virus (VZV) major transcriptional regulatory protein, is inhibited by phosphorylation mediated by the VZV open reading frame 66 protein kinase. J. Virol.74, 2265–2277 (2000).
  • Yamamoto S, Eletsky A, Szyperski T, Hay J, Ruyechan WT. Analysis of the varicella zoster virus IE62 N-terminal acidic transactivating domain and its interaction with the human mediator complex. J. Virol.83, 6300–6305 (2009).
  • Ruyechan WT. Roles of cellular transcription factors in VZV replication. Curr. Top. Microbiol. Immunol.342, 43–65 (2010).
  • Kenyon TK, Grose C. VZV ORF47 serine protein kinase and its viral substrates. Curr. Top. Microbiol. Immunol.342, 99–111 (2010).
  • Wagenaar TR, Chow VT, Buranathai C, Thawatsupha P, Grose C. The out of Africa model of varicella zoster virus evolution. single nucleotide polymorphisms and private alleles distinguish Asian clades from European/North American clades. Vaccine21, 1072–1081 (2003).
  • Cohrs RJ, Gilden DH, Gomi Y, Yamanishi K, Cohen JI. Comparison of virus transcription during lytic infection of the Oka parental and vaccine strains of varicella zoster virus. J. Virol.80, 2076–2082 (2006).
  • Lynch JM, Kenyon TK, Grose C, Hay J, Ruyechan WT. Physical and functional interaction between the varicella zoster virus IE63 and IE62 proteins. Virology302, 71–82 (2002).
  • Grinfeld E, Ross A, Forster T, Ghazal P, Kennedy PG. Genome-wide reduction in transcriptomal profiles of varicella zoster virus vaccine strains compared with parental Oka strain using long oligonucleotide microarrays. Virus Genes38, 19–29 (2009).
  • Moffat JF, Zerboni L, Sommer MH et al. The ORF47 and ORF66 putative protein kinases of varicella zoster virus determine tropism for human T cells and skin in the SCID-hu mouse. Proc. Natl Acad. Sci. USA95, 11969–11974 (1998).
  • Moffat J, Ito H, Sommer M, Taylor S, Arvin AM. Glycoprotein I of varicella zoster virus is required for viral replication in skin and T cells. J. Virol.76, 8468–8471 (2002).
  • Arvin AM, Oliver S, Reichelt M et al. Analysis of the functions of glycoproteins E and I and their promoters during VZV replication in vitro and in skin and T-cell xenografts in the SCID mouse model of VZV pathogenesis. Curr. Top. Microbiol. Immunol.342, 129–146 (2010).
  • Mo C, Lee J, Sommer M, Grose C, Arvin AM. The requirement of varicella zoster virus glycoprotein E (gE) for viral replication and effects of glycoprotein I on gE in melanoma cells. Virology304, 176–186 (2002).
  • Ling P, Kinchington PR, Ruyechan WT, Hay J. A detailed analysis of transcripts mapping to varicella zoster virus gene 14 (glycoprotein V). Virology184, 625–635 (1991).
  • Spear PG. Herpes simplex virus: receptors and ligands for cell entry. Cell Microbiol.6, 401–410 (2004).
  • Stow ND, Davison AJ. Identification of a varicella zoster virus origin of DNA replication and its activation by herpes simplex virus type 1 gene products. J. Gen. Virol.67, 1613–1623 (1986).
  • Nichols RA, Averbeck KT, Poulsen AG et al. Household size is critical to varicella zoster virus transmission in the tropics despite lower viral infectivity. Epidemics3, 12–18 (2011).
  • Zerboni L, Hinchliffe S, Sommer MH et al. Analysis of varicella zoster virus attenuation by evaluation of chimeric parent Oka/vaccine Oka recombinant viruses in skin xenografts in the SCIDhu mouse model. Virology332, 337–346 (2005).
  • Intracellular localization of varicella zoster virus ORF39 protein and its functional relationship to glycoprotein K. Virology358, 291–302 (2007).
  • Grose C. Glycoproteins encoded by varicella zoster virus: biosynthesis, phosphorylation, and intracellular trafficking. Ann. Rev. Microbiol.44, 59–80 (1990).
  • Grose C, Edwards DP, Weigle KA, Friedrichs WE, McGuire WL. Varicella zoster virus-specific gp140: a highly immunogenic and disulfide-linked structural glycoprotein. Virology132, 138–146 (1984).
  • Maresova L, Pasieka TJ, Grose C. Varicella zoster virus gB and gE coexpression, but not gB or gE alone, leads to abundant fusion and syncytium formation equivilant to those from gH and gL coexpression. J. Virol.75, 9483–9492 (2001).
  • Heineman TC, Hall SL. Role of the varicella zoster virus gB cytoplasmic domain in gB transport and viral egress. J. Virol.76, 591–599 (2002).
  • Kjartansdóttir A, Lycke E, Norrby SR. B-cell epitopes of varicella zoster virus glycoprotein II. Arch. Virol.141, 2465–2469 (1996).
  • Oliver SL, Sommer M, Zerboni L, Rajamani J, Grose C, Arvin AM. Mutagenesis of varicella zoster virus glycoprotein B: putative fusion loop residues are essential for viral replication, and the furin cleavage motif contributes to pathogenesis in skin tissue in vivo. J. Virol.83, 7495–7506 (2009).
  • Heineman TC, Krudwig N, Hall SL. Cytoplasmic domain signal sequences that mediate transport of varicella zoster virus gB from the endoplasmic reticulum to the Golgi. J. Virol.74, 9421–9430 (2000).
  • Heineman TC, Hall SL. VZV gB endocytosis and Golgi localization are mediated by YXXφ motifs in its cytoplasmic domain. Virology285, 42–49 (2001).
  • Quinlivan ML, Gershon AA, Steinberg SP, Breuer J. Rashes occurring after immunization with a mixture of viruses in the Oka vaccine are derived from single clones of virus. J. Infect. Dis.190, 793–796 (2004).
  • Loparev VN, Rubtcova E, Seward JF, Levin MJ, Schmid DS. DNA sequence variability in isolates recovered from patients with postvaccination rash or herpes zoster caused by Oka varicella vaccine. J. Infect. Dis.195, 502–510 (2007).
  • Quinlivan MA, Gershon AA, Nichols RA, La Russa P, Steinberg SP, Breuer J. Vaccine Oka varicella zoster virus genotypes are monomorphic in single vesicles and polymorphic in respiratory tract secretions. J. Infect. Dis.193, 927–930 (2006).
  • Breuer J, Schmid DS. Vaccine Oka variants and sequence variability in vaccine-related skin lesions. J. Infect. Dis.197(Suppl. 2), S54–S57 (2008).
  • Sommer MH, Zagha E, Serrano OK et al. Mutational analysis of the repeated open reading frames, ORFs 63 and 70 and ORFs 64 and 69, of varicella-zoster virus. J. Virol.75, 8224–8239 (2001).
  • Gonzalez-Galarza FF, Christmas S, Middleton D, Jones AR. Allele frequency net: a database and online repository for immune gene frequencies in worldwide populations. Nucleic Acids Res.39(Database issue), D913–D919 (2011).
  • Yoshida M, Tamura T, Hiruma M. Analysis of strain variation of R1 repeated structure in varicella zoster virus DNA by polymersae chain reaction. J. Med. Virol.58, 76–78 (1999).
  • Yoshida M, Tamura T. An analytical method for R5 repeated structure in varicella zoster virus DNA by polymerase chain reaction. J. Virol. Methods80, 213–215 (1999).
  • Sauerbrei A, Eichhorn U, Gawellek S, Egerer R, Schacke M, Wutzler P. Molecular characterisation of varicella zoster virus strains in Germany and differentiation from the Oka vaccine strain. J. Med. Virol.71, 313–319 (2003).
  • Hawrami K, Breuer J. Analysis of United Kingdom wild-type strains of varicella zoster virus: differentiation from the Oka vaccine strain. J. Med. Virol.53, 60–62 (1997).
  • Mori C, Takahara R, Toriyama T, Nagai T, Takahashi M, Yamanishi K. Identification of the Oka strain of the live attenuated varicella vaccine from other clinical isolates by molecular epidemiologic analysis. J. Infect. Dis.178, 35–38 (1998).
  • LaRussa P, Lungu O, Hardy I, Gershon AA, Steinberg SP, Silverstein S. Restriction fragment length polymorphism of polymerase chain reaction products from vaccine and wild-type varicella zoster virus isolates. J. Virol.66, 1016–1020 (1992).
  • LaRussa P, Steinberg SP, Shapiro E, Vazquez M, Gershon AA. Viral strain identification in varicella vaccinees with disseminated rashes. Pediatr. Infect. Dis. J.19, 1037–1039 (2000).
  • Larussa PS, Gershon AA. Biologic and geographic differences between vaccine and clinical varicella zoster virus isolates. Arch. Virol. Suppl.17, 41–48 (2001).
  • Loparev VN, McCaustland K, Holloway BP, Krause PR, Takayama M, Schmid DS. Rapid genotyping of varicella zoster virus vaccine and wild-type strains with fluorophore-labeled hybridization probes. J. Clin. Microbiol.38, 4315–4319 (2000).
  • Loparev VN, Gonzalez A, Deleon-Carnes M et al. Global identification of three major genotypes of varicella zoster virus: longitudinal clustering and strategies for genotyping. J. Virol.78, 8349–8358 (2004).
  • Quinlivan M, Hawrami K, Barrett-Muir W et al. The molecular epidemiology of varicella zoster virus: evidence for geographic segregation. J. Infect. Dis.186, 888–894 (2002).
  • Takayama M, Takayama N. New method for differentiating wild-type varicella zoster virus (VZV) strains from Oka varicella vaccine strain by VZV ORF 6-based PCR and restriction fragment length polymorphism analysis. J. Clin. Virol.29, 113–119 (2004).
  • Quinlivan M, Gershon AA, Steinberg SP, Breuer J. An evaluation of single nucleotide polymorphisms used to differentiate vaccine and wild type strains of varicella zoster virus. J. Med. Virol.75, 174–180 (2005).
  • Lopez AS, Burnett-Hartman A, Nambiar R et al. Transmission of a newly characterized strain of varicella zoster virus from a patient with herpes zoster in a long-term-care facility, West Virginia, 2004. J. Infect. Dis.197, 646–653 (2008).
  • Phumiamorn S, Sato H, Kamiyama T, Kurokawa M, Shiraki K. Induction of humoral and cell-mediated immunity to hepatitis B surface antigen by a novel adjuvant activity of Oka varicella vaccine. J. Gen. Virol.84, 287–291 (2003).
  • Shiraki K, Sato H, Yoshida Y. Construction of Oka varicella vaccine expressing human immunodeficiency virus env antigen. J. Med. Virol.64, 89–95 (2001).
  • Brisson M, Edmunds WJ, Gay NJ. Varicella vaccination: Impact of vaccine efficacy on the epidemiology of VZV. J. Med. Virol.70(Suppl. 1), S31–S37 (2003).
  • Brisson M, Edmunds WJ, Gay NJ, Law B, De Serres G. Modelling the impact of immunization on the epidemiology of varicella zoster virus. Epidemiol. Infect.125, 651–669 (2000).
  • Brisson M, Gay NJ, Edmunds WJ, Andrews NJ. Exposure to varicella boosts immunity to herpes-zoster: implications for mass vaccination against chickenpox. Vaccine20, 2500–2507 (2002).
  • Hope-Simpson RE. The nature of herpes zoster. a long term study and a new hypothesis. Proc. R. Soc. Med.58, 9–20 (1965).
  • Garnett GP, Grenfell BT. The epidemiology of varicella zoster virus infections: the influence of varicella on the prevalence of herpes zoster. Epidemiol. Infect.108, 513–528 (1992).
  • Thomas SL, Wheeler JG, Hall AJ. Contacts with varicella or with children and protection against herpes zoster in adults: a case-control study. Lancet360, 678–682 (2002).
  • Gershon AA, LaRussa P, Steinberg S, Mervish N, Lo SH, Meier P. The protective effect of immunologic boosting against zoster: an analysis in leukemic children who were vaccinated against chickenpox. J. Infect. Dis.173, 450–453 (1996).
  • Leung J, Harpaz R, Molinari NA, Jumaan A, Zhou F. Herpes zoster incidence among insured persons in the United States, 1993–2006: evaluation of impact of varicella vaccination. Clin. Infect. Dis.52, 332–340 (2011).
  • Centers for Disease Control and Prevention. Prevention of herpes zoster. Recommendations of the Advisory Committee on Immunization Practices (ACIP). Morb. Mort. Wkly Rep.57(RR-5), 1–29 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.