866
Views
78
CrossRef citations to date
0
Altmetric
Review

Virus-like particles produced in plants as potential vaccines

&
Pages 211-224 | Published online: 09 Jan 2014

References

  • Hiatt A, Cafferkey R, Bowdish K. Production of antibodies in transgenic plants. Nature 342(6245), 76–78 (1989).
  • Mason HS, Lam DM, Arntzen CJ. Expression of hepatitis B surface antigen in transgenic plants. Proc. Natl Acad. Sci. USA 89(24), 11745–11749 (1992).
  • Rybicki EP. Plant-made vaccines for humans and animals. Plant Biotechnol. J. 8(5), 620–637 (2010).
  • Rybicki ER. Plant-produced vaccines: promise and reality. Drug Discov. Today 14(1–2), 16–24 (2009).
  • Scotti N, Rigano MM, Cardi T. Production of foreign proteins using plastid transformation. Biotechnol. Adv. 30(2), 387–397 (2012).
  • Landry N, Ward BJ, Trépanier S et al. Preclinical and clinical development of plant-made virus-like particle vaccine against avian H5N1 influenza. PLoS ONE 5(12), e15559 (2010).
  • Huang Z, Chen Q, Hjelm B, Arntzen C, Mason H. A DNA replicon system for rapid high-level production of virus-like particles in plants. Biotechnol. Bioeng. 103(4), 706–714 (2009).
  • Shoji Y, Farrance CE, Bautista J et al. A plant-based system for rapid production of influenza vaccine antigens. Influenza Other Respi. Viruses 6(3), 204–210 (2012).
  • Rybicki EP, Martin DP. Virus-derived ssDNA vectors for the expression of foreign proteins in plants. Curr. Top. Microbiol. Immunol. doi:10.1007/82_2011_185 (2011) (Epub ahead of print).
  • Turpen TH, Reinl SJ, Charoenvit Y, Hoffman SL, Fallarme V, Grill LK. Malarial epitopes expressed on the surface of recombinant tobacco mosaic virus. Biotechnology (N.Y.) 13(1), 53–57 (1995).
  • Sainsbury F, Cañizares MC, Lomonossoff GP. Cowpea mosaic virus: the plant virus-based biotechnology workhorse. Annu. Rev. Phytopathol. 48, 437–455 (2010).
  • Marconi G, Albertini E, Barone P et al. In planta production of two peptides of the Classical Swine Fever Virus (CSFV) E2 glycoprotein fused to the coat protein of potato virus X. BMC Biotechnol. 6, 29 (2006).
  • Yang CD, Liao JT, Lai CY et al. Induction of protective immunity in swine by recombinant bamboo mosaic virus expressing foot-and-mouth disease virus epitopes. BMC Biotechnol. 7, 62 (2007).
  • Buonaguro L, Tagliamonte M, Tornesello ML, Buonaguro FM. Developments in virus-like particle-based vaccines for infectious diseases and cancer. Expert Rev. Vaccines 10(11), 1569–1583 (2011).
  • McAleer WJ, Buynak EB, Maigetter RZ, Wampler DE, Miller WJ, Hilleman MR. Human hepatitis B vaccine from recombinant yeast. Nature 307(5947), 178–180 (1984).
  • Huang Z, Elkin G, Maloney BJ et al. Virus-like particle expression and assembly in plants: hepatitis B and Norwalk viruses. Vaccine 23(15), 1851–1858 (2005).
  • Huang Z, Lepore K, Elkin G, Thanavala Y, Mason HS. High-yield rapid production of hepatitis B surface antigen in plant leaf by a viral expression system. Plant Biotechnol. J 5, 202–209 (2008).
  • Kong Q, Richter L, Yang YF, Arntzen CJ, Mason HS, Thanavala Y. Oral immunization with hepatitis B surface antigen expressed in transgenic plants. Proc. Natl Acad. Sci. USA 98(20), 11539–11544 (2001).
  • Kostrzak A, Cervantes Gonzalez M, Guetard D et al. Oral administration of low doses of plant-based HBsAg induced antigen-specific IgAs and IgGs in mice, without increasing levels of regulatory T cells. Vaccine 27(35), 4798–4807 (2009).
  • Kumar GB, Ganapathi TR, Revathi CJ, Srinivas L, Bapat VA. Expression of hepatitis B surface antigen in transgenic banana plants. Planta 222(3), 484–493 (2005).
  • Pniewski T, Kapusta J, Bociag P et al. Plant expression, lyophilisation and storage of HBV medium and large surface antigens for a prototype oral vaccine formulation. Plant Cell Rep. 31(3), 585–595 (2012).
  • Pniewski T, Kapusta J, Bociag P et al. Low-dose oral immunization with lyophilized tissue of herbicide-resistant lettuce expressing hepatitis B surface antigen for prototype plant-derived vaccine tablet formulation. J. Appl. Genet. 52(2), 125–136 (2011).
  • Qian B, Shen H, Liang W et al. Immunogenicity of recombinant hepatitis B virus surface antigen fused with preS1 epitopes expressed in rice seeds. Transgenic Res. 17(4), 621–631 (2008).
  • Richter LJ, Thanavala Y, Arntzen CJ, Mason HS. Production of hepatitis B surface antigen in transgenic plants for oral immunization. Nat. Biotechnol. 18(11), 1167–1171 (2000).
  • Srinivas L, Sunil Kumar G, Ganapathi T, Revathi C, Bapat V. Transient and stable expression of hepatitis B surface antigen in tomato (Lycopersicon esculentum L.). Plant Biotechnol. Rep. 2(1), 1–6 (2008).
  • Thanavala Y, Yang YF, Lyons P, Mason HS, Arntzen C. Immunogenicity of transgenic plant-derived hepatitis B surface antigen. Proc. Natl Acad. Sci. USA 92(8), 3358–3361 (1995).
  • Thanavala Y, Mahoney M, Pal S et al. Immunogenicity in humans of an edible vaccine for hepatitis B. Proc. Natl Acad. Sci. USA 102(9), 3378–3382 (2005).
  • Guan ZJ, Guo B, Huo YL, Guan ZP, Wei YH. Overview of expression of hepatitis B surface antigen in transgenic plants. Vaccine 28(46), 7351–7362 (2010).
  • Yang JY, Hui JY, Li GD, Wang Y, Yuan HY, Li YY. Expression of the recombinant hepatitis B virus surface antigen carrying PreS epitopes in Pichia pastoris. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao 32(2), 139–144 (2000).
  • Huang Z, Santi L, LePore K, Kilbourne J, Arntzen CJ, Mason HS. Rapid, high-level production of hepatitis B core antigen in plant leaf and its immunogenicity in mice. Vaccine 24(14), 2506–2513 (2006).
  • Mechtcheriakova IA, Eldarov MA, Nicholson L, Shanks M, Skryabin KG, Lomonossoff GP. The use of viral vectors to produce hepatitis B virus core particles in plants. J. Virol. Methods 131(1), 10–15 (2006).
  • Lee KW, Tey BT, Ho KL, Tan WS. Delivery of chimeric hepatitis B core particles into liver cells. J. Appl. Microbiol. 112(1), 119–131 (2012).
  • Malik IR, Chen A, Brass A et al. A bi-functional hepatitis B virus core antigen (HBcAg) chimera activates HBcAg-specific T cells and preS1-specific antibodies. Scand. J. Infect. Dis. 44(1), 55–59 (2012).
  • Huang Y, Liang W, Wang Y et al. Immunogenicity of the epitope of the foot-and-mouth disease virus fused with a hepatitis B core protein as expressed in transgenic tobacco. Viral Immunol. 18(4), 668–677 (2005).
  • Ravin NV, Kotlyarov RY, Mardanova ES et al. Plant-produced recombinant influenza vaccine based on virus-like HBc particles carrying an extracellular domain of M2 protein. Biochemistry Mosc. 77(1), 33–40 (2012).
  • Thuenemann EC, Lenzi P, Love AJ et al. The use of transient expression systems for the rapid production of VLPs in plants. Curr. Pharmaceut. Des. (2013) (In Press).
  • Giorgi C, Franconi R, Rybicki EP. Human papillomavirus vaccines in plants. Expert Rev. Vaccines 9(8), 913–924 (2010).
  • Bosch FX, Lorincz A, Muñoz N, Meijer CJ, Shah KV. The causal relation between human papillomavirus and cervical cancer. J. Clin. Pathol. 55(4), 244–265 (2002).
  • Garcia M, Jemal A, Ward EM et al. Global Cancer Facts and Figures 2007. American Cancer Society, Atlanta, GA, USA (2007).
  • Bosch FX, Burchell AN, Schiffman M et al. Epidemiology and natural history of human papillomavirus infections and type-specific implications in cervical neoplasia. Vaccine 26(Suppl. 10), K1–16 (2008).
  • Lu B, Kumar A, Castellsagué X, Giuliano AR. Efficacy and safety of prophylactic vaccines against cervical HPV infection and diseases among women: a systematic review & meta-analysis. BMC Infect. Dis. 11, 13 (2011).
  • Haug CJ. Human papillomavirus vaccination–reasons for caution. N. Engl. J. Med. 359(8), 861–862 (2008).
  • Buonaguro FM, Tornesello ML, Buonaguro L. Virus-like particle vaccines and adjuvants: the HPV paradigm. Expert Rev. Vaccines 8(10), 1379–1398 (2009).
  • Varsani A, Williamson AL, Rose RC, Jaffer M, Rybicki EP. Expression of human papillomavirus type 16 major capsid protein in transgenic Nicotiana tabacum cv. Xanthi. Arch. Virol. 148(9), 1771–1786 (2003).
  • Warzecha H, Mason HS, Lane C et al. Oral immunogenicity of human papillomavirus-like particles expressed in potato. J. Virol. 77(16), 8702–8711 (2003).
  • Biemelt S, Sonnewald U, Galmbacher P, Willmitzer L, Müller M. Production of human papillomavirus type 16 virus-like particles in transgenic plants. J. Virol. 77(17), 9211–9220 (2003).
  • Varsani A, Williamson AL, Stewart D, Rybicki EP. Transient expression of human papillomavirus type 16 L1 protein in Nicotiana benthamiana using an infectious tobamovirus vector. Virus Res. 120(1–2), 91–96 (2006).
  • Kohl T, Hitzeroth II, Stewart D et al. Plant-produced cottontail rabbit papillomavirus L1 protein protects against tumor challenge: a proof-of-concept study. Clin. Vaccine Immunol. 13(8), 845–853 (2006).
  • Kohl TO, Hitzeroth II, Christensen ND, Rybicki EP. Expression of HPV-11 L1 protein in transgenic Arabidopsis thaliana and Nicotiana tabacum. BMC Biotechnol. 7, 56 (2007).
  • Maclean J, Koekemoer M, Olivier AJ et al. Optimization of human papillomavirus type 16 (HPV-16) L1 expression in plants: comparison of the suitability of different HPV-16 L1 gene variants and different cell-compartment localization. J. Gen. Virol. 88(Pt 5), 1460–1469 (2007).
  • Regnard GL, Halley-Stott RP, Tanzer FL, Hitzeroth II, Rybicki EP. High level protein expression in plants through the use of a novel autonomously replicating geminivirus shuttle vector. Plant Biotechnol. J. 8(1), 38–46 (2010).
  • Fernández-San Millán A, Ortigosa SM, Hervás-Stubbs S et al. Human papillomavirus L1 protein expressed in tobacco chloroplasts self-assembles into virus-like particles that are highly immunogenic. Plant Biotechnol. J. 6(5), 427–441 (2008).
  • Waheed MT, Thönes N, Müller M et al. Transplastomic expression of a modified human papillomavirus L1 protein leading to the assembly of capsomeres in tobacco: a step towards cost-effective second-generation vaccines. Transgenic Res. 20(2), 271–282 (2011).
  • Schellenbacher C, Roden R, Kirnbauer R. Chimeric L1-L2 virus-like particles as potential broad-spectrum human papillomavirus vaccines. J. Virol. 83(19), 10085–10095 (2009).
  • Slupetzky K, Shafti-Keramat S, Lenz P et al. Chimeric papillomavirus-like particles expressing a foreign epitope on capsid surface loops. J. Gen. Virol. 82(Pt 11), 2799–2804 (2001).
  • Varsani A, Williamson AL, de Villiers D, Becker I, Christensen ND, Rybicki EP. Chimeric human papillomavirus type 16 (HPV-16) L1 particles presenting the common neutralizing epitope for the L2 minor capsid protein of HPV-6 and HPV-16. J. Virol. 77(15), 8386–8393 (2003).
  • Sainsbury F, Lomonossoff GP. Extremely high-level and rapid transient protein production in plants without the use of viral replication. Plant Physiol. 148(3), 1212–1218 (2008).
  • Pineo C. Expression of chimaeric HPV-16 L1 protein in plants. Master of Science Dissertation, University of Cape Town, Cape Town, South Africa (2012).
  • Matic S, Masenga V, Poli A et al. Comparative analysis of recombinant human papillomavirus 8 L1 production in plants by a variety of expression systems and purification methods. Plant Biotechnol. J. 10(4), 410–421 (2012).
  • Borzacchiello G, Roperto F. Bovine papillomaviruses, papillomas and cancer in cattle. Vet. Res. 39(5), 45 (2008).
  • Balcos LG, Borzacchiello G, Russo V, Popescu O, Roperto S, Roperto F. Association of bovine papillomavirus type-2 and urinary bladder tumours in cattle from Romania. Res. Vet. Sci. 85(1), 145–148 (2008).
  • Love AJ, Chapman SN, Matic S, Noris E, Lomonossoff GP, Taliansky M. In planta production of a candidate vaccine against bovine papillomavirus type 1. Planta 236(4), 1305–1313 (2012).
  • Patel MM, Widdowson MA, Glass RI, Akazawa K, Vinjé J, Parashar UD. Systematic literature review of role of noroviruses in sporadic gastroenteritis. Emerging Infect. Dis. 14(8), 1224–1231 (2008).
  • Herbst-Kralovetz M, Mason HS, Chen Q. Norwalk virus-like particles as vaccines. Expert Rev. Vaccines 9(3), 299–307 (2010).
  • Mason HS, Ball JM, Shi JJ, Jiang X, Estes MK, Arntzen CJ. Expression of Norwalk virus capsid protein in transgenic tobacco and potato and its oral immunogenicity in mice. Proc. Natl Acad. Sci. USA 93(11), 5335–5340 (1996).
  • Tacket CO, Mason HS, Losonsky G, Estes MK, Levine MM, Arntzen CJ. Human immune responses to a novel norwalk virus vaccine delivered in transgenic potatoes. J. Infect. Dis. 182(1), 302–305 (2000).
  • Zhang X, Buehner NA, Hutson AM, Estes MK, Mason HS. Tomato is a highly effective vehicle for expression and oral immunization with Norwalk virus capsid protein. Plant Biotechnol. J. 4(4), 419–432 (2006).
  • Lai H, Chen Q. Bioprocessing of plant-derived virus-like particles of Norwalk virus capsid protein under current good manufacture practice regulations. Plant Cell Rep. 31(3), 573–584 (2012).
  • Santi L, Batchelor L, Huang Z et al. An efficient plant viral expression system generating orally immunogenic Norwalk virus-like particles. Vaccine 26(15), 1846–1854 (2008).
  • Lai H, He J, Engle M, Diamond MS, Chen Q. Robust production of virus-like particles and monoclonal antibodies with geminiviral replicon vectors in lettuce. Plant Biotechnol. J. 10(1), 95–104 (2012).
  • Johnston MI, Fauci AS. An HIV vaccine – evolving concepts. N. Engl. J. Med. 356(20), 2073–2081 (2007).
  • Ross AL, Bråve A, Scarlatti G, Manrique A, Buonaguro L. Progress towards development of an HIV vaccine: report of the AIDS Vaccine 2009 Conference. Lancet Infect. Dis. 10(5), 305–316 (2010).
  • Kim JH, Rerks-Ngarm S, Excler JL, Michael NL. HIV vaccines: lessons learned and the way forward. Curr. Opin. HIV AIDS 5(5), 428–434 (2010).
  • Stephenson KE, Li H, Walker BD, Michael NL, Barouch DH. Gag-specific cellular immunity determines in vitro viral inhibition and in vivo virologic control following SIV challenges of vaccinated rhesus monkeys. J. Virol. 86(18), 9583–9589 (2012).
  • Marusic C, Vitale A, Pedrazzini E et al. Plant-based strategies aimed at expressing HIV antigens and neutralizing antibodies at high levels. Nef as a case study. Transgenic Res. 18(4), 499–512 (2009).
  • Scotti N, Buonaguro L, Tornesello ML, Cardi T, Buonaguro FM. Plant-based anti-HIV-1 strategies: vaccine molecules and antiviral approaches. Expert Rev. Vaccines 9(8), 925–936 (2010).
  • Meyers A, Chakauya E, Shephard E et al . Expression of HIV-1 antigens in plants as potential subunit vaccines. BMC Biotechnol. 8, 53 (2008).
  • Scotti N, Alagna F, Ferraiolo E et al. High-level expression of the HIV-1 Pr55gag polyprotein in transgenic tobacco chloroplasts. Planta 229(5), 1109–1122 (2009).
  • Morikawa Y, Hockley DJ, Nermut MV, Jones IM. Roles of matrix, p2, and N-terminal myristoylation in human immunodeficiency virus type 1 Gag assembly. J. Virol. 74(1), 16–23 (2000).
  • Smith JM, Amara RR, Campbell D et al. DNA/MVA vaccine for HIV type 1: effects of codon-optimization and the expression of aggregates or virus-like particles on the immunogenicity of the DNA prime. AIDS Res. Hum. Retroviruses 20(12), 1335–1347 (2004).
  • Chege GK, Shephard EG, Meyers A et al. HIV-1 subtype CPr55(gag) virus-like particle vaccine efficiently boosts baboons primed with a matched DNA vaccine. J. Gen. Virol. 89, 2214–2227 (2008).
  • Chege GK, Stutz H, Meyers A, Shephard EG, Rybicki EP, Williamson A. Oral immunization using a rBCG pantothenate auxotroph expressing HIV-1 Gag in combination with HIV-1 Gag VLPs induces cellular responses in baboons. AIDS Res. Hum. Retrovir. 26(10), A91–A92 (2010).
  • Chege GK, Thomas R, Shephard EG et al. A prime-boost immunisation regimen using recombinant BCG and Pr55(gag) virus-like particle vaccines based on HIV type 1 subtype C successfully elicits Gag-specific responses in baboons. Vaccine 27(35), 4857–4866 (2009).
  • Mahy BW. Introduction and history of foot-and-mouth disease virus. Curr. Top. Microbiol. Immunol. 288, 1–8 (2005).
  • Doel TR. Natural and vaccine-induced immunity to foot and mouth disease: the prospects for improved vaccines. Rev. Sci. Tech. 15(3), 883–911 (1996).
  • Arnold E, Luo M, Vriend G et al. Implications of the picornavirus capsid structure for polyprotein processing. Proc. Natl Acad. Sci. USA 84(1), 21–25 (1987).
  • Kleid DG, Yansura D, Small B et al. Cloned viral protein vaccine for foot-and-mouth disease: responses in cattle and swine. Science 214(4525), 1125–1129 (1981).
  • Cao Y, Sun P, Fu Y et al. Formation of virus-like particles from O-type foot-and-mouth disease virus in insect cells using codon-optimized synthetic genes. Biotechnol. Lett. 32(9), 1223–1229 (2010).
  • Usha R, Rohll JB, Spall VE et al. Expression of an animal virus antigenic site on the surface of a plant virus particle. Virology 197(1), 366–374 (1993).
  • Carrillo C, Wigdorovitz A, Oliveros JC et al. Protective immune response to foot-and-mouth disease virus with VP1 expressed in transgenic plants. J. Virol. 72(2), 1688–1690 (1998).
  • Wigdorovitz A, Carrillo C, Dus Santos MJ et al. Induction of a protective antibody response to foot and mouth disease virus in mice following oral or parenteral immunization with alfalfa transgenic plants expressing the viral structural protein VP1. Virology 255(2), 347–353 (1999).
  • Wigdorovitz A, Pérez Filgueira DM, Robertson N et al. Protection of mice against challenge with foot and mouth disease virus (FMDV) by immunization with foliar extracts from plants infected with recombinant tobacco mosaic virus expressing the FMDV structural protein VP1. Virology 264(1), 85–91 (1999).
  • Carrillo C, Wigdorovitz A, Trono K et al. Induction of a virus-specific antibody response to foot and mouth disease virus using the structural protein VP1 expressed in transgenic potato plants. Viral Immunol. 14(1), 49–57 (2001).
  • Dus Santos MJ, Carrillo C, Ardila F et al. Development of transgenic alfalfa plants containing the foot and mouth disease virus structural polyprotein gene P1 and its utilization as an experimental immunogen. Vaccine 23(15), 1838–1843 (2005).
  • Pan L, Zhang Y, Wang Y et al. Foliar extracts from transgenic tomato plants expressing the structural polyprotein, P1-2A, and protease, 3C, from foot-and-mouth disease virus elicit a protective response in guinea pigs. Vet. Immunol. Immunopathol. 121(1–2), 83–90 (2008).
  • Wu L, Jiang L, Zhou Z et al. Expression of foot-and-mouth disease virus epitopes in tobacco by a tobacco mosaic virus-based vector. Vaccine 21(27–30), 4390–4398 (2003).
  • Yang CD, Liao JT, Lai CY et al. Induction of protective immunity in swine by recombinant bamboo mosaic virus expressing foot-and-mouth disease virus epitopes. BMC Biotechnol. 7, 62 (2007).
  • Zhang Y, Li J, Pu H et al. Development of tobacco necrosis virus A as a vector for efficient and stable expression of FMDV VP1 peptides. Plant Biotechnol. J. 8(4), 506–523 (2010).
  • Parashar UD, Hummelman EG, Bresee JS, Miller MA, Glass RI. Global illness and deaths caused by rotavirus disease in children. Emerging Infect. Dis. 9(5), 565–572 (2003).
  • Martella V, Bányai K, Matthijnssens J, Buonavoglia C, Ciarlet M. Zoonotic aspects of rotaviruses. Vet. Microbiol. 140(3-4), 246–255 (2010).
  • O’Ryan M. The ever-changing landscape of rotavirus serotypes. Pediatr. Infect. Dis. J. 28(Suppl. 3), S60–S62 (2009).
  • Todd S, Page NA, Duncan Steele A, Peenze I, Cunliffe NA. Rotavirus strain types circulating in Africa: review of studies published during 1997–2006. J. Infect. Dis. 202, S34–S42 (2010).
  • Li Z, Baker ML, Jiang W, Estes MK, Prasad BV. Rotavirus architecture at subnanometer resolution. J. Virol. 83(4), 1754–1766 (2009).
  • Matsui SM, Offit PA, Vo PT et al. Passive protection against rotavirus-induced diarrhea by monoclonal antibodies to the heterotypic neutralization domain of VP7 and the VP8 fragment of VP4. J. Clin. Microbiol. 27(4), 780–782 (1989).
  • González SA, Affranchino JL. Assembly of double-layered virus-like particles in mammalian cells by coexpression of human rotavirus VP2 and VP6. J. Gen. Virol. 76(Pt 9), 2357–2360 (1995).
  • Gilbert JM, Greenberg HB. Virus-like particle-induced fusion from without in tissue culture cells: role of outer-layer proteins VP4 and VP7. J. Virol. 71(6), 4555–4563 (1997).
  • Peixoto C, Sousa MF, Silva AC, Carrondo MJ, Alves PM. Downstream processing of triple layered rotavirus like particles. J. Biotechnol. 127(3), 452–461 (2007).
  • Rodríguez-Limas WA, Tyo KE, Nielsen J, Ramírez OT, Palomares LA. Molecular and process design for rotavirus-like particle production in Saccharomyces cerevisiae. Microb. Cell Fact. 10, 33 (2011).
  • Madore HP, Estes MK, Zarley CD et al. Biochemical and immunologic comparison of virus-like particles for a rotavirus subunit vaccine. Vaccine 17(19), 2461–2471 (1999).
  • Yu J, Langridge WH. A plant-based multicomponent vaccine protects mice from enteric diseases. Nat. Biotechnol. 19(6), 548–552 (2001).
  • Wu YZ, Li JT, Mou ZR et al. Oral immunization with rotavirus VP7 expressed in transgenic potatoes induced high titers of mucosal neutralizing IgA. Virology 313(2), 337–342 (2003).
  • Li JT, Fei L, Mou ZR et al. Immunogenicity of a plant-derived edible rotavirus subunit vaccine transformed over fifty generations. Virology 356(1-2), 171–178 (2006).
  • Pérez Filgueira DM, Mozgovoj M, Wigdorovitz A et al. Passive protection to bovine rotavirus (BRV) infection induced by a BRV VP8* produced in plants using a TMV-based vector. Arch. Virol. 149(12), 2337–2348 (2004).
  • Choi NW, Estes MK, Langridge WH. Synthesis and assembly of a cholera toxin B subunit-rotavirus VP7 fusion protein in transgenic potato. Mol. Biotechnol. 31(3), 193–202 (2005).
  • Dong JL, Liang BG, Jin YS, Zhang WJ, Wang T. Oral immunization with pBsVP6-transgenic alfalfa protects mice against rotavirus infection. Virology 339(2), 153–163 (2005).
  • Bergeron-Sandoval LP, Girard A, Ouellet F, Archambault D, Sarhan F. Production of human rotavirus and Salmonella antigens in plants and elicitation of fljB-specific humoral responses in mice. Mol. Biotechnol. 47(2), 157–168 (2011).
  • Lentz EM, Mozgovoj MV, Bellido D, Dus Santos MJ, Wigdorovitz A, Bravo-Almonacid FF. VP8* antigen produced in tobacco transplastomic plants confers protection against bovine rotavirus infection in a suckling mouse model. J. Biotechnol. 156(2), 100–107 (2011).
  • Saldaña S, Esquivel Guadarrama F, Olivera Flores Tde J et al. Production of rotavirus-like particles in tomato (Lycopersicon esculentum L.) fruit by expression of capsid proteins VP2 and VP6 and immunological studies. Viral Immunol. 19(1), 42–53 (2006).
  • Yang Y, Li X, Yang H et al. Immunogenicity and virus-like particle formation of rotavirus capsid proteins produced in transgenic plants. Sci. China. Life Sci. 54(1), 82–89 (2011).
  • Mutepfa DL. Expression of rotavirus capsid proteins in N. benthamiana leaves using an Agrobacterium-mediated transient expression system. Master of Science Dissertation, University of Cape Town, Cape Town, South Africa (2011).
  • Rybicki EP, Hitzeroth II, Meyers A, Dus Santos M, Wigdorovitz A. Developing country applications of molecular farming: case studies in South Africa and Argentina. Curr. Pharmaceut. Des. (2013) (In Press).
  • Maan NS, Maan S, Belaganahalli MN et al. Identification and differentiation of the twenty six bluetongue virus serotypes by RT-PCR amplification of the serotype-specific genome segment 2. PLoS ONE 7(2), e32601 (2012).
  • Perez De Diego AC, Athmaram TN, Stewart M et al. Characterization of protection afforded by a bivalent virus-like particle vaccine against bluetongue virus serotypes 1 and 4 in sheep. PLoS One 6(10), e26666 (2011).
  • Purse BV, Brown HE, Harrup L, Mertens PP, Rogers DJ. Invasion of bluetongue and other orbivirus infections into Europe: the role of biological and climatic processes. Rev. Sci. Tech. 27(2), 427–442 (2008).
  • Savini G, MacLachlan NJ, Sanchez-Vizcaino JM, Zientara S. Vaccines against bluetongue in Europe. Comp. Immunol. Microbiol. Infect. Dis. 31(2-3), 101–120 (2008).
  • Roy P, Noad R. Bluetongue virus assembly and morphogenesis. Curr. Top. Microbiol. Immunol. 309, 87–116 (2006).
  • Roy P, Bishop DH, LeBlois H, Erasmus BJ. Long-lasting protection of sheep against bluetongue challenge after vaccination with virus-like particles: evidence for homologous and partial heterologous protection. Vaccine 12(9), 805–811 (1994).
  • Stewart M, Bhatia Y, Athmaran TN et al. Validation of a novel approach for the rapid production of immunogenic virus-like particles for bluetongue virus. Vaccine 28(17), 3047–3054 (2010).
  • Puntoriero G, Meola A, Lahm A et al. Towards a solution for hepatitis C virus hypervariability: mimotopes of the hypervariable region 1 can induce antibodies cross-reacting with a large number of viral variants. EMBO J. 17(13), 3521–3533 (1998).
  • Natilla A, Piazzolla G, Nuzzaci M et al. Cucumber mosaic virus as carrier of a hepatitis C virus-derived epitope. Arch. Virol. 149(1), 137–154 (2004).
  • Nemchinov LG, Liang TJ, Rifaat MM, Mazyad HM, Hadidi A, Keith JM. Development of a plant-derived subunit vaccine candidate against hepatitis C virus. Arch. Virol. 145(12), 2557–2573 (2000).
  • Nuzzaci M, Piazzolla G, Vitti A et al. Cucumber mosaic virus as a presentation system for a double hepatitis C virus-derived epitope. Arch. Virol. 152(5), 915–928 (2007).
  • Piazzolla G, Nuzzaci M, Tortorella C et al. Immunogenic properties of a chimeric plant virus expressing a hepatitis C virus (HCV)-derived epitope: new prospects for an HCV vaccine. J. Clin. Immunol. 25(2), 142–152 (2005).
  • Uhde-Holzem K, Fischer R, Commandeur U. Characterization and diagnostic potential of foreign epitope-presenting Ty1 virus-like particles expressed in Escherichia coli and Pichia pastoris. J. Mol. Microbiol. Biotechnol. 18(1), 52–62 (2010).

Patent

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.