584
Views
20
CrossRef citations to date
0
Altmetric
Review

CD40-activated B cells as antigen-presenting cells: the final sprint toward clinical application

, , &
Pages 631-637 | Published online: 09 Jan 2014

References

  • Steinman RM. The dendritic cell system and its role in immunogenicity. Annu. Rev. Immunol. 9, 271–296 (1991).
  • Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature 392(6673), 245–252 (1998).
  • Linch DC, Devereux S. Monocyte-derived dendritic cells do not proliferate and are not susceptible to retroviral transduction. Br. J. Haematol. 108(4), 817–824 (2000).
  • Draube A, Klein-González N, Mattheus S et al. Dendritic cell based tumor vaccination in prostate and renal cell cancer: a systematic review and meta-analysis. PLoS ONE 6(4), e18801 (2011).
  • Martín-Fontecha A, Sebastiani S, Höpken UE et al. Regulation of dendritic cell migration to the draining lymph node: impact on T lymphocyte traffic and priming. J. Exp. Med. 198(4), 615–621 (2003).
  • Finkelman FD, Lees A, Birnbaum R, Gause WC, Morris SC. Dendritic cells can present antigen in vivo in a tolerogenic or immunogenic fashion. J. Immunol. 157(4), 1406–1414 (1996).
  • Hackstein H, Morelli AE, Thomson AW. Designer dendritic cells for tolerance induction: guided not misguided missiles. Trends Immunol. 22(8), 437–442 (2001).
  • Shortman K, Liu YJ. Mouse and human dendritic cell subtypes. Nat. Rev. Immunol. 2(3), 151–161 (2002).
  • Barrat-Boyes SM, Zimmer MI, Harshyne LA et al. Maturation and trafficking of monocyte-dervied dendritic cells in mokeys: implications for dendritic cell-based vaccines. J. Immunol. 164(5), 2487–2495 (2000).
  • Breukels MA, Rijkers GT, Voorhorst-Ogink MM, Zegers BJ. Regulatory T cells in the antibody response to Haemophilus influenzae type b polysaccharide. Infect. Immun. 67(2), 789–793 (1999).
  • Pletz MW, Maus U, Krug N, Welte T, Lode H. Pneumococcal vaccines: mechanism of action, impact on epidemiology and adaption of the species. Int. J. Antimicrob. Agents 32(3), 199–206 (2008).
  • Siber GR. Pneumococcal disease: prospects for a new generation of vaccines. Science 265(5177), 1385–1387 (1994).
  • Kelly DF, Moxon ER, Pollard AJ. Haemophilus influenzae type B conjugate vaccines. Immunology 113(2), 163–174 (2004).
  • Lenschow DJ, Sperling AI, Cooke MP et al. Differential up-regulation of the B7-1 and B7-2 costimulatory molecules after Ig receptor engagement by antigen. J. Immunol. 153(5), 1990–1997 (1994).
  • Ranheim EA, Kipps TJ. Activated T cells induce expression of B7/BB1 on normal or leukemic B cells through a CD40-dependent signal. J. Exp. Med. 177(4), 925–935 (1993).
  • Evans DE, Munks MW, Purkerson JM, Parker DC. Resting B lymphocytes as APC for naive T lymphocytes: dependence on CD40 ligand/CD40. J. Immunol. 164(2), 688–697 (2000).
  • Kennedy MK, Mohler KM, Shanebeck KD et al. Induction of B cell costimulatory function by recombinant murine CD40 ligand. Eur. J. Immunol. 24(1), 116–123 (1994).
  • Faassen AE, Dalke DP, Berton MT, Warren WD, Pierce SK. CD40–CD40 ligand interactions stimulate B cell antigen processing. Eur. J. Immunol. 25(12), 3249–3255 (1995).
  • Cheever MA. Twelve immunotherapy drugs that could cure cancers. Immunol. Rev. 222, 357–368 (2008).
  • Banchereau J, de Paoli P, Vallé A, Garcia E, Rousset F. Long-term human B cell lines dependent on interleukin-4 and antibody to CD40. Science 251(4989), 70–72 (1991).
  • Banchereau J, Rousset F. Growing human B lymphocytes in the CD40 system. Nature 353(6345), 678–679 (1991).
  • Neron S, Nadeau PJ, Darveau A, Leblanc JF. Tuning of CD40–CD154 interactions in human B lymphocyte activation: a broad array of in vitro models for a complex in vivo situation. Arch. Immunol. Ther. Exp. (Warzs.) 59(1), 25–40 (2011).
  • Yoon SH, Cho HI, Kim TG. Activation of B cells using Schneider 2 cells expressing CD40 ligand for the enhancement of antigen presentation in vitro. Exp. Mol. Med. 37(6), 567–574 (2005).
  • Schultze JL, Cardoso AA, Freeman GJ et al. Follicular lymphomas can be induced to present alloantigen efficiently: a conceptual model to improve their tumor immunogenicity. Proc. Natl Acad. Sci. USA 92(18), 8200–8204 (1995).
  • Fournel S, Wieckowski S, Sun W et al. C3-symmetric peptide scaffolds are functional mimetics of trimeric CD40L. Nat. Chem. Biol. 1(7), 377–382 (2005).
  • Ivanov R, Aarts T, Hagenbeek A, Hol S, Ebeling S. B-cell expansion in the presence of the novel 293-CD40L-sCD40L cell line allows the generation of large numbers of efficient xenoantigen-free APC. Cytotherapy 7(1), 62–73 (2005).
  • Kilinc MO, Mukundan L, Yolcu ES, Singh NP, Suttles J, Shirwan H. Generation of a multimeric form of CD40L with potent immunostimulatory activity using streptavidin as a chaperon. Exp. Mol. Pathol. 80(3), 252–261 (2006).
  • Schultze JL, Michalak S, Seamon MJ et al. CD40-activated human B cells: an alternative source of highly efficient antigen presenting cells to generate autologous antigen-specific T cells for adoptive immunotherapy. J. Clin. Invest. 100(11), 2757–2765 (1997).
  • Liebig TM, Fiedler A, Klein-Gonzalez N, Shimabukuro-Vornhagen A, von Bergwelt-Baildon M. Murine model of CD40-activation of B cells. J. Vis. Exp. 37, pii: 1734 (2010).
  • Liebig TM, Fiedler A, Zoghi S, Shimabukuro-Vornhagen A, von Bergwelt-Baildon MS. Generation of human CD40-activated B cells. J. Vis. Exp. 32, pii: 1373 (2009).
  • Mayr C, Speicher MR, Kofler DM et al. Chromosomal translocations are associated with poor prognosis in chronic lymphocytic leukemia. Blood 107(2), 742–751 (2006).
  • von Bergwelt-Baildon MS, Vonderheide RH, Maecker B et al. Human primary and memory cytotoxic T lymphocyte responses are efficiently induced by means of CD40-activated B cells as antigen-presenting cells: potential for clinical application. Blood 99(9), 3319–3325 (2002).
  • Wiesner M, Zentz C, Mayr C et al. Conditional immortalization of human B cells by CD40 ligation. PLoS ONE 3(1), e1464 (2008).
  • Tretter T, Venigalla RK, Eckstein V et al. Induction of CD4+ T-cell anergy and apoptosis by activated human B cells. Blood 112(12), 4555–4564 (2008).
  • Tu W, Lau YL, Zheng J et al. Efficient generation of human alloantigen-specific CD4+ regulatory T cells from naive precursors by CD40-activated B cells. Blood 112(6), 2554–2562 (2008).
  • Shimabukuro-Vornhagen A, Kondo E, Liebig T, von Bergwelt-Baildon M. Activated human B cells: stimulatory or tolerogenic antigen-presenting cells? Blood 114(3), 746–747; author reply 747 (2009).
  • Kondo E, Topp MS, Kiem HP et al. Efficient generation of antigen-specific cytotoxic T cells using retrovirally transduced CD40-activated B cells. J. Immunol. 169(4), 2164–2171 (2002).
  • Lapointe R, Bellemare-Pelletier A, Housseau F, Thibodeau J, Hwu P. CD40-stimulated B lymphocytes pulsed with tumor antigens are effective antigen-presenting cells that can generate specific T cells. Cancer Res. 63(11), 2836–2843 (2003).
  • Coughlin CM, Vance BA, Grupp SA, Vonderheide RH. RNA-transfected CD40-activated B cells induce functional T-cell responses against viral and tumor antigen targets: implications for pediatric immunotherapy. Blood 103(6), 2046–2054 (2004).
  • Ahmadi T, Flies A, Efebera Y, Sherr DH. CD40 Ligand-activated, antigen-specific B cells are comparable to mature dendritic cells in presenting protein antigens and major histocompatibility complex class I- and class II-binding peptides. Immunology 124(1), 129–140 (2008).
  • Wu C, Liu Y, Zhao Q et al. Soluble CD40 ligand-activated human peripheral B cells as surrogated antigen presenting cells: a preliminary approach for anti-HBV immunotherapy. Virol. J. 7(1), 370 (2010).
  • Shen S, Xu Z, Qian X, Ding Y, Yu L, Liu B. Autogeneic RNA-electroporated CD40-ligand activated B-cells from hepatocellular carcinoma patients induce CD8+ T-cell responses ex vivo. Exp. Oncol. 29(2), 137–143 (2007).
  • von Bergwelt-Baildon M, Schultze JL, Maecker B et al. CD40 stimulated B lymphocytes pulsed with tumor antigens are effective antigen-presenting cells that can generate specific T cells. Cancer Res. 63(11), 2836–2543 (2003).
  • Theurich S, Malcher J, Becker HJ et al. Activated primary human B cells efficiently induce early CD40L and CD107a expression in CD4+ T cells. Blood 118(22), 5979–5980 (2011).
  • Liljedahl M, Winqvist O, Surh CD et al. Altered antigen presentation in mice lacking H2-O. Immunity 8(2), 233–243 (1998).
  • von Andrian UH, Mempel TR. Homing and cellular traffic in lymph nodes. Nat. Rev. Immunol. 3(11), 867–878 (2003).
  • von Bergwelt-Baildon M, Shimabukuro-Vornhagen A, Popov A et al. CD40-activated B cells express full lymph node homing triad and induce T-cell chemotaxis: potential as cellular adjuvants. Blood 107(7), 2786–2789 (2006).
  • Guo S, Xu J, Denning W, Hel Z. Induction of protective cytotoxic T-cell responses by a B-cell-based cellular vaccine requires stable expression of antigen. Gene Ther. 16(11), 1300–1313 (2009).
  • Klein-Gonzalez N, Balkow S, Kondo E et al. CD40-activated B-cells migrate towards secondary lymphoid organs and interact dynamically with T-cells. Presented at: 36th Annual Meeting of the European Group for Blood and Marrow Transplantation, Vienna, Austria, 21–24 March 2010.
  • Gunzer M, Weishaupt C, Hillmer A et al. A spectrum of biophysical interaction modes between T cells and different antigen-presenting cells during priming in 3-D collagen and in vivo. Blood 104(9), 2801–2809 (2004).
  • Ritchie DS, Yang J, Hermans IF, Ronchese F. B-Lymphocytes activated by CD40 ligand induce an antigen-specific anti-tumour immune response by direct and indirect activation of CD8(+) T-cells. Scand. J. Immunol. 60(6), 543–551 (2004).
  • Liebig T, Shimabukuro-Vornhagen A, Samir-Ghali, von Bergwelt-Baildon M. In vivo evaluation of a CD40-activated B cell-based tumor vaccine for use in cellular immunotherapy. Presented at: CIMT 9th Annual Meeting, Mainz, Germany, 25–27 May 2011.
  • Sabat R, Grütz G, Warszawska K et al. Biology of interleukin-10. Cytokine Growth Factor Rev. 21(5), 331–344 (2010).
  • Steinbrink K, Jonuleit H, Müller G, Schuler G, Knop J, Enk AH. Interleukin-10-treated human dendritic cells induce a melanoma-antigen-specific anergy in CD8(+) T cells resulting in a failure to lyse tumor cells. Blood 93(5), 1634–1642 (1999).
  • Yang L. TGFbeta, a potent regulator of tumor microenvironment and host immune response, implication for therapy. Curr. Mol. Med. 10(4), 374–380 (2010).
  • Geissmann F, Revy P, Regnault A et al. TGF-beta 1 prevents the noncognate maturation of human dendritic Langerhans cells. J. Immunol. 162(8), 4567–4575 (1999).
  • Johnson BF, Clay TM, Hobeika AC, Lyerly HK, Morse MA. Vascular endothelial growth factor and immunosuppression in cancer: current knowledge and potential for new therapy. Expert Opin. Biol. Ther. 7(4), 449–460 (2007).
  • Gabrilovich DI, Chen HL, Girgis KR et al. Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat. Med. 2(10), 1096–1103 (1996).
  • Gabrilovich D. Mechanisms and functional significance of tumour-induced dendritic-cell defects. Nat. Rev. Immunol. 4(12), 941–952 (2004).
  • Shimabukuro-Vornhagen A, Draube A, Liebig TM, Rothe A, Kochanek M, von Bergwelt-Baildon MS. The immunosuppressive factors IL-10, TGF-ß, and VEGF do not affect the antigen-presenting function of CD40-activated B cells. J. Exp. Clin. Cancer Res. 31, 47 (2012).
  • Sorenmo KU, Krick E, Coughlin CM et al. CD40-activated B cell cancer vaccine improves second clinical remission and survival in privately owned dogs with non-Hodgkin’s lymphoma. PLoS ONE 6(8), e24167 (2011).
  • Kondo E, Maecker B, Weihrauch MR et al. Cyclin D1-specific cytotoxic T lymphocytes are present in the repertoire of cancer patients: implications for cancer immunotherapy. Clin. Cancer Res. 14(20), 6574–6579 (2008).
  • Li Q, Lao X, Pan Q et al. Adoptive transfer of tumor reactive B cells confers host T-cell immunity and tumor regression. Clin. Cancer Res. 17(15), 4987–4995 (2011).
  • Kugler A, Seseke F, Thelen P et al. Autologous and allogenic hybrid cell vaccine in patients with metastatic renal cell carcinoma. Br. J. Urol. 82(4), 487–493 (1998).
  • Naito M, Hainz U, Burkhardt UE et al. CD40L-Tri, a novel formulation of recombinant human CD40L that effectively activates B cells. Cancer Immunol. Immunother. 62(2), 347–357 (2013).
  • Kondo E, Gryschok L, Schultze JL, von Bergwelt-Baildon MS. Using CD40-activated B cells to efficiently identify epitopes of tumor antigens. J. Immunother. 32(2), 157–160 (2009).
  • Fujiwara H, Melenhorst JJ, El Ouriaghli F et al. In vitro induction of myeloid leukemia-specific CD4 and CD8 T cells by CD40 ligand-activated B cells gene modified to express primary granule proteins. Clin. Cancer Res. 11(12), 4495–4503 (2005).
  • Maecker B, von Bergwelt-Baildon MS, Sherr DH, Nadler LM, Schultze JL. Identification of a new HLA-A*0201-restricted cryptic epitope from CYP1B1. Int. J. Cancer 115(2), 333–336 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.