335
Views
49
CrossRef citations to date
0
Altmetric
Review

An update on vaccine therapy and other immunotherapeutic approaches for glioblastoma

, , , , , , , , , & show all
Pages 597-615 | Published online: 09 Jan 2014

References

  • CBTRUS. 2010 Statistical Report: Primary Brain and Central Nervous System Tumors Diagnosed in the United States in 2004–2006. Central Brain Tumor Registry of the United States, IL, USA (2006).
  • Stupp R, Hegi ME, Mason WP et al.; European Organisation for Research and Treatment of Cancer Brain Tumour and Radiation Oncology Groups; National Cancer Institute of Canada Clinical Trials Group. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised Phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 10(5), 459–466 (2009).
  • Stupp R, Mason WP, van den Bent MJ et al.; European Organisation for Research and Treatment of Cancer Brain Tumor and Radiotherapy Groups; National Cancer Institute of Canada Clinical Trials Group. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 352(10), 987–996 (2005).
  • Ballman KV, Buckner JC, Brown PD et al. The relationship between six-month progression-free survival and 12-month overall survival end points for Phase II trials in patients with glioblastoma multiforme. Neuro-oncology 9(1), 29–38 (2007).
  • Lamborn KR, Yung WK, Chang SM et al.; North American Brain Tumor Consortium. Progression-free survival: an important end point in evaluating therapy for recurrent high-grade gliomas. Neuro-oncology 10(2), 162–170 (2008).
  • Wong ET, Hess KR, Gleason MJ et al. Outcomes and prognostic factors in recurrent glioma patients enrolled onto Phase II clinical trials. J. Clin. Oncol. 17(8), 2572–2578 (1999).
  • Wen PY, Kesari S. Malignant gliomas in adults. N. Engl. J. Med. 359(5), 492–507 (2008).
  • Reardon DA, Rich JN, Friedman HS, Bigner DD. Recent advances in the treatment of malignant astrocytoma. J. Clin. Oncol. 24(8), 1253–1265 (2006).
  • Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455(7216), 1061–1068 (2008).
  • Parsons DW, Jones S, Zhang X et al. An integrated genomic analysis of human glioblastoma multiforme. Science 321(5897), 1807–1812 (2008).
  • Noushmehr H, Weisenberger DJ, Diefes K et al.; Cancer Genome Atlas Research Network. Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell 17(5), 510–522 (2010).
  • Verhaak RG, Hoadley KA, Purdom E et al.; Cancer Genome Atlas Research Network. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17(1), 98–110 (2010).
  • Phillips HS, Kharbanda S, Chen R et al. Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 9(3), 157–173 (2006).
  • Bai RY, Staedtke V, Riggins GJ. Molecular targeting of glioblastoma: Drug discovery and therapies. Trends Mol. Med. 17(6), 301–312 (2011).
  • Reardon DA, Perry JR, Brandes AA, Jalali R, Wick W. Advances in malignant glioma drug discovery. Expert Opin. Drug Discov. 6(7), 739–753 (2011).
  • Patel M, Vogelbaum MA, Barnett GH, Jalali R, Ahluwalia MS. Molecular targeted therapy in recurrent glioblastoma: current challenges and future directions. Expert Opin. Investig. Drugs 21(9), 1247–1266 (2012).
  • Polivka J Jr, Polivka J, Rohan V, Topolcan O, Ferda J. New molecularly targeted therapies for glioblastoma multiforme. Anticancer Res. 32(7), 2935–2946 (2012).
  • Reardon DA, Wen PY. Therapeutic advances in the treatment of glioblastoma: rationale and potential role of targeted agents. Oncologist 11(2), 152–164 (2006).
  • Sathornsumetee S, Reardon DA. Targeting multiple kinases in glioblastoma multiforme. Expert Opin. Investig. Drugs 18(3), 277–292 (2009).
  • Sathornsumetee S, Reardon DA, Desjardins A, Quinn JA, Vredenburgh JJ, Rich JN. Molecularly targeted therapy for malignant glioma. Cancer 110(1), 13–24 (2007).
  • Friedman HS, Prados MD, Wen PY et al. Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma. J. Clin. Oncol. 27(28), 4733–4740 (2009).
  • Kreisl TN, Kim L, Moore K et al. Phase II trial of single-agent bevacizumab followed by bevacizumab plus irinotecan at tumor progression in recurrent glioblastoma. J. Clin. Oncol. 27(5), 740–745 (2009).
  • Reardon DA, Turner S, Peters KB et al. A review of VEGF/VEGFR-targeted therapeutics for recurrent glioblastoma. J. Natl Compr. Canc. Netw. 9(4), 414–427 (2011).
  • Kantoff PW, Higano CS, Shore ND et al.; IMPACT Study Investigators. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N. Engl. J. Med. 363(5), 411–422 (2010).
  • Hodi FS, O’Day SJ, McDermott DF et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363(8), 711–723 (2010).
  • Fridman WH, Galon J, Pagès F, Tartour E, Sautès-Fridman C, Kroemer G. Prognostic and predictive impact of intra- and peritumoral immune infiltrates. Cancer Res. 71(17), 5601–5605 (2011).
  • Galon J, Costes A, Sanchez-Cabo F et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313(5795), 1960–1964 (2006).
  • Barker CF, Billingham RE. Immunologically privileged sites. Adv. Immunol. 25, 1–54 (1977).
  • Medawar PB. Immunity to homologous grafted skin; the fate of skin homografts transplanted to the brain, to subcutaneous tissue, and to the anterior chamber of the eye. Br. J. Exp. Pathol. 29(1), 58–69 (1948).
  • Carson MJ, Doose JM, Melchior B, Schmid CD, Ploix CC. CNS immune privilege: hiding in plain sight. Immunol. Rev. 213, 48–65 (2006).
  • Harling-Berg CJ, Park TJ, Knopf PM. Role of the cervical lymphatics in the Th2-type hierarchy of CNS immune regulation. J. Neuroimmunol. 101(2), 111–127 (1999).
  • Goldmann J, Kwidzinski E, Brandt C, Mahlo J, Richter D, Bechmann I. T cells traffic from brain to cervical lymph nodes via the cribroid plate and the nasal mucosa. J. Leukoc. Biol. 80(4), 797–801 (2006).
  • Tsugawa T, Kuwashima N, Sato H et al. Sequential delivery of interferon-α gene and DCs to intracranial gliomas promotes an effective antitumor response. Gene Ther. 11(21), 1551–1558 (2004).
  • Pestalozzi BC, Brignoli S. Trastuzumab in CSF. J. Clin. Oncol. 18(11), 2349–2351 (2000).
  • Hickey WF, Hsu BL, Kimura H. T-lymphocyte entry into the central nervous system. J. Neurosci. Res. 28(2), 254–260 (1991).
  • Irani DN, Lin KI, Griffin DE. Regulation of brain-derived T cells during acute central nervous system inflammation. J. Immunol. 158(5), 2318–2326 (1997).
  • Ransohoff RM, Kivisäkk P, Kidd G. Three or more routes for leukocyte migration into the central nervous system. Nat. Rev. Immunol. 3(7), 569–581 (2003).
  • Prins RM, Shu CJ, Radu CG et al. Anti-tumor activity and trafficking of self, tumor-specific T cells against tumors located in the brain. Cancer Immunol. Immunother. 57(9), 1279–1289 (2008).
  • Herrlinger U, Kramm CM, Johnston KM et al. Vaccination for experimental gliomas using GM-CSF-transduced glioma cells. Cancer Gene Ther. 4(6), 345–352 (1997).
  • Sampson JH, Archer GE, Ashley DM et al. Subcutaneous vaccination with irradiated, cytokine-producing tumor cells stimulates CD8+ cell-mediated immunity against tumors located in the ‘immunologically privileged’ central nervous system. Proc. Natl Acad. Sci. USA 93(19), 10399–10404 (1996).
  • Masson F, Calzascia T, Di Berardino-Besson W, de Tribolet N, Dietrich PY, Walker PR. Brain microenvironment promotes the final functional maturation of tumor-specific effector CD8+ T cells. J. Immunol. 179(2), 845–853 (2007).
  • Kulprathipanja NV, Kruse CA. Microglia phagocytose alloreactive CTL-damaged 9L gliosarcoma cells. J. Neuroimmunol. 153(1–2), 76–82 (2004).
  • Carson MJ, Sutcliffe JG, Campbell IL. Microglia stimulate naive T-cell differentiation without stimulating T-cell proliferation. J. Neurosci. Res. 55(1), 127–134 (1999).
  • De Simone R, Giampaolo A, Giometto B et al. The costimulatory molecule B7 is expressed on human microglia in culture and in multiple sclerosis acute lesions. J. Neuropathol. Exp. Neurol. 54(2), 175–187 (1995).
  • Aloisi F, Ria F, Penna G, Adorini L. Microglia are more efficient than astrocytes in antigen processing and in Th1 but not Th2 cell activation. J. Immunol. 160(10), 4671–4680 (1998).
  • Hickey WF, Kimura H. Perivascular microglial cells of the CNS are bone marrow-derived and present antigen in vivo. Science 239(4837), 290–292 (1988).
  • Lowe J, MacLennan KA, Powe DG, Pound JD, Palmer JB. Microglial cells in human brain have phenotypic characteristics related to possible function as dendritic antigen presenting cells. J. Pathol. 159(2), 143–149 (1989).
  • Ulvestad E, Williams K, Bjerkvig R, Tiekotter K, Antel J, Matre R. Human microglial cells have phenotypic and functional characteristics in common with both macrophages and dendritic antigen-presenting cells. J. Leukoc. Biol. 56(6), 732–740 (1994).
  • Gehrmann J, Banati RB, Kreutzberg GW. Microglia in the immune surveillance of the brain: human microglia constitutively express HLA-DR molecules. J. Neuroimmunol. 48(2), 189–198 (1993).
  • Williams K Jr, Ulvestad E, Cragg L, Blain M, Antel JP. Induction of primary T cell responses by human glial cells. J. Neurosci. Res. 36(4), 382–390 (1993).
  • Jarboe JS, Johnson KR, Choi Y, Lonser RR, Park JK. Expression of interleukin-13 receptor α2 in glioblastoma multiforme: implications for targeted therapies. Cancer Res. 67(17), 7983–7986 (2007).
  • Bigner SH, Humphrey PA, Wong AJ et al. Characterization of the epidermal growth factor receptor in human glioma cell lines and xenografts. Cancer Res. 50(24), 8017–8022 (1990).
  • Libermann TA, Nusbaum HR, Razon N et al. Amplification, enhanced expression and possible rearrangement of EGF receptor gene in primary human brain tumours of glial origin. Nature 313(5998), 144–147 (1985).
  • Tchirkov A, Rolhion C, Kémény JL et al. Clinical implications of quantitative real-time RT-PCR analysis of hTERT gene expression in human gliomas. Br. J. Cancer 88(4), 516–520 (2003).
  • Renkvist N, Castelli C, Robbins PF, Parmiani G. A listing of human tumor antigens recognized by T cells. Cancer Immunol. Immunother. 50(1), 3–15 (2001).
  • Imaizumi T, Kuramoto T, Matsunaga K et al. Expression of the tumor-rejection antigen SART1 in brain tumors. Int. J. Cancer 83(6), 760–764 (1999).
  • Scarcella DL, Chow CW, Gonzales MF, Economou C, Brasseur F, Ashley DM. Expression of MAGE and GAGE in high-grade brain tumors: a potential target for specific immunotherapy and diagnostic markers. Clin. Cancer Res. 5(2), 335–341 (1999).
  • Okano F, Storkus WJ, Chambers WH, Pollack IF, Okada H. Identification of a novel HLA-A*0201-restricted, cytotoxic T lymphocyte epitope in a human glioma-associated antigen, interleukin 13 receptor α2 chain. Clin. Cancer Res. 8(9), 2851–2855 (2002).
  • Liu G, Ying H, Zeng G, Wheeler CJ, Black KL, Yu JS. HER-2, gp100, and MAGE-1 are expressed in human glioblastoma and recognized by cytotoxic T cells. Cancer Res. 64(14), 4980–4986 (2004).
  • Yu JS, Liu G, Ying H, Yong WH, Black KL, Wheeler CJ. Vaccination with tumor lysate-pulsed dendritic cells elicits antigen-specific, cytotoxic T-cells in patients with malignant glioma. Cancer Res. 64(14), 4973–4979 (2004).
  • Yu JS, Wheeler CJ, Zeltzer PM et al. Vaccination of malignant glioma patients with peptide-pulsed dendritic cells elicits systemic cytotoxicity and intracranial T-cell infiltration. Cancer Res. 61(3), 842–847 (2001).
  • Chakravarti A, Noll E, Black PM et al. Quantitatively determined survivin expression levels are of prognostic value in human gliomas. J. Clin. Oncol. 20(4), 1063–1068 (2002).
  • Witham TF, Erff ML, Okada H, Chambers WH, Pollack IF. 7-Hydroxystaurosporine-induced apoptosis in 9L glioma cells provides an effective antigen source for dendritic cells and yields a potent vaccine strategy in an intracranial glioma model. Neurosurgery 50(6), 1327–1334; discussion 1334 (2002).
  • Aoki H, Mizuno M, Natsume A et al. Dendritic cells pulsed with tumor extract-cationic liposome complex increase the induction of cytotoxic T lymphocytes in mouse brain tumor. Cancer Immunol. Immunother. 50(9), 463–468 (2001).
  • Heimberger AB, Crotty LE, Archer GE et al. Bone marrow-derived dendritic cells pulsed with tumor homogenate induce immunity against syngeneic intracerebral glioma. J. Neuroimmunol. 103(1), 16–25 (2000).
  • Ashley DM, Faiola B, Nair S, Hale LP, Bigner DD, Gilboa E. Bone marrow-generated dendritic cells pulsed with tumor extracts or tumor RNA induce antitumor immunity against central nervous system tumors. J. Exp. Med. 186(7), 1177–1182 (1997).
  • Siesjö P, Visse E, Sjögren HO. Cure of established, intracerebral rat gliomas induced by therapeutic immunizations with tumor cells and purified APC or adjuvant IFN-γ treatment. J. Immunother. Emphasis Tumor Immunol. 19(5), 334–345 (1996).
  • Liau LM, Black KL, Prins RM et al. Treatment of intracranial gliomas with bone marrow-derived dendritic cells pulsed with tumor antigens. J. Neurosurg. 90(6), 1115–1124 (1999).
  • Liau LM, Black KL, Martin NA et al. Treatment of a patient by vaccination with autologous dendritic cells pulsed with allogeneic major histocompatibility complex class I-matched tumor peptides. Case Report. Neurosurg. Focus 9(6), e8 (2000).
  • Yamanaka R, Abe T, Yajima N et al. Vaccination of recurrent glioma patients with tumour lysate-pulsed dendritic cells elicits immune responses: results of a clinical Phase I/II trial. Br. J. Cancer 89(7), 1172–1179 (2003).
  • De Vleeschouwer S, Van Calenbergh F, Demaerel P et al. Transient local response and persistent tumor control in a child with recurrent malignant glioma: treatment with combination therapy including dendritic cell therapy. Case report. J. Neurosurg. 100(5 Suppl. Pediatrics), 492–497 (2004).
  • Rutkowski S, De Vleeschouwer S, Kaempgen E et al. Surgery and adjuvant dendritic cell-based tumour vaccination for patients with relapsed malignant glioma, a feasibility study. Br. J. Cancer 91(9), 1656–1662 (2004).
  • Yamanaka R, Homma J, Yajima N et al. Clinical evaluation of dendritic cell vaccination for patients with recurrent glioma: results of a clinical Phase I/II trial. Clin. Cancer Res. 11(11), 4160–4167 (2005).
  • Liau LM, Prins RM, Kiertscher SM et al. Dendritic cell vaccination in glioblastoma patients induces systemic and intracranial T-cell responses modulated by the local central nervous system tumor microenvironment. Clin. Cancer Res. 11(15), 5515–5525 (2005).
  • De Vleeschouwer S, Fieuws S, Rutkowski S et al. Postoperative adjuvant dendritic cell-based immunotherapy in patients with relapsed glioblastoma multiforme. Clin. Cancer Res. 14(10), 3098–3104 (2008).
  • Wheeler CJ, Black KL, Liu G et al. Vaccination elicits correlated immune and clinical responses in glioblastoma multiforme patients. Cancer Res. 68(14), 5955–5964 (2008).
  • Prins RM, Soto H, Konkankit V et al. Gene expression profile correlates with T-cell infiltration and relative survival in glioblastoma patients vaccinated with dendritic cell immunotherapy. Clin. Cancer Res. 17(6), 1603–1615 (2011).
  • Fadul CE, Fisher JL, Hampton TH et al. Immune response in patients with newly diagnosed glioblastoma multiforme treated with intranodal autologous tumor lysate-dendritic cell vaccination after radiation chemotherapy. J. Immunother. 34(4), 382–389 (2011).
  • Ardon H, Van Gool SW, Verschuere T et al. Integration of autologous dendritic cell-based immunotherapy in the standard of care treatment for patients with newly diagnosed glioblastoma: results of the HGG-2006 Phase I/II trial. Cancer Immunol. Immunother. 61(11), 2033–2044 (2012).
  • Ardon H, Van Gool S, Lopes IS et al. Integration of autologous dendritic cell-based immunotherapy in the primary treatment for patients with newly diagnosed glioblastoma multiforme: a pilot study. J. Neurooncol. 99(2), 261–272 (2010).
  • Crane CA, Han SJ, Ahn B et al. Individual patient-specific immunity against high-grade glioma after vaccination with autologous tumor derived peptides bound to the 96 KD chaperone protein. Clin. Cancer Res. 19(1), 205–214 (2013).
  • Aguilar LK, Guzik BW, Aguilar-Cordova E. Cytotoxic immunotherapy strategies for cancer: mechanisms and clinical development. J. Cell. Biochem. 112(8), 1969–1977 (2011).
  • Chiocca EA, Aguilar LK, Bell SD et al. Phase IB study of gene-mediated cytotoxic immunotherapy adjuvant to up-front surgery and intensive timing radiation for malignant glioma. J. Clin. Oncol. 29(27), 3611–3619 (2011).
  • Prestegarden L, Enger PØ. Cancer stem cells in the central nervous system – a critical review. Cancer Res. 70(21), 8255–8258 (2010).
  • Murat A, Migliavacca E, Gorlia T et al. Stem cell-related ‘self-renewal’ signature and high epidermal growth factor receptor expression associated with resistance to concomitant chemoradiotherapy in glioblastoma. J. Clin. Oncol. 26(18), 3015–3024 (2008).
  • Bao S, Wu Q, McLendon RE et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444(7120), 756–760 (2006).
  • Wu A, Wei J, Kong LY et al. Glioma cancer stem cells induce immunosuppressive macrophages/microglia. Neuro-oncology 12(11), 1113–1125 (2010).
  • Di Tomaso T, Mazzoleni S, Wang E et al. Immunobiological characterization of cancer stem cells isolated from glioblastoma patients. Clin. Cancer Res. 16(3), 800–813 (2010).
  • Xu Q, Liu G, Yuan X et al. Antigen-specific T-cell response from dendritic cell vaccination using cancer stem-like cell-associated antigens. Stem Cells 27(8), 1734–1740 (2009).
  • Pellegatta S, Poliani PL, Corno D et al. Neurospheres enriched in cancer stem-like cells are highly effective in eliciting a dendritic cell-mediated immune response against malignant gliomas. Cancer Res. 66(21), 10247–10252 (2006).
  • Prins RM, Odesa SK, Liau LM. Immunotherapeutic targeting of shared melanoma-associated antigens in a murine glioma model. Cancer Res. 63(23), 8487–8491 (2003).
  • Liu G, Akasaki Y, Khong HT et al. Cytotoxic T cell targeting of TRP-2 sensitizes human malignant glioma to chemotherapy. Oncogene 24(33), 5226–5234 (2005).
  • Wong AJ, Ruppert JM, Bigner SH et al. Structural alterations of the epidermal growth factor receptor gene in human gliomas. Proc. Natl Acad. Sci. USA 89(7), 2965–2969 (1992).
  • Moscatello DK, Holgado-Madruga M, Godwin AK et al. Frequent expression of a mutant epidermal growth factor receptor in multiple human tumors. Cancer Res. 55(23), 5536–5539 (1995).
  • Batra SK, Castelino-Prabhu S, Wikstrand CJ et al. Epidermal growth factor ligand-independent, unregulated, cell-transforming potential of a naturally occurring human mutant EGFRvIII gene. Cell Growth Differ. 6(10), 1251–1259 (1995).
  • Lal A, Glazer CA, Martinson HM et al. Mutant epidermal growth factor receptor up-regulates molecular effectors of tumor invasion. Cancer Res. 62(12), 3335–3339 (2002).
  • Heimberger AB, Hlatky R, Suki D et al. Prognostic effect of epidermal growth factor receptor and EGFRvIII in glioblastoma multiforme patients. Clin. Cancer Res. 11(4), 1462–1466 (2005).
  • Pelloski CE, Ballman KV, Furth AF et al. Epidermal growth factor receptor variant III status defines clinically distinct subtypes of glioblastoma. J. Clin. Oncol. 25(16), 2288–2294 (2007).
  • Heimberger AB, Crotty LE, Archer GE et al. Epidermal growth factor receptor VIII peptide vaccination is efficacious against established intracerebral tumors. Clin. Cancer Res. 9(11), 4247–4254 (2003).
  • Heimberger AB, Abou-Ghazal M, Reina-Ortiz C et al. Incidence and prognostic impact of FoxP3+ regulatory T cells in human gliomas. Clin. Cancer Res. 14(16), 5166–5172 (2008).
  • Schmittling RJ, Archer GE, Mitchell DA et al. Detection of humoral response in patients with glioblastoma receiving EGFRvIII–KLH vaccines. J. Immunol. Methods 339(1), 74–81 (2008).
  • Sampson JH, Archer GE, Mitchell DA et al. An epidermal growth factor receptor variant III-targeted vaccine is safe and immunogenic in patients with glioblastoma multiforme. Mol. Cancer Ther. 8(10), 2773–2779 (2009).
  • Sampson JH, Heimberger AB, Archer GE et al. Immunologic escape after prolonged progression-free survival with epidermal growth factor receptor variant III peptide vaccination in patients with newly diagnosed glioblastoma. J. Clin. Oncol. 28(31), 4722–4729 (2010).
  • Sampson JH, Aldape KD, Archer GE et al. Greater chemotherapy-induced lymphopenia enhances tumor-specific immune responses that eliminate EGFRvIII-expressing tumor cells in patients with glioblastoma. Neuro-oncology 13(3), 324–333 (2011).
  • Grossman SA, Ye X, Lesser G et al.; NABTT CNS Consortium. Immunosuppression in patients with high-grade gliomas treated with radiation and temozolomide. Clin. Cancer Res. 17(16), 5473–5480 (2011).
  • Matsushita H, Vesely MD, Koboldt DC et al. Cancer exome analysis reveals a T-cell-dependent mechanism of cancer immunoediting. Nature 482(7385), 400–404 (2012).
  • Okada H, Kalinski P, Ueda R et al. Induction of CD8+ T-cell responses against novel glioma-associated antigen peptides and clinical activity by vaccinations with {α}-type 1 polarized dendritic cells and polyinosinic-polycytidylic acid stabilized by lysine and carboxymethylcellulose in patients with recurrent malignant glioma. J. Clin. Oncol. 29(3), 330–336 (2011).
  • Phuphanich S, Wheeler CJ, Rudnick JD et al. Phase I trial of a multi-epitope-pulsed dendritic cell vaccine for patients with newly diagnosed glioblastoma. Cancer Immunol. Immunother. 62(1), 125–135 (2013).
  • Terasaki M, Shibui S, Narita Y et al. Phase I trial of a personalized peptide vaccine for patients positive for human leukocyte antigen – A24 with recurrent or progressive glioblastoma multiforme. J. Clin. Oncol. 29(3), 337–344 (2011).
  • Cobbs CS, Harkins L, Samanta M et al. Human cytomegalovirus infection and expression in human malignant glioma. Cancer Res. 62(12), 3347–3350 (2002).
  • Mitchell DA, Xie W, Schmittling R et al. Sensitive detection of human cytomegalovirus in tumors and peripheral blood of patients diagnosed with glioblastoma. Neuro-oncology 10(1), 10–18 (2008).
  • Scheurer ME, Bondy ML, Aldape KD, Albrecht T, El-Zein R. Detection of human cytomegalovirus in different histological types of gliomas. Acta Neuropathol. 116(1), 79–86 (2008).
  • Sabatier J, Uro-Coste E, Pommepuy I et al. Detection of human cytomegalovirus genome and gene products in central nervous system tumours. Br. J. Cancer 92(4), 747–750 (2005).
  • Dziurzynski K, Wei J, Qiao W et al. Glioma-associated cytomegalovirus mediates subversion of the monocyte lineage to a tumor propagating phenotype. Clin. Cancer Res. 17(14), 4642–4649 (2011).
  • Soroceanu L, Matlaf L, Bezrookove V et al. Human cytomegalovirus US28 found in glioblastoma promotes an invasive and angiogenic phenotype. Cancer Res. 71(21), 6643–6653 (2011).
  • Prins RM, Cloughesy TF, Liau LM. Cytomegalovirus immunity after vaccination with autologous glioblastoma lysate. N. Engl. J. Med. 359(5), 539–541 (2008).
  • Ghazi A, Ashoori A, Hanley PJ et al. Generation of polyclonal CMV-specific T cells for the adoptive immunotherapy of glioblastoma. J. Immunother. 35(2), 159–168 (2012).
  • Lee KH, Wang E, Nielsen MB et al. Increased vaccine-specific T cell frequency after peptide-based vaccination correlates with increased susceptibility to in vitro stimulation but does not lead to tumor regression. J. Immunol. 163(11), 6292–6300 (1999).
  • Bodey B, Bodey B Jr, Siegel SE, Kaiser HE. Failure of cancer vaccines: the significant limitations of this approach to immunotherapy. Anticancer Res. 20(4), 2665–2676 (2000).
  • de Veer M, Meeusen E. New developments in vaccine research – unveiling the secret of vaccine adjuvants. Discov. Med. 12(64), 195–204 (2011).
  • Chiang CL, Kandalaft LE, Coukos G. Adjuvants for enhancing the immunogenicity of whole tumor cell vaccines. Int. Rev. Immunol. 30(2–3), 150–182 (2011).
  • Schijns VE, Lavelle EC. Trends in vaccine adjuvants. Expert Rev. Vaccines 10(4), 539–550 (2011).
  • Palucka K, Banchereau J. Cancer immunotherapy via dendritic cells. Nat. Rev. Cancer 12(4), 265–277 (2012).
  • Trombetta ES, Mellman I. Cell biology of antigen processing in vitro and in vivo. Annu. Rev. Immunol. 23, 975–1028 (2005).
  • Darrasse-Jèze G, Deroubaix S, Mouquet H et al. Feedback control of regulatory T cell homeostasis by dendritic cells in vivo. J. Exp. Med. 206(9), 1853–1862 (2009).
  • Ursu R, Carpentier AF. Immunotherapeutic approach with oligodeoxynucleotides containing CpG motifs (CpG-ODN) in malignant glioma. Adv. Exp. Med. Biol. 746, 95–108 (2012).
  • Prins RM, Craft N, Bruhn KW et al. The TLR-7 agonist, imiquimod, enhances dendritic cell survival and promotes tumor antigen-specific T cell priming: relation to central nervous system antitumor immunity. J. Immunol. 176(1), 157–164 (2006).
  • Zhu X, Nishimura F, Sasaki K et al. Toll like receptor-3 ligand poly-ICLC promotes the efficacy of peripheral vaccinations with tumor antigen-derived peptide epitopes in murine CNS tumor models. J. Transl. Med. 5, 10 (2007).
  • Bode C, Zhao G, Steinhagen F, Kinjo T, Klinman DM. CpG DNA as a vaccine adjuvant. Expert Rev. Vaccines 10(4), 499–511 (2011).
  • Linn JF, Black P, Derksen K, Rübben H, Thüroff JW. Keyhole limpet haemocyanin in experimental bladder cancer: literature review and own results. Eur. Urol. 37(Suppl. 3), 34–40 (2000).
  • Zhan Y, Xu Y, Lew AM. The regulation of the development and function of dendritic cell subsets by GM-CSF: more than a hematopoietic growth factor. Mol. Immunol. 52(1), 30–37 (2012).
  • Salgia R, Lynch T, Skarin A et al. Vaccination with irradiated autologous tumor cells engineered to secrete granulocyte–macrophage colony-stimulating factor augments antitumor immunity in some patients with metastatic non-small-cell lung carcinoma. J. Clin. Oncol. 21(4), 624–630 (2003).
  • Soiffer R, Hodi FS, Haluska F et al. Vaccination with irradiated, autologous melanoma cells engineered to secrete granulocyte–macrophage colony-stimulating factor by adenoviral-mediated gene transfer augments antitumor immunity in patients with metastatic melanoma. J. Clin. Oncol. 21(17), 3343–3350 (2003).
  • Nemunaitis J. Vaccines in cancer: GVAX, a GM-CSF gene vaccine. Expert Rev. Vaccines 4(3), 259–274 (2005).
  • Clive KS, Tyler JA, Clifton GT et al. Use of GM-CSF as an adjuvant with cancer vaccines: beneficial or detrimental? Expert Rev. Vaccines 9(5), 519–525 (2010).
  • Parmiani G, Castelli C, Pilla L, Santinami M, Colombo MP, Rivoltini L. Opposite immune functions of GM-CSF administered as vaccine adjuvant in cancer patients. Ann. Oncol. 18(2), 226–232 (2007).
  • Dudley ME, Wunderlich JR, Robbins PF et al. Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 298(5594), 850–854 (2002).
  • Dudley ME, Wunderlich JR, Yang JC et al. Adoptive cell transfer therapy following non-myeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma. J. Clin. Oncol. 23(10), 2346–2357 (2005).
  • Wu CJ, Ritz J. Induction of tumor immunity following allogeneic stem cell transplantation. Adv. Immunol. 90, 133–173 (2006).
  • Ghiringhelli F, Menard C, Puig PE et al. Metronomic cyclophosphamide regimen selectively depletes CD4+CD25+ regulatory T cells and restores T and NK effector functions in end stage cancer patients. Cancer Immunol. Immunother. 56(5), 641–648 (2007).
  • Kim TG, Kim CH, Park JS et al. Immunological factors relating to the antitumor effect of temozolomide chemoimmunotherapy in a murine glioma model. Clin. Vaccine Immunol. 17(1), 143–153 (2010).
  • Wheeler CJ, Das A, Liu G, Yu JS, Black KL. Clinical responsiveness of glioblastoma multiforme to chemotherapy after vaccination. Clin. Cancer Res. 10(16), 5316–5326 (2004).
  • Heimberger AB, Sun W, Hussain SF et al. Immunological responses in a patient with glioblastoma multiforme treated with sequential courses of temozolomide and immunotherapy: case study. Neuro-oncology 10(1), 98–103 (2008).
  • Machiels JP, Reilly RT, Emens LA et al. Cyclophosphamide, doxorubicin, and paclitaxel enhance the antitumor immune response of granulocyte/macrophage-colony stimulating factor-secreting whole-cell vaccines in HER-2/neu tolerized mice. Cancer Res. 61(9), 3689–3697 (2001).
  • Ghiringhelli F, Larmonier N, Schmitt E et al. CD4+CD25+ regulatory T cells suppress tumor immunity but are sensitive to cyclophosphamide which allows immunotherapy of established tumors to be curative. Eur. J. Immunol. 34(2), 336–344 (2004).
  • Park SD, Kim CH, Kim CK et al. Cross-priming by temozolomide enhances antitumor immunity of dendritic cell vaccination in murine brain tumor model. Vaccine 25(17), 3485–3491 (2007).
  • Gattinoni L, Finkelstein SE, Klebanoff CA et al. Removal of homeostatic cytokine sinks by lymphodepletion enhances the efficacy of adoptively transferred tumor-specific CD8+ T cells. J. Exp. Med. 202(7), 907–912 (2005).
  • Banissi C, Ghiringhelli F, Chen L, Carpentier AF. Treg depletion with a low-dose metronomic temozolomide regimen in a rat glioma model. Cancer Immunol. Immunother. 58(10), 1627–1634 (2009).
  • Jordan JT, Sun W, Hussain SF, DeAngulo G, Prabhu SS, Heimberger AB. Preferential migration of regulatory T cells mediated by glioma-secreted chemokines can be blocked with chemotherapy. Cancer Immunol. Immunother. 57(1), 123–131 (2008).
  • Hong M, Puaux AL, Huang C et al. Chemotherapy induces intratumoral expression of chemokines in cutaneous melanoma, favoring T-cell infiltration and tumor control. Cancer Res. 71(22), 6997–7009 (2011).
  • Cohen MH, Shen YL, Keegan P, Pazdur R. FDA drug approval summary: bevacizumab (Avastin) as treatment of recurrent glioblastoma multiforme. Oncologist 14(11), 1131–1138 (2009).
  • Chinot O, Wick W, Mason W et al. Phase III trial of bevacizumab added to standard radiotherapy and temozolomide for newly diagnosed glioblastoma: Final progression-free survival and interim overall survival results in AVAglio. In: Society for Neuro-Oncology. Yung AW (Ed.). Oxford University Press, Washington, DC, USA (2012).
  • Shin JY, Yoon IH, Kim JS, Kim B, Park CG. Vascular endothelial growth factor-induced chemotaxis and IL-10 from T cells. Cell. Immunol. 256(1–2), 72–78 (2009).
  • Ohm JE, Carbone DP. VEGF as a mediator of tumor-associated immunodeficiency. Immunol. Res. 23(2–3), 263–272 (2001).
  • Johnson BF, Clay TM, Hobeika AC, Lyerly HK, Morse MA. Vascular endothelial growth factor and immunosuppression in cancer: current knowledge and potential for new therapy. Expert Opin. Biol. Ther. 7(4), 449–460 (2007).
  • Griffioen AW. Anti-angiogenesis: making the tumor vulnerable to the immune system. Cancer Immunol. Immunother. 57(10), 1553–1558 (2008).
  • Mulligan JK, Day TA, Gillespie MB, Rosenzweig SA, Young MR. Secretion of vascular endothelial growth factor by oral squamous cell carcinoma cells skews endothelial cells to suppress T-cell functions. Hum. Immunol. 70(6), 375–382 (2009).
  • Ohm JE, Gabrilovich DI, Sempowski GD et al. VEGF inhibits T-cell development and may contribute to tumor-induced immune suppression. Blood 101(12), 4878–4886 (2003).
  • Gabrilovich D, Ishida T, Oyama T et al. Vascular endothelial growth factor inhibits the development of dendritic cells and dramatically affects the differentiation of multiple hematopoietic lineages in vivo. Blood 92(11), 4150–4166 (1998).
  • Gabrilovich DI, Chen HL, Girgis KR et al. Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat. Med. 2(10), 1096–1103 (1996).
  • Li B, Lalani AS, Harding TC et al. Vascular endothelial growth factor blockade reduces intratumoral regulatory T cells and enhances the efficacy of a GM-CSF-secreting cancer immunotherapy. Clin. Cancer Res. 12(22), 6808–6816 (2006).
  • Shrimali RK, Yu Z, Theoret MR, Chinnasamy D, Restifo NP, Rosenberg SA. Antiangiogenic agents can increase lymphocyte infiltration into tumor and enhance the effectiveness of adoptive immunotherapy of cancer. Cancer Res. 70(15), 6171–6180 (2010).
  • Manning EA, Ullman JG, Leatherman JM et al. A vascular endothelial growth factor receptor-2 inhibitor enhances antitumor immunity through an immune-based mechanism. Clin. Cancer Res. 13(13), 3951–3959 (2007).
  • Miyazaki J, Tsuzuki Y, Matsuzaki K et al. Combination therapy with tumor-lysate pulsed dendritic cells and antiangiogenic drug TNP-470 for mouse pancreatic cancer. Int. J. Cancer 117(3), 499–505 (2005).
  • Huang X, Raskovalova T, Lokshin A et al. Combined antiangiogenic and immune therapy of prostate cancer. Angiogenesis 8(1), 13–23 (2005).
  • Prins RM, Graf MR, Merchant RE, Black KL, Wheeler CJ. Thymic function and output of recent thymic emigrant T cells during intracranial glioma progression. J. Neurooncol. 64(1–2), 45–54 (2003).
  • Wheeler CJ, Black KL, Liu G et al. Thymic CD8+ T cell production strongly influences tumor antigen recognition and age-dependent glioma mortality. J. Immunol. 171(9), 4927–4933 (2003).
  • De Vleeschouwer S, Ardon H, Van Calenbergh F et al. Stratification according to HGG-IMMUNO RPA model predicts outcome in a large group of patients with relapsed malignant glioma treated by adjuvant postoperative dendritic cell vaccination. Cancer Immunol. Immunother. 61(11), 2105–2112 (2012).
  • Fong B, Jin R, Wang X et al. Monitoring of regulatory T cell frequencies and expression of CTLA-4 on T cells, before and after DC vaccination, can predict survival in GBM patients. PLoS ONE 7(4), e32614 (2012).
  • Tang J, Flomenberg P, Harshyne L, Kenyon L, Andrews DW. Glioblastoma patients exhibit circulating tumor-specific CD8+ T cells. Clin. Cancer Res. 11(14), 5292–5299 (2005).
  • Jackson C, Ruzevick J, Phallen J, Belcaid Z, Lim M. Challenges in immunotherapy presented by the glioblastoma multiforme microenvironment. Clin. Dev. Immunol. 2011, 732413 (2011).
  • Gomez GG, Kruse CA. Mechanisms of malignant glioma immune resistance and sources of immunosuppression. Gene Ther. Mol. Biol. 10(A), 133–146 (2006).
  • Waziri A. Glioblastoma-derived mechanisms of systemic immunosuppression. Neurosurg. Clin. N. Am. 21(1), 31–42 (2010).
  • Avril T, Vauleon E, Tanguy-Royer S, Mosser J, Quillien V. Mechanisms of immunomodulation in human glioblastoma. Immunotherapy 3(4 Suppl.), 42–44 (2011).
  • Dix AR, Brooks WH, Roszman TL, Morford LA. Immune defects observed in patients with primary malignant brain tumors. J. Neuroimmunol. 100(1–2), 216–232 (1999).
  • Fecci PE, Mitchell DA, Whitesides JF et al. Increased regulatory T-cell fraction amidst a diminished CD4 compartment explains cellular immune defects in patients with malignant glioma. Cancer Res. 66(6), 3294–3302 (2006).
  • Kempuraj D, Devi RS, Madhappan B et al. T lymphocyte subsets and immunoglobulins in intracranial tumor patients before and after treatment, and based on histological type of tumors. Int. J. Immunopathol. Pharmacol. 17(1), 57–64 (2004).
  • Hussain SF, Yang D, Suki D, Aldape K, Grimm E, Heimberger AB. The role of human glioma-infiltrating microglia/macrophages in mediating antitumor immune responses. Neuro-oncology 8(3), 261–279 (2006).
  • Schartner JM, Hagar AR, Van Handel M, Zhang L, Nadkarni N, Badie B. Impaired capacity for upregulation of MHC class II in tumor-associated microglia. Glia 51(4), 279–285 (2005).
  • Wei J, Wu A, Kong LY et al. Hypoxia potentiates glioma-mediated immunosuppression. PLoS One 6(1), e16195 (2011).
  • Constam DB, Philipp J, Malipiero UV, ten Dijke P, Schachner M, Fontana A. Differential expression of transforming growth factor-β 1, -β 2, and -β 3 by glioblastoma cells, astrocytes, and microglia. J. Immunol. 148(5), 1404–1410 (1992).
  • Bodmer S, Strommer K, Frei K et al. Immunosuppression and transforming growth factor-β in glioblastoma. Preferential production of transforming growth factor-β 2. J. Immunol. 143(10), 3222–3229 (1989).
  • Gabrilovich DI, Ishida T, Nadaf S, Ohm JE, Carbone DP. Antibodies to vascular endothelial growth factor enhance the efficacy of cancer immunotherapy by improving endogenous dendritic cell function. Clin. Cancer Res. 5(10), 2963–2970 (1999).
  • Sawamura Y, Diserens AC, de Tribolet N. In vitro prostaglandin E2 production by glioblastoma cells and its effect on interleukin-2 activation of oncolytic lymphocytes. J. Neurooncol. 9(2), 125–130 (1990).
  • Huettner C, Paulus W, Roggendorf W. Messenger RNA expression of the immunosuppressive cytokine IL-10 in human gliomas. Am. J. Pathol. 146(2), 317–322 (1995).
  • Chen Q, Daniel V, Maher DW, Hersey P. Production of IL-10 by melanoma cells: examination of its role in immunosuppression mediated by melanoma. Int. J. Cancer 56(5), 755–760 (1994).
  • Hishii M, Nitta T, Ishida H et al. Human glioma-derived interleukin-10 inhibits antitumor immune responses in vitro. Neurosurgery 37(6), 1160–1166; discussion 1166 (1995).
  • Tran Thang NN, Derouazi M, Philippin G et al. Immune infiltration of spontaneous mouse astrocytomas is dominated by immunosuppressive cells from early stages of tumor development. Cancer Res. 70(12), 4829–4839 (2010).
  • Roth P, Mittelbronn M, Wick W, Meyermann R, Tatagiba M, Weller M. Malignant glioma cells counteract antitumor immune responses through expression of lectin-like transcript-1. Cancer Res. 67(8), 3540–3544 (2007).
  • Parney IF, Farr-Jones MA, Chang LJ, Petruk KC. Human glioma immunobiology in vitro: implications for immunogene therapy. Neurosurgery 46(5), 1169–1177; discussion 1177 (2000).
  • Weller M, Fontana A. The failure of current immunotherapy for malignant glioma. Tumor-derived TGF-β, T-cell apoptosis, and the immune privilege of the brain. Brain Res. Brain Res. Rev. 21(2), 128–151 (1995).
  • Badie B, Schartner J. Role of microglia in glioma biology. Microsc. Res. Tech. 54(2), 106–113 (2001).
  • Li W, Graeber MB. The molecular profile of microglia under the influence of glioma. Neuro-oncology 14(8), 958–978 (2012).
  • El Andaloussi A, Lesniak MS. An increase in CD4+CD25+FoxP3+ regulatory T cells in tumor-infiltrating lymphocytes of human glioblastoma multiforme. Neuro-oncology 8(3), 234–243 (2006).
  • Crane CA, Ahn BJ, Han SJ, Parsa AT. Soluble factors secreted by glioblastoma cell lines facilitate recruitment, survival, and expansion of regulatory T cells: implications for immunotherapy. Neuro-oncology 14(5), 584–595 (2012).
  • Jacobs JF, Idema AJ, Bol KF et al. Prognostic significance and mechanism of Treg infiltration in human brain tumors. J. Neuroimmunol. 225(1–2), 195–199 (2010).
  • Walker DG, Chuah T, Rist MJ, Pender MP. T-cell apoptosis in human glioblastoma multiforme: implications for immunotherapy. J. Neuroimmunol. 175(1–2), 59–68 (2006).
  • Jansen T, Tyler B, Mankowski JL et al. FasL gene knock-down therapy enhances the antiglioma immune response. Neuro-oncology 12(5), 482–489 (2010).
  • Margolin K, Ernstoff MS, Hamid O et al. Ipilimumab in patients with melanoma and brain metastases: an open-label, Phase 2 trial. Lancet Oncol. 13(5), 459–465 (2012).
  • Hodi FS, Oble DA, Drappatz J et al. CTLA-4 blockade with ipilimumab induces significant clinical benefit in a female with melanoma metastases to the CNS. Nat. Clin. Pract. Oncol. 5(9), 557–561 (2008).
  • Fecci PE, Ochiai H, Mitchell DA et al. Systemic CTLA-4 blockade ameliorates glioma-induced changes to the CD4+ T cell compartment without affecting regulatory T-cell function. Clin. Cancer Res. 13(7), 2158–2167 (2007).
  • Keir ME, Butte MJ, Freeman GJ, Sharpe AH. PD-1 and its ligands in tolerance and immunity. Annu. Rev. Immunol. 26, 677–704 (2008).
  • Wintterle S, Schreiner B, Mitsdoerffer M et al. Expression of the B7-related molecule B7-H1 by glioma cells: a potential mechanism of immune paralysis. Cancer Res. 63(21), 7462–7467 (2003).
  • Avril T, Saikali S, Vauleon E et al. Distinct effects of human glioblastoma immunoregulatory molecules programmed cell death ligand-1 (PDL-1) and indoleamine 2,3-dioxygenase (IDO) on tumour-specific T cell functions. J. Neuroimmunol. 225(1–2), 22–33 (2010).
  • Wilmotte R, Burkhardt K, Kindler V et al. B7-homolog 1 expression by human glioma: a new mechanism of immune evasion. Neuroreport 16(10), 1081–1085 (2005).
  • Jacobs JF, Idema AJ, Bol KF et al. Regulatory T cells and the PD-L1/PD-1 pathway mediate immune suppression in malignant human brain tumors. Neuro-oncology 11(4), 394–402 (2009).
  • Yao Y, Tao R, Wang X, Wang Y, Mao Y, Zhou LF. B7-H1 is correlated with malignancy-grade gliomas but is not expressed exclusively on tumor stem-like cells. Neuro-oncology 11(6), 757–766 (2009).
  • Parsa AT, Waldron JS, Panner A et al. Loss of tumor suppressor PTEN function increases B7-H1 expression and immunoresistance in glioma. Nat. Med. 13(1), 84–88 (2007).
  • Brahmer JR, Tykodi SS, Chow LQ et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N. Engl. J. Med. 366(26), 2455–2465 (2012).
  • Topalian SL, Drake CG, Pardoll DM. Targeting the PD-1/B7-H1(PD-L1) pathway to activate anti-tumor immunity. Curr. Opin. Immunol. 24(2), 207–212 (2012).
  • Mitchell DA, Cui X, Schmittling RJ et al. Monoclonal antibody blockade of IL-2 receptor a during lymphopenia selectively depletes regulatory T cells in mice and humans. Blood 118(11), 3003–3012 (2011).
  • Curtin JF, Candolfi M, Fakhouri TM et al. Treg depletion inhibits efficacy of cancer immunotherapy: implications for clinical trials. PLoS ONE 3(4), e1983 (2008).
  • Fecci PE, Sweeney AE, Grossi PM et al. Systemic anti-CD25 monoclonal antibody administration safely enhances immunity in murine glioma without eliminating regulatory T cells. Clin. Cancer Res. 12(14 Pt 1), 4294–4305 (2006).
  • Cheng G, Yu A, Malek TR. T-cell tolerance and the multi-functional role of IL-2R signaling in T-regulatory cells. Immunol. Rev. 241(1), 63–76 (2011).
  • Restifo NP, Dudley ME, Rosenberg SA. Adoptive immunotherapy for cancer: harnessing the T cell response. Nat. Rev. Immunol. 12(4), 269–281 (2012).
  • Hong JJ, Rosenberg SA, Dudley ME et al. Successful treatment of melanoma brain metastases with adoptive cell therapy. Clin. Cancer Res. 16(19), 4892–4898 (2010).
  • Ishikawa E, Takano S, Ohno T, Tsuboi K. Adoptive cell transfer therapy for malignant gliomas. Adv. Exp. Med. Biol. 746, 109–120 (2012).
  • Plautz GE, Barnett GH, Miller DW et al. Systemic T cell adoptive immunotherapy of malignant gliomas. J. Neurosurg. 89(1), 42–51 (1998).
  • Plautz GE, Miller DW, Barnett GH et al. T cell adoptive immunotherapy of newly diagnosed gliomas. Clin. Cancer Res. 6(6), 2209–2218 (2000).
  • Tsuboi K, Saijo K, Ishikawa E et al. Effects of local injection of ex vivo expanded autologous tumor-specific T lymphocytes in cases with recurrent malignant gliomas. Clin. Cancer Res. 9(9), 3294–3302 (2003).
  • Katakura R, Suzuki Y, Sekine T, Sasaki YF, Fujimiya Y. Therapeutic efficacy of adoptive cell transfer on survival of patients with glioblastoma multiforme: case reports. Case Rep. Oncol. 3(2), 110–124 (2010).
  • Plautz GE, Mukai S, Cohen PA, Shu S. Cross-presentation of tumor antigens to effector T cells is sufficient to mediate effective immunotherapy of established intracranial tumors. J. Immunol. 165(7), 3656–3662 (2000).
  • Gilham DE, Debets R, Pule M, Hawkins RE, Abken H. CAR-T cells and solid tumors: tuning T cells to challenge an inveterate foe. Trends Mol. Med. 18(7), 377–384 (2012).
  • Lipowska-Bhalla G, Gilham DE, Hawkins RE, Rothwell DG. Targeted immunotherapy of cancer with CAR T cells: achievements and challenges. Cancer Immunol. Immunother. 61(7), 953–962 (2012).
  • Curran KJ, Pegram HJ, Brentjens RJ. Chimeric antigen receptors for T cell immunotherapy: current understanding and future directions. J. Gene Med. 14(6), 405–415 (2012).
  • Bullain SS, Sahin A, Szentirmai O et al. Genetically engineered T cells to target EGFRvIII expressing glioblastoma. J. Neurooncol. 94(3), 373–382 (2009).
  • Morgan RA, Johnson LA, Davis JL et al. Recognition of glioma stem cells by genetically modified T cells targeting EGFRvIII and development of adoptive cell therapy for glioma. Hum. Gene Ther. 23(10), 1043–1053 (2012).
  • Brown CE, Starr R, Aguilar B et al. Stem-like tumor-initiating cells isolated from IL13Ra2 expressing gliomas are targeted and killed by IL13-zetakine-redirected T cells. Clin. Cancer Res. 18(8), 2199–2209 (2012).
  • Ahmed N, Salsman VS, Kew Y et al. HER2-specific T cells target primary glioblastoma stem cells and induce regression of autologous experimental tumors. Clin. Cancer Res. 16(2), 474–485 (2010).
  • Crough T, Beagley L, Smith C, Jones L, Walker DG, Khanna R. Ex vivo functional analysis, expansion and adoptive transfer of cytomegalovirus-specific T-cells in patients with glioblastoma multiforme. Immunol. Cell Biol. 90(9), 872–880 (2012).
  • Agarwalla P, Barnard Z, Fecci P, Dranoff G, Curry WT Jr. Sequential immunotherapy by vaccination with GM-CSF-expressing glioma cells and CTLA-4 blockade effectively treats established murine intracranial tumors. J. Immunother. 35(5), 385–389 (2012).
  • van den Eertwegh AJ, Versluis J, van den Berg HP et al. Combined immunotherapy with granulocyte-macrophage colony-stimulating factor-transduced allogeneic prostate cancer cells and ipilimumab in patients with metastatic castration-resistant prostate cancer: a Phase 1 dose–escalation trial. Lancet Oncol. 13(5), 509–517 (2012).
  • Madan RA, Mohebtash M, Arlen PM et al. Ipilimumab and a poxviral vaccine targeting prostate-specific antigen in metastatic castration-resistant prostate cancer: a Phase 1 dose–escalation trial. Lancet Oncol. 13(5), 501–508 (2012).
  • Wolchok JD, Hoos A, O’Day S et al. Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria. Clin. Cancer Res. 15(23), 7412–7420 (2009).
  • Wolchok JD, Chapman PB. Phase I trial of adoptive immunotherapy with cytolytic T lymphocytes immunized against a tyrosinase epitope. J. Clin. Oncol. 20(14), 3176; author reply 3176–3176; author reply 3177 (2002).
  • Okada H, Pollack IF. Do we need novel radiologic response criteria for brain tumor immunotherapy? Expert Rev. Neurother. 11(5), 619–622 (2011).
  • Brandsma D, Stalpers L, Taal W, Sminia P, van den Bent MJ. Clinical features, mechanisms, and management of pseudoprogression in malignant gliomas. Lancet Oncol. 9(5), 453–461 (2008).
  • Wen PY, Macdonald DR, Reardon DA et al. Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J. Clin. Oncol. 28(11), 1963–1972 (2010).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.