419
Views
18
CrossRef citations to date
0
Altmetric
Genetic Resources Evaluation

Genotypic Differences in Dry Matter Accumulation, Nitrogen Use Efficiency and Harvest Index in Recombinant Inbred Lines of Rice under Hydroponic Culture

, , , , , & show all
Pages 208-216 | Received 11 Nov 2007, Accepted 23 Aug 2008, Published online: 03 Dec 2015

Abstract

  • Akita, S. 1989. Improving yield potential in tropical rice. In IRRI ed., Progress in Irrigated Rice Research. IRRI, Los Baños, Philippines. 41–73.
  • Amano, T., Zhu, Q., Wang, Y., Inoue, N. and Tanaka, H. 1993. Case studies on high yields of paddy rice in Jiangsu province, China. I. Characteristics of grain production. Jpn. J. Crop Sci.62 : 267–274.
  • Bertin, P. and Gallais, A. 2000. Physiological and genetic basis of nitrogen use efficiency in maize. I. Agrophysiological results. Maydica 45 : 53–66.
  • Bertin, P. and Gallais, A. 2001. Physiological and genetic basis of nitrogen use efficiency in maize. II. QTL detection and coincidences. Maydica 46 : 53–68.
  • Cao, G., Zhu, J., He, C., Gao, Y. and Wu, P. 2001. QTL analysis for epistatic effects and QTL × environment interaction effects on final height of rice (Oryza sativa L.). Acta Genet. Sin. 28 : 135–143.
  • Cui, J., Kusutani, A., Toyota, M. and Asanuma, K. 2000. Studies on the varietals difference of harvest index in rice-relationship between harvest index and dry matter production. Jpn. J. Crop Sci. 69 : 351–358.
  • Duxbury, J.M., Harper, L.A. and Mosier, A.R. 1993. Contributions of agroecosystems to global climate change. In L.A. Harper, A.R. Mosier, J.M. Duxbury, and D.E. Rolston eds., Agricultural Ecosystem Effects on Trace Gases and Global Climate Change. ASA Spec.Publ.55, Am. Soc . Agron., Madison, WI. 1–18.
  • Evans, L.T., Visperas, R.M. and Vergara, B.S. 1984. Morphological and physiological changes among rice varieties used in the Philippines over the last seventy years. Field Crops Res. 8 : 105–124.
  • Evans, L.T. 1993. The future of yield. In L.T. Evens ed., Evolution, Adaptation and Yield. Cambridge University Press, Cambridge. 310–364.
  • Galbally, I.E., Freney, J.R., Muirhead, W.A., Simpson, J.R., Trecvitt, A.C.F. and Chalk, P.M. 1987. Emission of nitrogen oxides (NOx) from a flooded soil fertilized with urea : relation to other nitrogen loss processes. J. Atmos. Chem. 5 : 343–365.
  • Hasegawa, H. 2003. High-yielding rice cultivars perform best even at reduced nitrogen fertilizer rate. Crop Sci. 43 : 921–926.
  • Higuchi, M. and Yoshino, T. 1986. Nitrogen-absorption ability of high-yielding rice plants in a paddy field. Soil Sci. Plant Nutr. 57 : 131–141.
  • Inthapanya, P., Sipaseuth, Sihavong, P., Sihathep, V., Chanphengsay, M., Fukai, S. and Basnayake, J. 2000. Genotype differences in nutrient uptake and utilisation for grain yield production of rainfed lowland rice under fertilised and nonfertilised conditions. Field Crops Res. 65 : 57–68.
  • Jiang, C., Hirasawa, T. and Ishihara, K. 1988. Physiological and ecological characteristics of high yielding varieties in rice plants. I. Yield and dry mater production. Jpn. J. Crop Sci. 57 : 132–138.
  • Ju, J., Yamamoto, Y., Wang, Y., Shan, Y., Dong, G., Yoshinori, T. and Miyazaki, A. 2006. Genotypic differences in grain yield, and nitrogen absorption and utilization in recombinant inbred lines of rice under hydroponic culture. Soil Sci. Plant Nutr. 52 : 322–331.
  • Koutroubas, S.D. and Ntanos, D.A. 2003. Genotypic differences for grain yield and nitrogen utilization in Indica and Japonica rice under Mediterranean conditions. Field Crops Res. 83 : 251–260.
  • Li, Z., Pinson, S.R.M., Stansel, J.W. and Park, W.D. 1995. Identification of quantitative trait loci (QTLs) for heading date and plant height in cultivated rice (Oryza sativa L.). Theor. Appl. Genet. 91 : 374–381.
  • Li, Z., Pinson, S.R.M., Park, W.D., Paterson, A.H., Stansel, J.W. 1997. Epistasis for three grain yield components in rice (Oryza sativa L.). Genet. 145 : 453–465.
  • Li, S., Zhang, Z., Hu, Y. Li, C., Jiang, X., Mao, T., Li, Y. and Zhu, Y. 2006. Genetic dissection of developmental behavior of crop growth rate and its relationships with yield and yield related traits in rice. Plant Sci. 170 : 911–917.
  • Luo, L., Li, Z., Mei, H., Shu, Q., Tabien,R., Zhong, D., Ying, C., Stansel, J.M., Khush G.S. and Paterson, A.H. 2001. Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. II. Grain yield components. Genet. 158 : 1755–1771.
  • Mae, T., Inaba, A., Kaneta, Y., Masaki, S., Sasaki, M., Aizawa, M., Okawa, S., Hasegawa, S. and Makino, A. 2006. A largegrain rice cultivar, Akita 63, exhibits high yields with high physiological N-use efficiency. Field Crops Res. 97 : 227–237.
  • Moll, R.H., Kamprath, E.J. and Jackson, W.A. 1982. Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization. Agron. J. 74 : 562–564.
  • Murata, Y. and Iyama, J. 1958. Studies on Photosynthesis in Rice Plant. IX. Photosynthesis and dry-matter-production and dense planting. Jpn. J. Crop Sci. 27 : 9–11.
  • Murata, Y. and Matsushima, S. 1975. In L.T. Evans ed., Rice Crop Physiology. Cambridge University Press, Cambridge. 73–99.
  • Ntanos D.A. and Koutroubas S.D. 2002. Dry matter and N accumulation and translocation for Indica and Japonica rice under Mediterranean conditions. Field Crops Res. 74 : 93–101.
  • Peng, S., Cassman, K.G., Virmani, S.S., Sheehy, J. and Khush, G.S. 1999. Yield potential trends of tropical rice since the release of IR8 and the challenge of increasing rice yield potential. Crop Sci. 39 : 1552–1559.
  • Peng, S., Laza, R.C., Visperas, R.M., Sanico, A.L., Cassman, K.G. and Khush, G.S. 2000. Grain yield of rice cultivars and lines developed in the Philippines since 1966. Crop Sci. 40 : 307–314.
  • Seino, K. 1975. Accumulative yield of dry matter of rice plant as influenced by nitrogen nutrient. Nippon Dojo Hiryogaku Zasshi, 46 : 303–307.
  • Shan Y., Wang Y. and Pan X. 2005. Mapping of QTLs for nitrogen use efficiency and related traits in rice (Oryza sativa L.). Agricultural Sciences in China 4 : 721–727.
  • Singh, U., Ladha, J.K., Castillo, E.G., Punzalan, G., Tirol-Padre, A. and Duqueza, M. 1998. Genotypic variation in nitrogen use efficiency in medium- and long-duration rice. Field Crops Res. 58 : 35–53.
  • Song, X., Agata, W. and Kawamitsu, Y. 1990. Studies on dry matter and grain production of F1 hybrid rice in China. I. Characteristic of dry matter production. Jpn. J. Crop Sci. 59 : 19–28.
  • Takeda, T., Oka, M. and Agata, W. 1983. Characteristic of dry matter and grain production of rice cultivars in the warm part of Japan : I. Comparisons of the dry matter production between old and new types of rice cultivars. Jpn. J. Crop Sci. 52 : 299–306.
  • Tirol-Padre, A., Ladha, J.K., Singh, U., Laureles, E., Punzalan, G. and Akita, S. 1996 : Grain yield performance of rice genotypes at suboptimal levels of soil N as affected by N uptake and utilization efficiency. Field Crops Res. 46 : 127–143.
  • Wada, G. 1969. The effect of nitrogenous nutrition on the yielddetermining process of rice plant. Bull. Natl. Inst. Agric Sci. A16 : 1–167.
  • Wan, J., Jiang, L., Tang, J., Wang, C., Hou, M., Jing, W. and Zhang L. 2006 : Genetic dissection of the seed dormancy trait in cultivated rice (Oryza sativa L.). Plant Sci. 170 : 786–792.
  • Xiao, J., Li, J., Grandillo, S., Ahn, S.N, Yuan, L., Tanksley, S.D. 1998. Identification of trait-improving quantitative trait loci alleles from a wild rice relative, Oryza rufipogon. Genet. 150 : 899–909.
  • Yamauchi, M. 1994. Physiological bases of higher yield potential in F1 hybrids. In S.S. Vimani ed., Hybrid Rice Technology : New Developments and Future Prospects. IRRI, Los Baños. 71–80
  • Yang, J., Peng, S., Zhang, Z., Wang, Z., Visperas, R.M. and Zhu, Q. 2002. Grain and dry matter yields and portioning of assimilates in Japonica / Indica hybrid rice. Crop Sci. 42 : 766–772.
  • Ying, J., Peng, S., He, Q., Yang, H., Yang, C., Visperas, R.M. and Cassman, K.G. 1998. Comparison of high-yield rice in tropical and subtropical environments. I. Determinants of grain and dry matter yields. Field Crops Res. 57 : 71–84.
  • Yoshida, S. 1972. Physiological aspect of grain yield, Ann. Rev. Plant Physiol. 23 : 437–464.
  • Yoshida, S., Forno, D.A., Cock, J.H. and Gomez, K.A. 1976.Routine procedure for growing rice plants in culture solution. In. S. Yoshida, D.A. Forno, J.H. Cock, and K.A. Gomez, eds., The 2nd Laboratory Manual for Physiological Studies of Rice. IRRI, Los Baños. 61–66.
  • Yoshida, S. 1981. In IRRI ed., Fundamentals of Rice Crop Science. IRRI, Los Baños, Philippines. 269–272.
  • Zhang, Z., Li, P., Wang, L., Hu, Z. and Zhu, Y 2004: Genetic dissection of the relationships of biomass production and partitioning with yield and yield related traits in rice. Plant Sci. 167 : 1–8.