1,283
Views
8
CrossRef citations to date
0
Altmetric
Review

Leaf Photosynthesis and Its Genetic Improvement from the Perspective of Energy Flow and CO2 Diffusion

, , , &
Pages 111-123 | Received 04 Jun 2013, Accepted 24 Aug 2013, Published online: 03 Dec 2015

References

  • Aasamaa, K. and Sober, A. 2012. Responses of stomatal conductance to simultaneous changes in two environmental factors. Tree Physiol. 31: 855–127864.
  • Adachi, S., Nito, N., Kondo, M., Yamamoto, T., Arai-Sanoh, Y., Ando, T., Ookawa, T., Yano, M. and Hirasawa, T. 2011a. Identification of chromosomal regions controlling the leaf photosynthetic rate in rice by using a progeny from japonica and high-yielding indica varieties. Plant Prod. Sci. 14: 118–127.
  • Adachi, S., Tsuru, Y., Nito, N., Murata, K., Yamamoto, T., Ebitani, T., Ookawa, T. and Hirasawa, T. 2011b. Identification and characterization of genomic regions on chromosomes 4 and 8 that control the rate of photosynthesis in rice leaves. J. Exp. Bot. 62: 1927–1938.
  • Adachi, S., Tsuru, Y., Murata, K., Yamamoto, T., Ebitani, T., Ookawa, T. and Hirasawa, T. 2011c. Pyramiding of QTLs identified on chromosomes 4 and 8 for the rate of leaf photosynthesis in rice. Proc. 7th Asian Crop Science Association Conference, Bogor. 56.
  • Adachi, S., Nakae, T., Uchida, M., Soda, K., Takai, T., Oi, T., Yamamoto, T., Ookawa, T., Miyake, H., Yano, M. and Hirasawa, T. 2013. The mesophyll anatomy enhancing CO2 diffusion is a key trait for improving rice photosynthesis. J. Exp. Bot. 64: 1061–1072.
  • Anai, T. 2012. Potential of a mutant-based reverse genetic approach for functional genomics and molecular breeding in soybean. Breed. Sci. 61: 462–467.
  • Asada, K. 1999. The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Ann. Rev. Plant Physiol. Plant Mol. Biol. 50: 601–639.
  • Baker, N.R. and Rosenqvist, E. 2004. Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J. Exp. Bot. 55: 1607–1621.
  • Baker, N.R. 2008. Chlorophyll fluorescence: a probe of photosynthesis in vivo. Ann. Rev. Plant Biol. 59: 89–113.
  • Bergmann, D.C. and Sack, D.F. 2007. Stomatal development. Ann. Rev. Plant. Biol. 58: 163–181.
  • Bonnecarrère, V., Borsani, O., Díaz, P., Capdevielle, F., Blanco, P. and Monza, J. 2011. Response to photooxidative stress induced by cold in japonica rice is genotype dependent. Plant Sci. 180: 726–732.
  • Bornman, J.F., Vogelmann, T.C. and Martin G. 1991. Measurement of chlorophyll fluorescence within leaves using a fiber optic microprobe. Plant Cell Environ. 14: 719–725.
  • Busch, F.A., Sage, T.L., Cousins, A.B. and Sage, R.F. 2013. C3 plants enhance rates of photosynthesis by reassimilating photorespired and respired CO2. Plant, Cell Environ. 36:200–212.
  • Centritto, M., Loreto, F. and Chartzoulakis, K. 2003. The use of low [CO2] to estimate diffusional and non-diffusional limitations of photosynthetic capacity of salt-stressed olive saplings. Plant, Cell Environ. 26:585–594.
  • Cernusak, L.A., Winter, K. and Turner, B.L. 2009. Plant δ15N correlates with the transpiration efficiency of nitrogen acquisition in tropical trees. Plant Physiol. 151: 1667–1676.
  • Chonan, N. 1967. Studies on the photosynthetic tissues in the leaves of cereal crops. III. The mesophyll structure of rice leaves inserted at different levels of the shoot. Proc. Crop Sci. Soc. Jpn. 36: 291–296.
  • Ciha, A.J. and Brun, W.A. 1975. Stomatal size and frequency in soybeans. Crop Sci. 15: 309–313.
  • Cook, M.G. and Evans, L.T. 1983. Nutrient responses of seedlings of wild and cultivated Oryza species. Field Crops Res. 6: 205–218.
  • Demmig-Adams, B., Adams III, W.W., Baker, D.H., Logan, B.A., Bowlibg D.A. and Verhoeven, A.S. 1996. Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation. Physiol. Planta. 98: 253–264.
  • Douthe, C., Dreyer, E., Brendel, O. and Warren, C.R. 2012. Is mesophyll conductance to CO2 in leaves of three Eucalyptus species sensitive to short-term changes of irradiance under ambient as well as low O2? Functional Plant Biol. 39: 435–448.
  • Endo, T. and Asada, K. 2006. Photosystem I and photoprotection: Cyclic electron flow and water-water cycle. In B. Demmig-Adams, W.W. Adams III and A. Mattoo. eds., Photoprotection, Photoinhibition, Gene Regulation, and Environment. Springer, Dordrecht. 205–217.
  • ERS/USDA. 2010. Economic Research Service. [Online]. Available at http://www.ers.usda.gov/Briefing/SoybeansOilCrops/ (accessed 4th Apr. 2013; verified 26th Dec. 2013)
  • Evans, J.R. and Seemann, J.R. 1984. Difference between wheat genotypes in specific activity of ribulose-1,5-bisphosphate carboxylase and the relationship to photosynthesis. Plant Physiol. 74: 759–765.
  • Evans, J.R., Sharkey, T.D., Berry, J.A. and Farquhar, G.D. 1986. Carbon isotope discrimination measured concurrently with gas exchange to investigate CO2 diffusion in leaves of higher plants. Aust. J. Plant Physiol. 13: 281–292.
  • Evans, L.T. 1993. Crop Evolution, Adaptation And Yield. Cambridge University Press, Cambridge. 1–500.
  • Evans, J.R., Kaldenhoff, R., Genty, B. and Terashima, I. 2009. Resistances along the CO2 diffusion pathway inside leaves. J. Exp. Bot. 60: 2235–2248.
  • Farquhar, G.D., von Caemmerer, S. and Berry, J.A. 1980. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149: 78–90.
  • Farquhar, G.D. and Sharkey, T.D. 1982. Stomatal conductance and photosynthesis. Annual Rev. Plant Physiol. 33: 317–345.
  • Farquhar, G.D., O’Leary, M.H. and Berry J.A. 1982. On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Aust. J. Plant Physiol. 9: 121–137.
  • Flexas, J., Diaz-Espejo, A., Galmes, J., Kaldenhoff, R., Medrano, H. and Ribas-Carbo, M. 2007. Rapid variations of mesophyll conductance in response to changes in CO2 concentration around leaves. Plant Cell Environ. 30: 1284–1298.
  • Flexas, J., Barbour, M.M., Brendel, O., Cabrera, H.M., Carriquí, M., Díaz-Espejo, A., Douthe, C., Dreyer, E., Ferrio, J.P., Gago, J., Gallé, A., Galmés, J., Kodama, N., Medrano, H., Niinemets, Ü., Peguero-Pina, J.J., Pou, A., Ribas-Carbó, M., Tomás, M., Tosens, T. and Warren, C.R. 2012. Mesophyll diffusion conductance to CO2: an unappreciated central player in photosynthesis. Plant Sci. 193/194: 70–84.
  • Flood, P.J., Harbinson, J. and Aarts, M.G.M. 2011. Natural genetic variation in plant photosynthesis. Trends Plant Sci. 16: 327–335.
  • Foyer, C.H. and Noctor, G. 1999. Leaves in the dark see the light. Science 284: 599–601.
  • Franks, P.J. and Beerling, D.J. 2009. CO2-forced evolution of plant gas exchange capacity and water use efficiency over the Phanerozoic. Geobiol. 7: 227–236.
  • Fukuoka, S., Nonoue, Y. and Yano, M. 2010. Germplasm enhancement by developing advanced plant materials from diverse rice accessions. Breed. Sci. 60: 509–517.
  • Gu, J., Yin, X., Struik, P.C., Stomph, T.J. and Wang, H. 2011. Using chromosome introgression lines to map quantitative trait loci for photosynthesis parameters in rice (Oryza sativa L.) leaves under drought and well-watered field conditions. J. Exp. Bot. 63: 455–469.
  • Hall, A.E. and Kaufmann, M.R. 1975 Stomatal response to environment wirh Sesamum indicum L. Plant Physiol. 55: 455–459.
  • Hanba, Y.T., Shibasaka, M., Hayashi, Y., Hayakawa, T., Kasamo, K., Terashima, I. and Katsuhara, M. 2004. Overexpression of the barley aquaporin HvPIP2;1 increases internal CO2 conductance and CO2 assimillation in the leaves of transgenic rice plants. Plant Cell Physiol. 45: 521–529.
  • Hara, K., Kajita, R., Torii, K.U., Bergmann, D.C. and Kakimoto, T. 2007. The secretory peptide gene EPF1 enforces the stomatal one-Tanaka cell-spacing rule. Genes and Dev. 21: 1720–1725.
  • Hara, K., Yokoo, T., Kajita, R., Onishi, T., Yahata, S., Peterson, K.M., Torii, K.U. and Kakimoto, T. 2009. Epidermal cell density is autoregulated via a secretory peptide, EPIDERMAL PATTERNING FACTOR 2 in Arabidopsis leaves. Plant Cell Physiol. 50: 1019–1031.
  • Harley, P.C., Loreto, F., Di Marco, G. and Sharkey, T.D. 1992. Theoretical considerations when estimating the mesophyll conductance to CO2 flux by analysis of the response of photosynthesis to CO2. Plant Physiol. 98: 1429–1436.
  • Hendrickson, L., Furbank, R.T. and Chow, W.S. 2004. A simple alternative approach to assessing the fate of absorbed light energy using chlorophyll fluorescence. Photosynth. Res. 82: 73–81.
  • Hirasawa, T., Tsuchida, M. and Ishihara, K. 1992. Relationship between resistance to water transport and exudation rate and the effect of the resistance on the midday depression of stomatal aperture in rice plants. Jpn. J. Crop Sci. 61: 145–152.
  • Hirasawa, T. 1999. Physiological characterization of the rice plant for tolerance of water deficit. In O. Ito, J. O’Toole and B. Hardy eds., Genetic Improvement of Rice for Water-Limited Environments. IRRI, Los Baños, The Philippines. 89–98.
  • Hirasawa, T., Ozawa, S., Taylaran, R.D. and Ookawa, T. 2010. Varietal differences in photosynthetic rates in rice plants, with special reference to the nitrogen content of leaves. Plant Prod. Sci. 13: 53–57.
  • Horie, T., Matsuura, S., Takai, T., Kuwasaki, K., Ohsumi, A. and Shiraiwa, T. 2006. Genotypic difference in canopy diffusive conductance measured by a new remote - sensing method and its association with the difference in rice yield potential. Plant Cell Environ. 29: 653–660.
  • Horton, P. 2000. Prospects for crop improvement through the genetic manipulation of photosynthesis: morphological and biochemical aspects of light capture. J. Exp. Bot. 51: 475–485.
  • Hu, S.P., Zhou, Y., Zhang, L., Zhu, X.D., Li, L., Luo, L.J., Liu, G.L. and Zhou, Q.M. 2009. Correlation and quantitative trait loci analyses of total chlorophyll content and photosynthetic rate of rice (Oryza sativa) under water stress and well-watered conditions. J. Integr. Plant Biol. 51: 879–888.
  • Hubbart, S., Peng, S., Horton, P., Chen, Y. and Murchie, E.H. 2007. Trends in leaf photosynthesis in historical rice varieties developed in the Philippines since 1966. J. Exp. Bot. 58: 3429–3438.
  • Ishihara, K., Iida, O., Hirasawa, T. and Ogura, T. 1979. Relationship between nitrogen content in leaf blades and photosynthetic rate of rice plants with reference to stomatal aperture and conductance. Jpn. J. Crop Sci. 48: 543–550*.
  • Ishikawa, C., Hatanaka, T., Misoo, S., Miyake, C., and Fukayama, H. 2011. Functional incorporation of sorghum small subunit increases the catalytic turnover rate of Rubisco in transgenic rice. Plant Physiol. 156: 1603–1611.
  • Jiao, D. and Ji, B. 2001. Photoinhibition in indica and japonica subspecies of rice (Oryza sativa L.) and their reciprocal F1 hybrids. Aust. J. Plant Physiol. 28: 299–306.
  • Jiao, D., Ji, B. and Li, X. 2003. Characteristics of chlorophyll fluorescence and membrane-lipid peroxidation during senescence of flag leaf in different cultivars of rice. Photosynthetica 41: 33–41.
  • Kajala, K., Covshoff, S., Karki, S., Woodfield, H., Tolley, B.J., Dionora, M.J.A., Mogul, R.T., Mabilangan, A.E., Danila, F.R., Hibberd, J.M. and Quick WP 2011. Strategies for engineering a two-celled C4 photosynthetic pathway into rice. J. Exp. Bot. 62:3001–3010.
  • Kanemura, T., Homma, K., Ohsumi, A., Shiraiwa, T. and Horie, T. 2007. Evaluation of genotypic variation in leaf photosynthetic rate and its associated factors by using rice diversity research set of germplasm. Photosynth. Res. 94: 23–30.
  • Kasajma, I., Ebana, K., Yamamoto, T., Takahara, K., Yano, M., Kawai-Yamada, M. and Uchiyama, H. 2011. Molecular distinction in genetic regulation of nonphotochemical quenching in rice. Proc. Natl. Acad. Sci. USA. 108: 13835–13840.
  • Kawasaki, Y., Tanaka, Y., Katsura, K., Purcell, L.C., Homma, K., Tanaka, T.K. and Shiraiwa, T. 2010. Yield and Dry Matter Productivity of Japanese and US Soybean Cultivars -A Comparison in the warm regions. Jpn. J. Crop Sci. 79 (Extra issue 2): 102–103.
  • Keren, N. and Krieger-Liszkay, A. 2011. Photoinhibition: molecular mechanisms and physiological significance. Physiol. Planta. 142: 1–5.
  • Kumagai, E., Araki, T. and Kubota, F. 2007. Effects of nitrogen supply restriction on gas exchange and photosystem 2 function in flag leaves of a traditional low-yield cultivar and a recently improved high-yield cultivar of rice (Oryza sativa L.). Photosynthetica 45 : 489–495.
  • Kumagai, E., Araki, T. and Kubota, F. 2009. Characteristics of gas exchange and chlorophyll fluorescence during senescence of flag leaf in different rice (Oryza sativa L.) cultivars grown under nitrogen-deficient condition. Plant Prod. Sci. 12 : 285–292.
  • Kumagai, E., Araki, T. and Ueno, O. 2010. Comparison of susceptibility to photoinhibition and energy partitioning of absorbed light in photosystem II in flag leaves of two rice (Oryza sativa L.) cultivars that differ in their responses to nitrogendeficiency. Plant Prod. Sci. 13: 11–20.
  • Kumagai, E., Araki, T., Kubota, F. and Ueno, O. 2012. Effects of nitrogen deficiency on dry matter and grain productions of six rice (Oryza sativa L.) cultivars. J. Fac. Agric. Kyushu Univ. 57: 35–39.
  • Kyle, D.J., Ohad, I. and Guy, R. 1984. Selective thylakoid protein damage and repair during photoinhibition. In C. Sybesma ed., Advanced Photosynthesis Research. Vol. III. Kluwer Academic Publishers, Norwell. 67–70.
  • Laza, M.R.C., Kondo, M., Ideta, O., Barlaan, E. and Imbe, T. 2010. Quantitative trait loci for stomatal density and size in lowland rice. Euphytica. 172: 149–158.
  • Long, S.P., Zhu, X.G., Naidu, S.L. and Ort, D.R. 2006. Can improvement in photosynthesis increase crop yields? Plant Cell Environ. 29: 315–330.
  • Lu, Z., Percy, R.G., Qualset, C.O. and Zeiger, E. 1998. Stomatal conductance predicts yields in irrigated Pima cotton and bread wheat grown at high temperatures. J. Exp. Bot. 49: 453–460.
  • Maes, W.H. and Steppe K. 2012. Estimating evapotranspiration and drought stress with ground-based thermal remote sensing in agriculture: a review. J. Exp. Bot. 63: 4671–4712.
  • Makino, A., Mae, T. and Ohira, K. 1984. Changes in photosynthetic capacity in rice leaves from emergence through senescence. Analysis from ribulose-1,5-bisphosphate carboxylase and leaf conductance. Plant Cell Physiol. 25: 511–521.
  • Makino, A. 2011. Photosynthesis, grain yield, and nitrogen utilization in rice and wheat. Plant Physiol. 155: 125–129.
  • Maxwell, K. and Johnson, G.N. 2000. Chlorophyll fluorescence-a practical guide. J. Exp. Bot. 51: 659–668.
  • Merlot, S., Mustilli, A.C., Genty, B., North, H., Lefebvre, V., Sotta, B., Vavasseur, A. and Giraudat, J. 2002. Use of infrared thermal imaging to isolate Arabidopsis mutants defective in stomatal regulation. Plant J. 30: 601–609.
  • Meyer, M. and Griffiths, H. 2013. Origins and diversity of eukaryotic CO2-concentrating mechanisms: lessons for the future. J. Exp. Bot. 64:769–786.
  • Miyake, C. and Yokota, A. 2000. Determination of the rate of photoreduction of O2 in the water-water cycle in watermelon leaves and enhancement of the rate by limitation of photosynthesis. Plant Cell Physiol. 41: 335–343.
  • Miyake, C. 2010. Alternative electron flows (water-water cycle and cyclic electron flow around PSI) in photosynthesis: molecular mechanisms and physiological functions. Plant Cell Physiol. 51: 1951–1963.
  • Monsi, M. and Saeki, T. 1953. Über den Lichtfaktor in den Pflanzengesellschaften und seine Bedeutung für die Stoffproduktion. Jpn. J. Bot. 14: 22–52.
  • Murata, Y. 1961. Studies on the photosynthesis of rice plants and its culture significance. Bull. Nat. Inst. Agric. Sci. D 9: 1–169.
  • Murchie, E.H., Chen, Y., Hubbart, S., Peng, S. and Horton, P. 1999. Interactions between senescence and leaf orientation determine in situ patterns of photosynthesis and photoinhibition in filed -grown rice. Plant Physiol. 119: 553–564.
  • Mustilli, A.C., Merlot, S., Vavasseur, A., Fenzi, F. and Giraudat, J. 2002. Arabidopsis Ost1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production. Plant Cell 14:3089–3099.
  • Oguchi, R., Douwstra, P., Fujita, T., Chow, W.S. and Terashima, I. 2011. Intra-leaf gradients of photoinhibition induced by different color lights: implications for the dual mechanisms of photoinhibition and for the application of conventional chlorophyll fluorometers. New Phytol. 191: 146–159.
  • Ohsumi, A., Hamasaki, A., Nakagawa, H., Yoshida, H., Shiraiwa, T. and Horie, T. 2007a A model explaining genotypic and ontogenetic variation of leaf photosynthetic rate in rice (Oryza sativa) based on leaf nitrogen content and stomatal conductance. Ann. Bot. 99: 265–273.
  • Ohsumi, A., Kanemura, T., Homma, K., Horie, T. and Shiraiwa, T. 2007b. Genotypic variation of stomatal conductance in relation to stomatal density and length in rice (Oryza sativa L.). Plant Prod. Sci. 10: 322–328.
  • Omasa, K., Konishi, A., Tamura, H. and Hosoi, F. 2009. 3D confocal laser scanning microscopy for the analysis of chlorophyll fluorescence parameters of chloroplasts in intact leaf tissues. Plant Cell Physiol. 50: 90–105.
  • Parlange, J.Y. and Waggoner, P.E. 1970. Stomatal dimensions and resistance to diffusion. Plant Phyisiol. 46: 337–342.
  • Price, G.D., Pengelly, J.J., Forster, B., Du, J., Whitney, S.M., von Caemmerer, S., Badger, M.R., Howitt, S.M. and Evans, J.R. 2013. The cyanobacterial CCM as a source of genes for improving photosynthetic CO2 fixation in crop species. J. Exp. Bot. 64: 753–768.
  • Schreiber, U., Kühl, M., Klimant, I. and Reising, H. 1996. Measurement of chlorophyll fluorescence within leaves using a modified PAM Fluorometer with a fiber-optic microprobe. Photosynth. Res. 47: 103–109.
  • Sugano, S.S., Shimada, T., Imai, Y., Okawa, K., Tamai, A., Mori, M. and Nishimura, I.H. 2010. STOMAGEN positively regulates stomatal density in Arabidopsis. Nature 463: 241–244.
  • Suzuki Y., Miyamoto, T., Yoshizawa, R., Mae, T. and Makino, A. 2009. Rubisco content and photosynthesis of leaves at different positions in transgenic rice with an overexpression of RBCS. Plant Cell Environ. 32: 417–427.
  • Takahashi, S. and Murata, N. 2008. How do environmental stresses accelerate photoinhibition? Trends Plant Sci. 13: 178–182.
  • Takai, T., Kondo, M., Yano, M. and Yamamoto, T. 2010. A quantitative trait locus for chlorophyll content and its association with leaf photosynthesis in rice. Rice 3: 172–180.
  • Takai, T., Adachi, S., Taguchi-Shiobara, F., Sanoh-Arai, Y., Iwasawa, N., Yoshinaga, S., Hirose, S., Taniguchi, Y., Yamanouchi, U., Wu, J., Matsumoto, T., Sugimoto, K., Kondo, K., Ikka, T., Ando, T., Kono, I., Ito, S., Shomura, A., Ookawa, T., Hirasawa, T., Yano, M., Kondo, M., Yamamoto, T. 2013. A natural variant of NAL1, selected in high-yield rice breeding programs, pleiotropically increases photosynthesis rate. Sci. Rep. 3: 2149.
  • Tanaka, Y., Fujii, K. and Shiraiwa, T. 2010. Variability of Leaf Morphology and Stomatal Conductance in Soybean [Glycine max (L.) Merr.] Cultivars. Crop Sci. 50: 2525–2532.
  • Tanaka, Y., Sugano, S.S., Shimada, T. and Nishimura, I.H. 2013. Enhancement of leaf photosynthetic capacity through increased stomatal density in Arabidopsis. New Phytol. 198: 757–764.
  • Taylaran, R.D., Adachi, S., Ookawa, T., Usuda, H. and Hirasawa, T. 2011. Hydraulic conductance as well as nitrogen accumulation plays a role in the higher rate of leaf photosynthesis of the most productive variety of rice in Japan. J. Exp. Bot. 62: 4067–4077.
  • Tazoe, Y., von Caemmerer, S., Badger, M.R. and Evans, J.R. 2009. Light and CO2 do not affect the mesophyll conductance to CO2 diffusion in wheat leaves. J. Exp. Bot. 60: 2291–2301.
  • Tazoe, Y. 2010. Measurement of the mesophyll conductance with carbon isotope method. Jpn. Soc. Photosynth. Res. News Lett. 20:72–76.
  • Tazoe, Y., von Caemmerer, S., Estavillo, G.M. and Evans, J.R. 2011. Using tunable diode laser spectroscopy to measure carbon isotope discrimination and mesophyll conductance to CO2 diffusion dynamically at different CO2 concentrations. Plant Cell Environ. 34: 580–591.
  • Teng, S., Qian, Q., Zeng, D., Kunihiro, Y., Fujimoto, K., Huang, D. and Zhu, L. 2004. QTL analysis of leaf photosynthetic rate and related physiological traits in rice (Oryza sativa L.). Euphytica 135: 1–7.
  • Terashima, I., Hanba, Y.T., Tazoe, Y., Vyas, P. and Yano, S. 2006. Irradiance and phenotype: comparative eco-development of sun and shade leaves in relation to photosynthetic CO2 diffusion. J. Exp. Bot. 57:343–354.
  • Terashima, I., Hanba, Y.T., Tholen, D. and Niinemets, U. 2011. Leaf functional anatomy in relation to photosynthesis. Plant Physiol. 155: 108–116.
  • Tholen, D., Ethier, G., Genty, B., Pepin, S. and Zhu, X.G. 2012. Variable mesophyll conductance revisited: theoretical background and experimental implications. Plant Cell Environ. 35: 2087–2103.
  • Till, B.J., Reynolds, S.H., Greene, E.A., Codomo, C.A., Enns, L.C., Johnson, J.E., Burtner, C., Odden, A.R., Young, K., Taylor, N.E., Henikoff, J.G., Comai, L. and Henikoff, S. 2003. Large-scale discovery of induced point mutations with high-throughput TILLING. Genome Res. 13: 524–530.
  • Tschiersch, H., Liebsch, G., Borisjuk, L., Stangelmayer, A. and Rolletschek, H. 2012. An imaging method for oxygen distribution, respiration and photosynthesis at a microscopic level of resolution. New Phytol. 196: 926–936.
  • Uehlein, N., Otto, B., Hanson, D.T., Fischer, M., McDowell, N. and Kaldenhoff, R. 2008. Function of Nicotiana tabacum aquaporins as chloroplast gas pores challenges the concept of membrane CO2 permeability. Plant Cell 20: 648–657.
  • Uehlein, N., Sperling, H., Heckwolf, M. and Kaldenhoff, R. 2012. The Arabidopsis aquaporin PIP1;2 rules cellular CO2 uptake. Plant Cell Environ. 35:1077–1083.
  • Vaidyanathan, H., Sivakumar, P., Chakrabarty, R. and Thomas, G. 2003. Scavenging of reactive oxygen species in NaCl-stressed rice (Oryza sativa L.)—differential response in salt-tolerant and sensitive varieties. Plant Sci. 165: 1411–1418.
  • von Caemmerer, S. and Evans, J.R. 1991. Determination of the average partial pressure of CO2 in chloroplasts from leaves of several C3 plants. Aust. J. Plant Physiol. 18: 287–305.
  • Warren, C.R. 2008a. Soil water deficits decrease the internal conductance to CO2 transfer but atmospheric water deficits do not. J. Exp. Bot. 59:327–334.
  • Warren, C.R. 2008b. Stand aside stomata, another actor deserves centre stage: the forgotten role of the internal conductance to CO2 transfer. J. Exp. Bot. 59: 1475–1487.
  • Whitney, S.M., Sharwood, R.E., Orr, D., White, S.J., Alonso, H. and Galmes, J. 2011. Isoleucine 309 acts as a C4 catalytic switch that increases ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) carboxylation rate in Flaveria. Proc. Natl. Acad. Sci. USA 108: 14688–14693.
  • Yoo, C.Y., Pence, H.E., Jin, J.B., Miura, K., Gosney, M.J., Hasegawa, P.M. and Mickelbart, M.V. 2010. The Arabidopsis GTL1 transcription factor regulates water use efficiency and drought tolerance by modulating stomatal density via transrepression of SDD1. Plant Cell 22: 4128–4141.