7
Views
2
CrossRef citations to date
0
Altmetric
Articles

The genetic basis of essential hypertension

, , , &
Pages 281-293 | Received 14 Nov 2006, Accepted 20 Feb 2007, Published online: 23 May 2017

References

  • Snieder H, Harshfield GA, Treiber FA. Heritability of blood pressure and hemodynamics in African-and European-American youth. Hypertension 2003; 41: 1196–201.
  • Ward R. Familial aggregation and genetic epidemiology of blood pressure. In Laragh, J.H. and Brenner, B.M. (eds), Hypertension: Pathophysiology, Diagnosis and Manage-ment. Raven Press 1990, New York, pp. 81-100.
  • Guyton AC. Abnormal renal function and autoregulation in essential hypertension. Hypertension 1991; 18: 11149–53.
  • FBPP Investigators. Multi-center genetic study of hyper-tension: The Family Blood Pressure Program (FBPP). Hypertension 2002; 39: 3–9.
  • Xu X, Rogus JJ, Terwedow HA, Yang J, Wang Z, Chen C, Niu T, Wang B, Xu H, Weiss S, Schork NJ, Fang Z. An extreme-sib-pair genome scan for genes regulating blood pressure. Am J Hum Genet 1999; 64: 1694–701.
  • Krushkal J, Ferrell R, Mockrin SC, Turner ST, Sing CF, Boerwinkle E. Genome-wide linkage analyses of systolic blood pressure using highly discordant siblings. Circulation 1999; 99: 1407–10.
  • Rice T, Rankinen T, Province MA, Chagnon YC, Perusse L, Borecki IB, Bouchard C, Rao DC. Genome-wide linkage analysis of systolic and diastolic blood pressure: the Quebec Family Study. Circulation 2000; 102: 1956–63.
  • Jeunemaitre X, Soubrier F, Kotelevtsev YV, Lifton RP, Williams CS, Charru A, Hunt SC, Hopkins PN, Williams RR, Lalouel JM, et al. Molecular basis of human hypertension: role of angiotensinogen. Cell 1992; 71: 169–80.
  • Cusi D, Barlassina C, Azzani T, Casari G, Citterio L, Devoto M, Glorioso N, Lanzani C, Manunta P, Righetti M, Rivera R, Stella P, Troffa C, Zagato L, Bianchi G. Poly-morphisms of alpha-adducin and salt sensitivity in patients with essential hypertension. Lancet 1997; 349: 1353–7.
  • Siffert W, Rosskopf D, Siffert G, Busch S, Moritz A, Erbel R, Sharma AM, Ritz E, Wichmann HE, Jakobs KH, Horsthemke B. Association of a human G-pmtein beta3 sub-unit variant with hypertension. Nat Genet 1998; 18: 45–8.
  • Bray MS, Krushkal J, Li L, Ferrell R, Kardia S, Sing CF, Turner ST, Boerwinlde E. Positional genomic analysis identi-fies the beta(2)-adrenergic receptor gene as a susceptibility locus for human hypertension. Circulation 2000; 101: 2877–82.
  • Williams SM, Addy JH, Phillips JA 3rd, Dai M, Kpodonu J, Afful J, Jackson H, Joseph K, Eason F, Murray MM, Epperson P, Aduonum A, Wong LJ, Jose PA, Felder RA. Combinations of variations in multiple genes are associated with hypertension. Hypertension 2000; 36: 2–6.
  • Tanira MO, Al Balushi KA. Genetic variations related to hypertension: a review. J Hum Hypertens 2005; 19: 7–19.
  • Takahashi N, Smithies 0. Human genetics, animal models and computer simulations for studying hypertension. Trends Genet 2004; 20: 136–45.
  • Crook ED. The genetics of human hypertension. Semin Nephrol 2002; 22: 27–34.
  • Yagil Y, Yagil C. The search for the genetic basis of hyper-tension. Curr Opin Nephrol Hypertens 2005; 14: 141–7.
  • O’Shaughnessy KM. The genetics of essential hypertension. Br J Gun Pharmacol 2001; 51: 5–11.
  • Mein CA, Caulfield MJ, Dobson RJ, Munroe PB. Genetics of essential hypertension. Hum Mol Genet 2004; 13 Spec No 1: R169-75.
  • Gibbons GH, Liew CC, Goodarzi MO, Rotter JI, Hsueh WA, Siragy HM, Pratt R, Dzau VJ. Genetic markers: progress and potential for cardiovascular disease. Circulation 2004; 109: IV47–58.
  • Harrap SB. Where are all the blood-pressure genes? Lancet 2003; 361: 2149–51.
  • Samani NJ. Genome scans for hypertension and blood pres-sure regulation. Am J Hypertension 2003; 16: 167–71.
  • Caulfield M, Munroe P, Pembroke J, Samani N, Dominiczak A, Brown M, Benjamin N, Webster J, Ratcliffe P, O’Shea S, Papp J, Taylor E, Dobson R, Knight J, Newhouse S, Hooper J, Lee W, Brain N, Clayton D, Lathrop GM, Farrall M, Connell J; MRC British Genetics of Hyperten-sion Study. Genome-wide mapping of human loci for essen-tial hypertension. Lancet 2003; 361: 2118–23.
  • Lele RD. Hypertension: molecular approach. J Assoc Physi-cians India 2004; 52: 53–62.
  • Timberlake DS, O’Connor DT, Parmer RJ. Molecular genet-ics of essential hypertension: recent results and emerging strategies. Curr Opin Nephrol Hypertens 2001; 10: 71–9.
  • Gimenez-Roqueplo AP, Jeunemaitre X. Genetics and essen-tial hypertension: candidate genes or screening of the whole genome? Arch Mal Coeur Vaiss 2003; 96: 1089–95.
  • Kruglyak L, Daly MJ, Reeve-Daly MP, Lander ES. Para-metric and nonparametric linkage analysis: a unified multi-point approach. Am J Hum Genet 1996; 58: 1347–63.
  • Ge D, Huang J, Yang W, Zhao J, Shen Y, Qiang B, Gu D. Linkage analysis of chromosome 1 with essential hyperten-sion and blood pressure quantitative traits in Chinese fam-ilies. Ann Hum Genet 2005; 69: 45–54.
  • Barldey RA, Chakravarti A, Cooper RS, Ellison RC, Hunt SC, Pmvince MA, Turner ST, Weder AB, Boerwinkle E; Family Blood Pressure Program. Positional identification of hypertension susceptibility genes on chromosome 2. Hyper-tension 2004; 43: 477–82.
  • de Lange M, Spector TD, Andrew T. Genome-wide scan for blood pressure suggests linkage to chromosome 11, and repli-cation of loci on 16, 17, and 22. Hypertension 2004; 44: 872–7.
  • North KE, Rose KM, Borecki TB, Oberman A, Hunt SC, Miller MB, Blangero J, Almasy L, Pankow JS. Evidence for a gene on chromosome 13 influencing postural systolic blood pressure change and body mass index. Hypertension 2004; 43: 780–4.
  • Rutherford S, Johnson MP, Griffiths LR. Sibpair studies implicate chromosome 18 in essential hypertension. Am J Med Genet A 2004; 126: 241–7.
  • Levy D, DeStefano AL, Larson MG, O’Donnell CJ, Lifton RP, Gavras H, Cupples LA, Myers RH. Evidence for a gene influencing blood pressure on chromosome 17. Genome scan linkage results for longitudinal blood pressure phenotypes in subjects from the Framingham heart study. Hypertension 2000; 36: 477–83.
  • Hsueh WC, Mitchell BD, Schneider JL, Wagner MJ, Bell CJ, Nanthakumar E, Shuldiner AR. QTL influencing blood pressure maps to the region of PPH1 on chromosome 2q31-34 in Old Order Amish. Circulation 2000; 101: 2810–6.
  • Atwood LD, Samollow PB, Hixson JE, Stern MP, Mac-Cluer JW. Genome-wide linkage analysis of blood pressure in Mexican Americans. Genet Epidemiol 2001; 20: 373–82.
  • Cooper RS, Luke A, Zhu X, Kan D, Adeyemo A, Rotimi C, Bouzekri N, Ward R. Genome scan among Nigerians linking blood pressure to chromosomes 2, 3, and 19. Hypertension 2002; 40: 629–33.
  • Province MA, Kardia SL, Ranade K, Rao DC, Thiel BA, Cooper RS, Risch N, Turner ST, Cox DR, Hunt SC, Weder AB, Boerwinkle E; National Heart, Lung and Blood Institute Family Blood Pressure Program. A meta-analysis of genome-wide linkage scans for hypertension: the National Heart, Lung and Blood Institute Family Blood Pressure Pro-gram. Am J Hypertens 2003; 16: 144–7.
  • Cheung BM, Leung RY, Man YB, Ong KL, Wong LY, Lau CP, Lam KS. Association of hypertension with single nucleotide polymorphisms in the quantitative trait locus for abdominal obesity-metabolic syndrome on chromosome 17. J Hum Hypertens 2006; 20: 419–425.
  • Gong M, Zhang H, Schulz H, Lee YA, Sun K, Bahring S, Luft FC, Nurnberg P, Reis A, Rohde K, Ganten D, Hui R, Hubner N. Genome-wide linkage reveals a locus for human essential (primary) hypertension on chromosome 12p. Hum Mol Genet 2003; 12: 1273–1277.
  • Xu X, Yang J, Rogus J, Chen C, Schork N, Xu X. Mapping of a blood pressure quantitative trait locus to chromosome 15q in a Chinese population. Hum Mol Genet 1999; 8:2551–2555.
  • Angius A, Petretto E, Maestrale GB, Forabosco P, Casu G, Piras D, Fanciulli M, Falchi M, Melis PM, Palermo M, Pirastu M. A new essential hypertension susceptibility locus on chromosome 2p24-p25, detected by genomewide search. Am J Hum Genet 2002; 71: 893–905.
  • Laivuori H, Lahermo P, 011ikainen V, Widen E, Haiva-Mallinen L, Sundstrom H, Laitinen T, Kaaja R, Ylikorkala 0, Kere J. Susceptibility loci for preeclampsia on chromo-somes 2p25 and 9p13 in Finnish families. Am J Hum Genet 2003; 72: 168–177.
  • Kamide K, Kokubo Y, Yang J, Tanaka C, Hanada H, Takiuchi S, Inamoto N, Banno M, Kawano Y, Okayama A, Tomoike H, Miyata T. Hypertension susceptibility genes on chromosome 2p24-p25 in a general Japanese population. J Hypertens 2005; 23: 9559–60.
  • Padmanabhan S, Wallace C, Munroe PB, Dobson R, Brown M, Samani N, Clayton D, Farrall M, Webster J, Lath-rop M, Caulfield M, Dominiczak AF, Connell JM. Chro-mosome 2p shows significant linkage to antihypertensive response in the British Genetics of Hypertension Study. Hypertension 2006; 47: 603–8.
  • Bell JT, Wallace C, Dobson R, Wiltshire S, Mein C, Pembroke J, Brown M, Clayton D, Samani N, Dominiczak A, Webster J, Lathrop GM, Connell J, Munroe P, Caulfield M, Farrall M. Two-dimensional genome-scan identifies novel epistatic loci for essential hyper-tension. Hum Mol Genet 2006; 15: 1365–1374.
  • Moreno C, Dumas P, Kaldunski ML, Tonellato PJ, Greene AS, Roman RJ, Cheng Q, Wang Z, Jacob HJ, Cowley AW Jr. Genomic map of cardiovascular phenotypes of hypertension in female Dahl S rats. Physiol Genomics 2003; 15: 243–57.
  • Connell JM, Fraser R, MacKenzie S, Davies E. Is altered adrenal steroid biosynthesis a key intermediate phenotype in hypertension? Hypertension 2003; 41: 993–9.
  • Litchfield WR, Hunt SC, Jeunemaitre X, Fisher ND, Hopkins PN, Williams RR, Corvol P, Williams GH. Increased urinary free cortisol: a potential intermediate phenotype of essential hypertension. Hypertension 1998; 31: 569–74.
  • Rapp JP. Genetic analysis of inherited hypertension in the rat. Physiol Rev 2000; 80: 135–72.
  • Cowley AW Jr. Genomics and homeostasis. Am J Physiol Regul Integr Comp Physiol 2003; 284: R611–27.
  • Sugiyama F, Churchill GA, Higgins DC, Johns C, Makar-itsis KP, Gavras H, Paigen B. Concordance of murine quan-titative trait loci for salt-induced hypertension with rat and human loci. Genomics 2001; 71: 70–7.
  • Hansson JH, Schild L, Lu Y, Wilson TA, Gautschi I, Shimkets R, Nelson-Williams C, Rossier BC, Lifton RR A de novo missense mutation of the 13 subunit of the epithelial sodium channel causes hypertension and Liddle syndrome, identifying a proline-rich segment critical for regulation of channel activity. Proc Natl Acad Sci USA 1995; 92: 11495–9.
  • Shimkets RA, Warnock DG, Bositis CM, Nelson-Williams C, Hansson JH, Schambelan M, Gill JR Jr, Ulick S, Milora RV, Findling JW, et al. Liddle’s syndrome: heritable human hypertension caused by mutations in the beta subunit of the epithelial sodium channel. Cell 1994; 79: 407–14.
  • Shimkets RA, Lifton RP, Canessa CM. The activity of the epithelial sodium channel is regulated by clathrin-mediated endocytosis. J Biol Chem 1997; 272: 25537–41.
  • Simon DB, Nelson-Williams C, Bia MJ, Ellison D, Karet FE, Molina AM, Vaara I, Iwata F, Cushner HM, Koolen M, Gainza FJ, Gitleman HJ, Lifton RP.Gitelman’s variant of Bartter’s syndrome, inherited hypokalaemic alka-losis, is caused by mutations in the thiazide-sensitive Na-C1 cotransporter. Nat Genet 1996; 12: 24–30.
  • Simon DB, Karet FE, Hamdan JM, DiPietro A, Sanjad SA, Lifton RP. Bartter’s syndrome, hypokalaemic alkalosis with hypercalciuria, is caused by mutations in the Na-K-2C1 cotransporter NKCC2. Nat Genet 1996; 13: 183–8.
  • Simon DB, Karet FE, Rodriguez-Soriano J, Hamdan JH, DiPietro A, Trachtman H, Sanjad SA, Lifton RP. Genetic heterogeneity of Bartter’s syndrome revealed by mutations in the K+ channel, ROMK. Nat Genet 1996; 14: 152–6.
  • Hamet P, Pausova Z, Adarichev V, Adaricheva K, Trem-blay J. Hypertension: genes and environment. J Hypertens 1998; 16: 397–418.
  • Stoll M, Kwitek-Black AE, Cowley AW Jr, Harris EL, Harrap SB, Krieger JE, Printz MP, Provoost AP, Sassard J, Jacob HJ. New target regions for human hypertension via comparative genomics. Genome Res 2000; 10: 473–82.
  • Takahashi N, Smithies 0. Gene targeting approaches to ana-lyzing hypertension. J Am Soc Nephrol 1999; 10: 1598–605.
  • Glazier AM, Nadeau JH, Aitman TJ. Finding genes that underlie complex traits. Science 2002; 298: 2345–9.
  • Svenson KL, Bogue MA, Peters LL. Identifying new mouse models of cardiovascular disease: a review of high-through-put screens of mutagenized and inbred strains. J Appl Phys-iol 2003; 94: 1650–9.
  • McBride MW, Charchar FJ, Graham D, Miller WH, Stra-horn P, Carr FJ, Dominiczak AF. Functional genomics in rodent models of hypertension. J Physiol 2004; 554: 56–63.
  • Julier C, Delepine M, Keavney B, Terwilliger J, Davis S, Weeks DE, Bui T, Jeunemaitre X, Velho G, Froguel P, Ratcliffe P, Corvol P, Soubrier F, Lathrop GM. Genetic sus-ceptibility for human familial essential hypertension in a region of homology with blood pressure linkage on rat chro-mosome 10. Hum Mol Genet 1997; 6: 2077–85.
  • Baima J, Nicolaou M, Schwartz F, DeStefano AL, Mano-lis A, Gavras I, Laffer C, Elijovich F, Farrer L, Baldwin CT, Gavras H. Evidence for linkage between essential hyperten-sion and a putative locus on human chromosome 17. Hyper-tension 1999; 34: 4–7.
  • Knight J, Munroe PB, Pembroke JC, Caulfield MJ. Human chromosome 17 in essential hypertension. Ann Hum Genet 2003; 67: 193–206.
  • Ewing B, Green P. Analysis of expressed sequence tags indi-cates 35,000 human genes. Nat Genet 2000; 25: 232–4.
  • Juengst ET. What next for human gene therapy? Gene trans-fer often has multiple and unpredictable effects on cells. BMJ. 2003; 326: 1410–1.
  • Wilson FH, Disse-Nicodeme S, Choate KA, Ishikawa K, Nelson-Williams C, Desitter I, Gunel M, Milford DV, Lipkin GW, Achard JM, Feely MP, Dussol B, Berland Y, Unwin RJ, Mayan H, Simon DB, Farfel Z, Jeunemaitre X, Lifton RP. Human hypertension caused by mutations in WNK kinases. Science 2001; 293: 1107–12.
  • Garcia EA, Newhouse S, Caulfield MJ, Munroe PB. Genes and hypertension. Curr Pharm Des 2003; 9: 1679–89.
  • Jeunemaitre X, Soubrier F, Kotelevtsev YV, Lifton RP, Williams CS, Charru A, Hunt SC, Hopkins PN, Williams RR, Lalouel JM. Molecular basis of human hypertension: role of angiotensinogen. Cell 1992; 71: 169–80.
  • Hata A, Namikawa C, Sasaki M, Sato K, Nakamura T, Tamura K, Lalouel JM. Angiotensinogen as a risk factor for essential hypertension in Japan. J Clin Invest 1994; 93: 1285–7.
  • Kunz R, Kreutz R, Beige J, Distler A, Sharma AM. Asso-ciation between the angiotensinogen 235T-variant and essen-tial hypertension in whites: a systematic review and method-ological appraisal. Hypertension 1997; 30: 1331–7.
  • Sato N, Katsuya T, Nakagawa T, Ishikawa K, Fu Y, Asai T, Fukuda M, Suzuki F, Nakamura Y, Higaki J, Ogihara T. Nine polymorphisms of angiotensinogen gene in the sus-ceptibility to essential hypertension. Life Sci 2000; 68: 259–72.
  • Sethi AA, Nordestgaard BG, Gronholdt ML, Steffensen R, Jensen G, Tybjaerg-Hansen A. Angiotensinogen single nucleotide polymorphisms, elevated blood pressure, and risk of cardiovascular disease. Hypertension 2003; 41: 1202–11.
  • Robinson M, Williams SM. Role of two angiotensinogen polymorphisms in blood pressure variation. J Hum Hyper-tens 2004; 18: 865–9.
  • Renner W, Nauck M, Winkelmann BR, Hoffmann MM, Scharnagl H, Mayer V, Boehm BO, Marz W; the LURIC Study team. Association of angiotensinogen haplotypes with angiotensinogen levels but not with blood pressure or coro-nary artery disease: the Ludwigshafen Risk and Cardiovas-cular Health Study. J Mol Med 2005; 83: 235–9.
  • Staessen JA, Kuznetsova T, Wang JG, Emelianov D, Vlietinck R, Fagard R. M235T angiotensinogen gene poly-morphism and cardiovascular renal risk. J Hypertens 1999; 17: 9–17.
  • Wang WY, Glenn CL, Zhang W, Benj afield AV, Nyholt DR, Morris BJ. Exclusion of angiotensinogen gene in molecular basis of human hypertension: sibpair linkage and association analyses in Australian anglo-caucasians. Am J Med Genet 1999; 87: 53–60.
  • Kim HS, Krege JH, Kluckman KD, Hagaman JR, Hodgin JB, Best CF, Jennette JC, Coffman TM, Maeda N, Smithies 0. Genetic control of blood pressure and the angiotensinogen locus. Proc Natl Acad Sci USA 1995; 92: 2735–9.
  • Inoue I, Nakajima T, Williams CS, Quackenbush J, Puryear R, Powers M, Cheng T, Ludwig EH, Sharma AM, Hata A, Jeunemaitre X, Lalouel JM. A nucleotide substitu-tion in the promoter of human angiotensinogen is associated with essential hypertension and affects basal transcription in vitro. J Clin Invest 1997; 99: 1786–97.
  • Saeed Mahmood M, Saboohi K, Osman Ali S, Bokhari AM, Frossard PM. Association of the angiotensin-converting enzyme (ACE) gene G2350A dimorphism with essential hypertension. J Hum Hypertens 2003; 17: 719–23.
  • Espinel E, Tovar JL, Borrellas J, Piera L, Jardi R, Frias FR, Armadans L, Bachs AG. Angiotensin-converting enzyme i/d polymorphism in patients with malignant hypertension. J Gun Hypertens (Greenwich) 2005; 7: 11–5.
  • Mondry A, Loh M, Liu P, Zhu AL, Nagel M. Polymor-phisms of the insertion/deletion ACE and M235T AGT genes and hypertension: surprising new findings and meta-analysis of data. BMC Nephrol 2005; 6: 1.
  • Benjafield AV, Wang WY, Morris BJ. No association of angiotensin-converting enzyme 2 gene (ACE2) polymor-phisms with essential hypertension. Am J Hypertens 2004; 17: 624–8.
  • de Gasparo M, Catt KJ, Inagami T, Wright JW, Unger T. International union of pharmacology. XXIII. The angiotensin II receptors. Pharmacol Rev 2000; 52: 415–72.
  • van Kesteren CA, van Heugten HA, Lamers JM, Saxena PR, Schalekamp MA, Danser AH. Angiotensin II-mediated growth and antigrowth effects in cultured neonatal rat car-diac myocytes and fibroblasts. J Mol Cell Cardiol 1997; 29: 2147–57.
  • Carey RM, Wang ZQ, Siragy HM. Role of the angiotensin type 2 receptor in the regulation of blood pressure and renal function. Hypertension 2000; 35: 155–63.
  • Sayeski PP, Bernstein KE. Signal transduction mechanisms of the angiotensin II type AT(1)-receptor: looking beyond the heterotrimeric G protein paradigm. J Renin Angiotensin Aldosterone Syst 2001; 2: 4–10.
  • Ishii K, Takekoshi K, Shibuya S, Kawakami Y, Isobe K, Nakai T. Angiotensin subtype-2 receptor (AT2) negatively regulates subtype-1 receptor (AT1) in signal transduction pathways in cultured porcine adrenal medullary chromaffin cells. J Hypertens 2001; 19: 1991–9.
  • Eguchi S, Inagami T. Signal transduction of angiotensin II type 1 receptor through receptor tyrosine kinase. Regul Pept 2000; 91: 13–20.
  • Shanmugam S, Corvol P, Gasc JM. Ontogeny of the two angiotensin II type 1 receptor subtypes in rats. Am J Physiol 1994; 267: E828–36.
  • Ito M, Oliverio MI, Mannon PJ, Best CF, Maeda N, Smithies 0, Coffman TM. Regulation of blood pressure by the type lA angiotensin II receptor gene. Proc Natl Acad Sci USA 1995; 92: 3521–5.
  • Tsuchida S, Matsusaka T, Chen X, Okubo S, Niimura F, Nishimura H, Fogo A, Utsunomiya H, Inagami T, Ichikawa I. Murine double nullizygotes of the angiotensin type lA and 1B receptor genes duplicate severe abnormal phenotypes of angiotensinogen nullizygotes. J Clin Invest 1998; 101: 755–60.
  • Jiang Z, Zhao W, Yu F, Xu G. Association of angiotensin II type 1 receptor gene polymorphism with essential hyper-tension. Chin Med J (Engl) 2001; 114: 1249–51.
  • Stankovic A, Zivkovic M, Glisic S, Alavantic D. Angiotensin II type 1 receptor gene polymorphism and essential hypertension in Serbian population. Clin Chim Acta 2003; 327: 181–5.
  • Dzida G, Sobstyl J, Puzniak A, Golon P, Mosiewicz J, Hanzlik J. Polymorphisms of angiotensin-converting enzyme and angiotensin II receptor type 1 genes in essen-tial hypertension in a Polish population. Med Sci Monit 2001;7: 1236–41.
  • Jin JJ, Nakura J, Wu Z, Yamamoto M, Abe M, Chen Y, Tabara Y, Yamamoto Y, Igase M, Bo X, Kohara K, Mild T. Association of angiotensin II type 2 receptor gene variant with hypertension. Hypertens Res 2003; 26: 547–52.
  • Tamaki S, Iwai N, Tsujita Y, Kinoshita M. Genetic poly-morphism of CYP11B2 gene and hypertension in Japanese. Hypertension 1999; 33: 266–70.
  • Davies E, Holloway CD, Ingram MC, Inglis GC, Friel EC, Morrison C, Anderson NH, Fraser R, Connell JM. Aldos-terone excretion rate and blood pressure in essential hyper-tension are related to polymorphic differences in the aldos-temne synthase gene CYP11B2. Hypertension 1999; 33: 703–7.
  • Tsujita Y, Iwai N, Katsuya T, Higaki J, Ogihara T, Tamaki S, Kinoshita M, Mannami T, Ogata J, Baba S. Lack of association between genetic polymorphism of CYP11B2 and hypertension in Japanese: the Suita Study. Hypertens Res 2001; 24: 105–9.
  • Zhu H, Sagnella GA, Dong Y, Miller MA, Onipinla A, Markandu ND, MacGregor GA. Contrasting associations between aldosterone synthase gene polymorphisms and essential hypertension in blacks and in whites. J Hypertens 2003; 21: 87–95.
  • Barbato A, Russo P, Siani A, Folkerd EJ, Miller MA, Venezia A, Grimaldi C, Strazzullo P, Cappuccio FP Aldos-terone synthase gene (CYP11B2) C-344T polymorphism, plasma aldosterone, renin activity and blood pressure in a multi-ethnic population. J Hypertens 2004; 22: 1895–901.
  • Schmaier AH. The kallikrein-kinin and the renin-angiotensin systems have a multilayered interaction. Am J Physiol Regul Integr Comp Physiol 2003; 285: R1–13.
  • Lavoie JL, Sigmund CD. Minireview: overview of the renin-angiotensin system-an endocrine and paracrine system. Endocrinology 2003; 144: 2179–83.
  • Pan L, Gross KW Transcriptional regulation of renin: an update. Hypertension 2005; 45: 3-8. Epub 2004.
  • Campbell DJ. The renin-angiotensin and the kallikrein-kinin systems. Int J Biochem Cell Biol 2003; 35: 784–91.
  • Sun H, Zhang L, Wang A, Xue Z. Prolonged hypotensive effect of human tissue kallikrein gene delivery and recom-binant enzyme administration in spontaneous hyperten-sion rats. Exp Mol Med 2004; 36: 23–7.
  • Pravenec M, Kren V, Kunes J, Scicli AG, Carretero OA, Simonet L, Kurtz TW. Cosegregation of blood pressure with a kallikrein gene family polymorphism. Hypertension 1991; 17: 242–6.
  • Margolis HS, Geller R, Pisano JJ, Sjoerdsma A. Altered urinary kallikrein excretion in human hypertension. Lancet 1971; 2: 1063–5.
  • Zinner SH, Margolius HS, Rosner B, Kass EH. Stability of blood pressure rank and urinary kallikrein concentration in childhood: an eight-year follow-up. Circulation 1978; 58: 908–15.
  • Margolius HS, Horwitz D, Pisan° JJ, Keiser HR. Urinary kallikrein excretion in hypertensive man. Relationships to sodium intake and sodium-retaining steroids. Circ Res 1974; 35: 820–5.
  • Berry TD, Hasstedt SJ, Hunt SC, Wu LL, Smith JB, Ash KO, Kuida H, Williams RR. A gene for high urinary kallikrein may protect against hypertension in Utah kin-dreds. Hypertension 1989; 13: 3–8.
  • Yu H, Song Q, Freedman BI, Chao J, Chao L, Rich SS, Bowden DW. Association of the tissue kallikrein gene promoter with ESRD and hypertension. Kidney Int 2002; 61: 1030–9.
  • Puddu P, Puddu GM, Zaca F, Muscari A. Endothelial dysfunction in hypertension. Acta Cardiol 2000; 55: 221–32.
  • Puddu P, Puddu GM, Cravero E, Muscari A. Different effects of antihypertensive drugs on endothelial dysfunc-tion. Acta Cardiol 2004; 59: 555–64.
  • Derebecka N, Holysz M, Dankowski R, Wierzchowiecki M, Trzeciak WH. Polymorphism in intron 23 of the endothelial nitric oxide synthase gene (N053) is not asso-ciated with hypertension. Acta Biochim Pol 2002; 49: 263–8.
  • Nakayama T, Soma M, Takahashi Y, Izumi Y, Kanmatsuse K, Esumi M. Association analysis of CA repeat polymorphism of the endothelial nitric oxide synthase gene with essential hypertension in Japanese. Clin Genet 1997; 51: 26–30.
  • Shoji M, Tsutaya S, Saito R, Takamatu H, Yasujima M. Positive association of endothelial nitric oxide synthase gene polymorphism with hypertension in northern Japan. Life Sci 2000; 66: 2557–62.
  • Kajiyama N, Saito Y, Miyamoto Y, Yoshimura M, Nakayama M, Harada M, Kuwahara K, Kishimoto I, Yasue H, Nakao K. Lack of association between T-786->C mutation in the 5’-flanking region of the endothelial nitric oxide synthase gene and essential hypertension. Hypertens Res 2000; 23: 561–5.
  • Benjafield AV, Morris BJ. Association analyses of endothe-lial nitric oxide synthase gene polymorphisms in essential hypertension. Am J Hypertens 2000; 13: 994–8.
  • Wolff B, Grabe HJ, Schluter C, Popowski K, Volzke H, Ludemann J, John U, Felix SB, Cascorbi I. Endothelial nitric oxide synthase Glu298Asp gene polymorphism, blood pressure and hypertension in a general population sample. J Hypertens 2005; 23: 1361–6.
  • Rossi GP, Taddei S, Virdis A, Cavallin M, Ghiadoni L, Favilla S, Versari D, Sudano I, Pessina AC, Salvetti A. The T-786C and Glu298Asp polymorphisms of the endothe-lial nitric oxide gene affect the forearm blood flow responses of Caucasian hypertensive patients. J Am Coll Cardiol 2003; 41: 938–45.
  • Rutherford S, Johnson MP, Curtain RP, Griffiths LR. Chromosome 17 and the inducible nitric oxide synthase gene in human essential hypertension. Hum Genet 2001; 109: 408–15.
  • Tiret L, Poirier 0, Hallet V, McDonagh TA, Morrison C, McMurray JJ, Dargie HJ, Arveiler D, Ruidavets JB, Luc G, Evans A, Cambien F. The Lys198Asn polymorphism in the endothelin-1 gene is associated with blood pressure in overweight people. Hypertension 1999; 33: 1169–74.
  • Jin JJ, Nakura J, Wu Z, Yamamoto M, Abe M, Tabara Y, Yamamoto Y, Igase M, Kohara K, Mild T. Association of endothelin-1 gene variant with hypertension. Hypertension 2003; 4: 163–7.
  • Asai T, Ohkubo T, Katsuya T, Higaki J, Fu Y, Fukuda M, Hozawa A, Matsubara M, Kitaoka H, Tsuji I, Araki T, Satoh H, Hisamichi S, Imai Y, Ogihara T. Endothelin-1 gene variant associates with blood pressure in obese Japan-ese subjects: the Ohasama Study. Hypertension 2001; 38: 1321–4.
  • Kaetsu A, Kishimoto T, Osaki Y, Okamoto M, Fuku-moto S, Kurozawa Y The lack of relationship between an endothelin-1 gene polymorphism (A1a288 ser) and incidence of hypertension: a retrospective cohort study among Japan-ese workers. J Epidemiol 2004; 14: 129–36.
  • Dong Y, Wang X, Zhu H, Treiber FA, Snieder H. Endothe-lin-1 gene and progression of blood pressure and left ven-tricular mass: longitudinal findings in youth. Hypertension 2004; 44: 884–90.
  • Funke-Kaiser H, Reichenberger F, Kopke K, Herrmann SM, Pfeifer J, Orzechowski HD, Zidek W, Paul M, Brand E. Dif-ferential binding of transcription factor E2F-2 to the endothelin-converting enzyme-lb promoter affects blood pressure regulation. Hum Mol Genet 2003; 12: 423–33.
  • Iwai N, Katsuya T, Ishikawa K, Mannami T, Ogata J, Higaki J, Ogihara T, Tanabe T, Baba S. Human prostacy-din synthase gene and hypertension: the Suita Study. Circulation 1999; 100: 2231–6.
  • Nakayama T, Soma M, Rahmutula D, Tobe H, Sato M, Uwabo J, Aoi N, Kosuge K, Kunimoto M, Kanmatsuse K, Kokubun S. Association study between a novel single nucleotide polymorphism of the promoter region of the prostacyclin synthase gene and essential hypertension. Hypertens Res 2002; 25: 65–8.
  • Nakayama T, Soma M, Takahashi Y, Rehemudula D, Tobe H, Sato M, Uwabo J, Kunimoto M, Izumi Y, Kan-matsuse K. Polymorphism of the promoter region of prostacyclin synthase gene is not related to essential hyper-tension. Am J Hypertens 2001; 14: 409–11.
  • Taylor WR. Hypertensive vascular disease and inflamma-tion: mechanical and humoral mechanisms. Curr Hyper-tens Rep 1999; 1:96–101.
  • Intengan HD, Schiffrin EL. Vascular remodeling in hyper-tension: roles of apoptosis, inflammation, and fibrosis. Hypertension 2001; 38: 581–7.
  • Dzielak DJ. The immune system and hypertension. Hyper-tension 1992; 19: 36–44
  • Fu ML. Do immune system changes have a role in hyper-tension? J Hypertens 1995; 13: 1259–65.
  • Peeters AC, Netea MG, Janssen MC, Kullberg BJ, Van der Meer JW, Thien T. Pro-inflammatory cytokines in patients with essential hypertension. Eur J Clin Invest 2001; 31: 31–36
  • Chen CM, Schachter D. Elevation of plasma immunoglob-ulin A in the spontaneously hypertensive rat. Hypertension 1993; 21: 731–8.
  • Lijnen PJ, Petrov VV, Fagard RH. Association between transforming growth factor-beta and hypertension. Am J Hypertens 2003; 16: 604–11.
  • Izawa H, Yamada Y, Okada T, Tanaka M, Hirayama H, Murohara T, Yokota M. Prediction of genetic risk for hypertension. J Cardiol 2004; 43: 92–3.
  • Pola R, Flex A, Gaetani E, Pola P, Bernabei R. The -174 G/C polymorphism of the interleukin-6 gene promoter and essential hypertension in an elderly Italian population. J Hum Hypertens 2002; 16: 637–40.
  • Mettimano M, Specchia ML, Ianni A, Arzani D, Riccia-rdi G, Savi L, Romano-Spica V. CCR5 and CCR2 gene polymorphisms in hypertensive patients. Br J Biomed Sci 2003; 60: 19–21.
  • Leineweber K, Buscher R, Bruck H, Brodde OE. Beta-adrenoceptor polymorphisms. Naunyn Schmiedebergs Arch Pharmacol 2004; 369: 1–22.
  • Rankinen T, An P, Rice T, Sun G, Chagnon YC, Gagnon J, Leon AS, Skinner JS, Wilmore JH, Rao DC, Bouchard C. Genomic scan for exercise blood pressure in the Health, Risk Factors, Exercise Training and Genetics (HER-ITAGE) Family Study. Hypertension 2001; 38: 30–7.
  • Tomaszewski M, Brain NJ, Charchar FJ, Wang WY, Lacka B, Padmanabahn S, Clark JS, Anderson NH, Edwards HV, Zukowska-Szczechowska E, Grzeszczak W, Dominiczak AF. Essential hypertension and beta2-adren-ergic receptor gene: linkage and association analysis. Hyper-tension 2002; 40: 286–91.
  • Galletti F, Iacone R, Ragone E, Russo 0, Della Valle E, Siani A, Barba G, Farinaro E, Strazzullo V, Strazzullo P. Lack of association between polymorphism in the beta2-adrenergic receptor gene, hypertension, and obesity in the Olivetti heart study. Am J Hypertens 2004; 17: 718–20.
  • Kato N, Sugiyama T, Morita H, Kurihara H, Sato T, Yamori Y, Yazaki Y Association analysis of beta(2)-adrenergic receptor polymorphisms with hypertension in Japanese. Hypertension 2001; 37: 286–92.
  • Bengtsson K, Melander 0, Orho-Melander M, Lindblad U, Ranstam J, Rastam L, Groop L. Polymorphism in the beta(1)-adrenergic receptor gene and hypertension. Circu-lation 2001; 104: 187–90.
  • Humma LM, Terra SG. Pharmacogenetics and cardiovas-cular disease: impact on drug response and applications to disease management. Am J Health Syst Pharm 2002; 59: 1241–52.
  • Karlsson J, Lind L, Hallberg P, Michaelsson K, Kurland L, Kahan T, Malmqvist K, Ohman KP, Nystrom F, Melhus H. Betal-adrenergic receptor gene polymorphisms and response to betal-adrenergic receptor blockade in patients with essential hypertension. Clin Cardiol 2004; 27: 347–50.
  • Von Wowern F, Bengtsson K, Lindgren CM, Orho-Melander M, Fyhrquist F, Lindblad U, Rastam L, Forsblom C, Kanninen T, Alingren P, Burn i P, Katzman P, Groop L, Hulthen UL, Melander 0. A genome wide scan for early onset primary hypertension in Scandinavians. Hum Mol Genet 2003; 12: 2077–81.
  • Von Wowern F, Bengtsson K, Lindblad U, Rastam L, Melander 0. Functional variant in the (alpha)2B adreno-ceptor gene, a positional candidate on chromosome 2, asso-ciates with hypertension. Hypertension 2004; 43: 592–7.
  • Zeng C, Sanada H, Watanabe H, Eisner GM, Felder RA, Jose PA. Functional genomics of the dopaminergic system in hypertension. Physiol Genomics 2004; 19: 233–46.
  • Krushkal J, Xiong M, Ferrell R, Sing CF, Turner ST, Boer-winkle E. Linkage and association of adrenergic and dopamine receptor genes in the distal portion of the long arm of chromosome 5 with systolic blood pressure varia-tion. Hum Mol Genet 1998; 7: 1379–83.
  • Gordon RD, Ravenscroft PJ, Klem SA, Tunny TJ and Hamlet SA. A new Australian kindred with the syndrome of hypertension and hyperkalaemia have dysregulation of atrial natriuretic peptide. J Hypertens 1988; 6 : 5323–5326.
  • Cope G, Golbang A, O’Shaughnessy KM. WNK kinases and the control of blood pressure. Pharmacol Ther 2005; 106: 221–231.
  • Tobin MD, Raleigh SM, Newhouse S, Braund P, Body-cote C, Ogleby J, Cross D, Gracey J, Hayes S, Smith T, Ridge C, Caulfield M, Sheehan NA, Munroe PB, Bur-ton PR, Samani NJ. Association of WNK1 gene polymor-phisms and haplotypes with ambulatory blood pressure in the general population. Circulation 2005; 112: 3423–3429.
  • Rinehart J, Kahle KT, de Los Heros P. Vazquez N, Meade P, Wilson FH, Hebert SC, Gimenez I, Gamba G, Lifton RP. WNK3 kinase is a positive regulator of NKCC2 and NCC, renal cation-C1-cotransporters required for nor-mal blood pressure homeostasis. Proc Natl Acad Sci U S A 2005; 102: 16777–16782.
  • Leng Q, Kahle KT, Rinehart J, MacGregor GG, Wil-son FH, Canessa CM, Lifton RP, Hebert S. WNK3, a kinase related to genes mutated in hereditary hypertension with hyperkalaemia, regulates the K+ channel ROMK1 (Kir1.1). J Physiol 2006; 571(Pt 2): 275-86.
  • Bourne HR. How receptors talk to trimeric G proteins. Curr Opin Cell Biol 1997; 9: 134–42.
  • Downes GB, Gautam N. The G protein subunit gene fam-ilies. Genomics 1999; 62: 544–52.
  • Gautam N, Downes GB, Yan K, Kisselev 0. The G-protein betagamma complex. Cell Signal 1998; 10: 447–55.
  • Siffert W G protein polymorphisms in hypertension, ath-erosclerosis, and diabetes. Annu Rev Med 2005; 56: 17–28.
  • Rosskopf D, Dusing R, Siffert W. Membrane sodium-proton exchange and primary hypertension. Hypertension 1993; 21: 607–17.
  • Pietruck F, Moritz A, Montemurro M, Sell A, Busch S, Rosskopf D, Virchow S, Esche H, Brockmeyer N, Jakobs KH, Siffert W Selectively enhanced cellular sig-naling by Gi proteins in essential hypertension. G alpha i2, G alpha i3, G beta 1, and G beta 2 are not mutated. Circ Res 1996; 79: 974–83.
  • Schunkert H, Hense HW, Doring A, Riegger GA, Siffert W. Association between a polymorphism in the G protein beta3 subunit gene and lower renin and elevated diastolic blood pressure levels. Hypertension 1998; 32: 510–3.
  • Hengstenberg C, Schunkert H, Mayer B, Doring A, Lowel H, Hense HAV, Fischer M, Riegger GA, Holmer SR. Association between a polymorphism in the G protein beta3 subunit gene (GNB3) with arterial hypertension but not with myocardial infarction. Cardiovasc Res 2001; 49: 820–7.
  • Brand E, Wang JG, Herrmann SM, Staessen JA. An epidemiological study of blood pressure and metabolic phe-notypes in relation to the Gbeta3 C825T polymorphism. J Hypertens 2003; 21: 729–37.
  • Benjafield AV, Jeyasingam CL, Nyholt DR, Griffiths LR, Morris BJ. G-protein beta3 subunit gene (GNB3) variant in causation of essential hypertension. Hypertension 1998; 32: 1094–7.
  • Kato N, Sugiyama T, Morita H, Kurihara H, Yamori Y, Yazaki Y G protein beta3 subunit variant and essential hypertension in Japanese. Hypertension 1998; 32: 935–8.
  • Ishikawa K, Imai Y, Katsuya T, Ohkubo T, Tsuji I, Nagai K, Takami S. Nakata Y, Satoh H, Hisamichi S, Higaki J, Ogihara T. Human G-protein beta3 subunit vari-ant is associated with serum potassium and total cholesterol levels but not with blood pressure. Am J Hypertens 2000; 13: 140–5.
  • Shioji K, Kokubo Y, Mannami T, Inamoto N, Morisaki H, Mino Y, Tagoi N, Yasui N, Iwaii N. Association between hypertension and the alpha-adducin, betal-adrenoreceptor, and G-protein beta3 subunit genes in the Japanese popula-tion; the Suita study. Hypertens Res 2004; 27: 31–7.
  • Suwazono Y, Okubo Y, Kobayashi E, Miura K, Morikawa Y, Ishizaki M, Kido T, Nakagawa H, Nogawa K. Lack of association of human G-protein beta 3 subunit variant with hypertension in Japanese workers. J Hypertens 2004; 22: 493–500.
  • Huang X, Ju Z, Song Y, Zhang H, Sun K, Lu H, Yang Z, Jose PA, Zhou G, Wang M, Wang W, Feng S, Hui R. Lack of association between the G protein beta3 subunit gene and essential hypertension in Chinese: a case-control and a family-based study. J Mol Med 2003; 81: 729-35. Epub 2003.
  • Jia H, Hingorani AD, Sharma P, Hopper R, Dickerson C, Trutwein D, Lloyd DD, Brown MJ. Association of the G(s)alpha gene with essential hypertension and response to beta-blockade. Hypertension 1999; 34: 8–14.
  • Abe M, Nakura J, Yamamoto M, Jin JJ, Wu Z, Tabara Y, Yamamoto Y, Igase M, Kohara K, Mild T. Association of GNAS1 gene variant with hypertension depending on smoking status. Hypertension 2002; 40: 261–5.
  • Puddu P, Puddu GM, Galletti L, Cravero E, Muscari A. Mitochondrial dysfunction as an initiating event in athero-genesis: a plausible hypothesis. Cardiology . 2005; 103: 137–41.
  • DeStefano AL, Gavras H, Heard-Costa N, Bursztyn M, Manolis A, Farrer LA, Baldwin CT, Gavras I, Schwartz F. Maternal component in the familial aggregation of hyper-tension. Clin Genet 2001; 60: 13–21.
  • Watson B Jr, Khan MA, Desmond RA, Bergman S. Mitochondrial DNA mutations in black Americans with hypertension-associated end-stage renal disease. Am J Kidney Dis 2001; 38: 529–36.
  • Schwartz F, Duka A, Sun F, Cui J, Manolis A, Gavras H. Mitochondrial genome mutations in hypertensive individ-uals. Am J Hypertens 2004; 17: 629–35.
  • Kato N. Genetic analysis in human hypertension. Hyper-tens Res 2002; 25: 319–27.
  • Mead PA, Harvey JN, Rutherford PA, Leitch H, Thomas TH. Sodium-lithium countertransport and the G1y460—>Trp alpha-adducin polymorphism in essential hypertension. Clin Sci (Lond) 2005; 108: 231-6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.