1,128
Views
34
CrossRef citations to date
0
Altmetric
Reports

Miniaturized FISH for Screening of Onco-Hematological Malignancies

, , , , , , & show all
Pages 497-504 | Received 26 Jan 2010, Accepted 29 Apr 2010, Published online: 03 Apr 2018

References

  • Johnson, C.J., N.Zhukovsky, A.E.Cass, and J.M.Nagy. 2008. Proteomics, nanotechnology and molecular diagnostics. Proteomics8:715–730.
  • Jane, A., R.Dronov, A.Hodges, and N.Voelcker. 2009. Porous silicon biosensors on the advance. Trends Biotechnol.27:230–239.
  • Jain, K.K. 2007. Applications of nanobiotechnology in clinical diagnostics. Clin. Chem.53:2002–2009.
  • Volpi, E.V. and J.M.Bridger. 2008. FISH glossary: an overview of the fluorescence in situ hybridization technique. BioTechniques45:385–386.
  • Tibiletti, M.G. 2007. Interphase FISH as a new tool in tumor pathology. Cytogenet. Genome Res.118:229–236.
  • Kearney, L. 1999. The impact of the new FISH technologies on the cytogenetics of haematological malignancies. Br. J. Haematol.104:648–658.
  • Lichter, P., C.-J.Tang Chang, K.Call, G.Hermanson, G.A.Evans, D.Housman, and D.C.Ward. 1990. High resolution mapping of human chromosomes 11 by in situ hybridization with cosmid clones. Science247:64–69.
  • Mitelman, F., B.Johansson, and F.Mertens. 2007. The impact of translocations and gene fusions on cancer causation. Nat. Rev. Cancer7:233–245.
  • Ohno, K., K.Tachikawa, and A.Manz. 2008. Microfluidics: applications for analytical purposes in chemistry and biochemistry. Electrophoresis29:4443–4453.
  • Wang, C.J. and A.Levchenko. 2009. Microfluidics technology for systems biology research. Methods Mol. Biol.500:203–219.
  • Cheung, L.S., X.Zheng, A.Stopa, J.C.Baygents, R.Guzman, J.A.Schroeder, R.L.Heimark, and Y.Zohar. 2009. Detachment of captured cancer cells under flow acceleration in a bio-functionalized microchannel. Lab Chip9:1721–1731.
  • Sieben, V.J., C.S.Debes Marun, P.M.Pilarski, G.V.Kaigala, L.M.Pilarski, and C.J.Backhouse. 2007. FISH and chips: chromosomal analysis on microfluidic platforms. IET Nanobiotechnol.1:27–35.
  • Sieben, V.J., C.S.Debes-Marun, L.M.Pilarski, and C.J.Backhouse. 2008. An integrated microfluidic chip for chromosome enumeration using fluorescence in situ hybridization. Lab Chip8:2151–2156.
  • Carbone, R., I.Marangi, A.Zanardi, L.Giorgetti, E.Chierici, G.Berlanda, A.Podestà, F.Fiorentini, et al.. 2006. Biocompatibility of cluster-assembled nanostructured TiO2 with primary and cancer cells. Biomaterials27:3221–3229.
  • Fiorini, G.S. and D.T.Chiu. 2005. Disposable microfluidic devices: fabrication, function, and application. BioTechniques38:429–446.
  • Barborini, E., I.N.Kholmanov, A.M.Conti, P.Piseri, S.Vinati, P.Milani, and C.Ducati. 2003. Supersonic cluster beam deposition of nanostructured titania. J. Phys. D: Appl. Phys.24:277–282.
  • Wegner, K., P.Piseri, H.Tafreshi, and P.Milani. 2006. Cluster beam deposition: a tool for nanoscale science and technology. J. Phys. D Appl. Phys.39:R439–R459.
  • Kiechle, F.L. and C.A.Holland. 2009. Point-of-care testing and molecular diagnostics: miniaturization required. Clin. Lab. Med.29:555–560.
  • Lee, Ji.-Y., C.-H.Lee, S.-H.Shim, H.-K.Seo, J.-H.Kyhm, S.Cho, and Y.-H.Cho. 2002. Molecular cytogenetic analysis of the monoblastic cell line U937: karyotype clarification by G-banding, whole chromosome painting, microdissection and reverse painting, and comparative genomic hybridization. Cancer Genet. Cytogenet.137:124–132.
  • Chen, L., J.Li, W.Xu, H.Qiu, Y.Zhu, Y.Zhang, L.Duan, S.Qian, and H.Lu. 2007. Molecular cytogenetic aberrations in patients with multiple myeloma studied by interphase fluorescence in situ hybridization. Exp. Oncol.29:116–120.
  • Schlomer, B.J., R.Ho, A.Sagalowsky, R.Ashfaq, and Y.Lotan. 2010. Prospective validation of the clinical usefulness of reflex fluorescence in situ hybridization assay in patients with atypical cytology for the detection of urothelial carcinoma of the bladder. J. Urol.183:62–67.
  • Seppo, A., G.R.Jalali, R.Babkowski, H.Symiakaki, A.Rodolakis, T.Tafas, P.Tsipouras, and M.W.Kilpatrick. 2009. Gain of 3q26: a genetic marker in low-grade squamous intraepithelial lesions (LSIL) of the uterine cervix. Gynecol. Oncol.114:80–83.