2,599
Views
2
CrossRef citations to date
0
Altmetric
Reports

T-blocker: a Simple and Robust Probe-Free Quantitative PCR Assay to Detect Somatic Mutations Down to 0.1% Frequency

, , , , , & show all
Pages 205-210 | Received 02 Jan 2018, Accepted 26 Jul 2018, Published online: 04 Oct 2018

References

  • Gerber DE , GandhiL, CostaDB. Management and future directions in non-small cell lung cancer with known activating mutations. Am. Soc. Clin. Oncol. Educ. Booke353–e365 (2014).
  • Gonzalez de Castro D , ClarkePA, Al-LazikaniB, WorkmanP. Personalized cancer medicine: molecular diagnostics, predictive biomarkers, and drug resistance. Clin. Pharmacol. Ther.93, 252–259 (2013).
  • Kalia M . Personalized oncology: recent advances and future challenges. Metabolism62(Suppl. 1), S11–S14 (2013).
  • Normanno N , RachiglioAM, RomaCet al. Molecular diagnostics and personalized medicine in oncology: challenges and opportunities. J. Cell Biochem.114, 514–524 (2013).
  • Newton CR , GrahamA, HeptinstallLEet al. Analysis of any point mutation in DNA. The amplification refractory mutation system (ARMS). Nucleic Acids Res.17, 2503–2516 (1989).
  • Bolton L , ReimanA, LucasK, TimmsJ, CreeIA. KRAS mutation analysis by PCR: a comparison of two methods. PLoS One10, e0115672 (2015).
  • Morlan J , BakerJ, SinicropiD. Mutation detection by real-time PCR: a simple, robust and highly selective method. PLoS One4, e4584 (2009).
  • Wang H , JiangJ, MostertBet al. Allele-specific, non-extendable primer blocker PCR (AS-NEPB-PCR) for DNA mutation detection in cancer. J. Mol. Diagn.15, 62–69 (2013).
  • Pender A , Garcia-MurillasI, RanaSet al. Efficient genotyping of KRAS mutant non-small cell lung cancer using a multiplexed droplet digital PCR approach. PLoS One10, e0139074 (2015).
  • Wood-Bouwens C , LauBT, HandyCM, LeeH, JiHP. Single-color digital PCR provides high-performance detection of cancer mutations from circulating DNA. J. Mol. Diagn.19, 697–710 (2017).
  • Andreyev HJ , NormanAR, CunninghmaDet al. Kirsten ras mutations in patients with colorectal cancer: the ‘RASCAL II’ study. Br. J. Cancer85, 692–696 (2001).
  • Bos JL , FearonER, HamiltonSRet al. Prevalence of ras gene mutations in human colorectal cancers. Nature327, 293–297 (1987).
  • Davies H , BignellGR, CoxCet al. Mutations of the BRAF gene in human cancer. Nature417, 949–954 (2002).
  • Lang AH , DrexelH, Geller-RhombergSet al. Optimized allele-specific real-time PCR assays for the detection of common mutations in KRAS and BRAF. J. Mol. Diagn.13, 23–28 (2011).
  • Orue A , RieberM. Optimized multiplex detection of 7 KRAS mutations by Taqman allele-specific qPCR. PLoS One11, e0163070 (2016).
  • Li T , KungHJ, MackPC, GandaraDR. Genotyping and genomic profiling of non-small-cell lung cancer: implications for current and future therapies. J. Clin. Oncol.31, 1039–1049 (2013).
  • Pao W , GirardN. New driver mutations in non-small-cell lung cancer. Lancet Oncol.12, 175–180 (2011).
  • Jeong D , JeongY, LeeSet al. Detection of BRAF(V600E) mutations in papillary thyroid carcinomas by peptide nucleic acid clamp real-time PCR: a comparison with direct sequencing. Korean J. Pathol.46, 61–67 (2012).
  • Satow R , HiranoT, BatoriR, NakamuraT, MurayamaY, FukamiK. Phospholipase Cδ1 induces E-cadherin expression and suppresses malignancy in colorectal cancer cells. Proc. Natl Acad. Sci. USA111, 13505–13510 (2014).
  • Dames S , PattisonDC, BromleyLK, WittwerCT, VoelkerdingKV. Unlabeled probes for the detection and typing of herpes simplex virus. Clin. Chem.53, 1847–54 (2007).
  • Zhou L , WangY, WittwerCT. Rare allele enrichment and detection by allele-specific PCR, competitive probe blocking, and melting analysis. Biotechniques50, 311–316 (2011).