578
Views
0
CrossRef citations to date
0
Altmetric
Report

A free and user-friendly software protocol for the quantification of microfauna swimming behavior

ORCID Icon & ORCID Icon
Pages 175-183 | Received 04 Jan 2024, Accepted 13 Feb 2024, Published online: 29 Feb 2024

References

  • Fenchel TM. The ecology of micro- and meiobenthos. Ann. Rev. Ecol. Systemat. 9(1), 99–121 (1978).
  • Gray JS, Elliott M. Ecology of Marine Sediments: From Science to Management. Oxford University Press, Oxford, UK (2009).
  • Junita DR, Sartimbul A, Gustiantini L, Sahudin. Study of microfauna foraminifera as bioindicator for coral reef condition in Tambelan Island, Riau Island Province. IOP Conference Series: Earth Environment. Sci. 429(1), 012005 (2020).
  • Gupta VVSR, Yeates GW. Soil microfauna as bioindicators of soil health. In: Biological Indicators of Soil Health. Pankhurst C, Doube BM, Gupta VVSR ( Eds). CAB International, Wallingford, UK, 201–233 (1997).
  • Goldstein B. Chapter Seven - Tardigrades and their emergence as model organisms. In: Current Topics in Developmental Biology. Goldstein B, Srivastava M ( Eds). Academic Press, MA, USA, 173–198 (2022).
  • Gribble KE. Brachionus rotifers as a model for investigating dietary and metabolic regulators of aging. Nutr. Healthy Aging 6, 1–15 (2021).
  • Kaletta T, Hengartner MO. Finding function in novel targets: C. elegans as a model organism. Nature Rev. Drug Discov. 5(1), 387–399 (2006).
  • Reilly K, Ellis L-JA, Davoudi HH et al. Daphnia as a model organism to probe biological responses to nanomaterials – from individual to population effects via adverse outcome pathways. Front. Toxicol. 5, 1178482 (2023).
  • Snell TW. Rotifers as models for the biology of aging. Int. Rev. Hydrobiol. 99(1–2), 84–95 (2014).
  • Charoy C, Janssen CR. The swimming behaviour of Brachionus calyciflorus (rotifer) under toxic stress: II. Comparative sensitivity of various behavioural criteria. Chemosphere 38(14), 3247–3260 (1999).
  • Nakanishi T, Kato Y, Matsuura T, Watanabe H. CRISPR/Cas-mediated targeted mutagenesis in Daphnia magna. PLOS ONE 9(5), e98363 (2014).
  • Feng H, Bavister G, Gribble KE, Mark Welch DB. Highly efficient CRISPR-mediated gene editing in a rotifer. PLOS Biol. 21(7), e3001888 (2023).
  • Gilbert JJ. Dormancy in rotifers. Transact. Am. Microscop. Soc. 93(4), 490–513 (1974).
  • Charoy CP, Janssen CR, Persoone G, Clément P. The swimming behaviour of Brachionus calyciflorus (rotifer) under toxic stress. I. The use of automated trajectometry for determining sublethal effects of chemicals. Aquat. Toxicol. 32(4), 271–282 (1995).
  • Chen J, Wang Z, Li G, Guo R. The swimming speed alteration of two freshwater rotifers Brachionus calyciflorus and Asplanchna brightwelli under dimethoate stress. Chemosphere 95, 256–260 (2014).
  • Guo R, Ren X, Ren H. Assessment the toxic effects of dimethoate to rotifer using swimming behavior. Bull. Environment. Contamin. Toxicol. 89(3), 568–571 (2012).
  • Janssen CR, Ferrando MD, Persoone G. Ecotoxicological studies with the freshwater rotifer Brachionus calyciflorus: IV. Rotifer behavior as a sensitive and rapid sublethal test criterion. Ecotoxicol. Environment. Safety 28(3), 244–255 (1994).
  • Korstad J, Neyts A, Danielsen T, Overrein I, Olsen Y. Use of swimming speed and egg ratio as predictors of the status of rotifer cultures in aquaculture. In: Rotifera VII. Developments in Hydrobiology. Ejsmont-Karabin J, Pontin RM ( Eds). 109, Springer, Dordrecht, The Netherlands, 395–398 (1995).
  • Sha J, Wang Y, Lv J et al. Effects of two polybrominated diphenyl ethers (BDE-47, BDE-209) on the swimming behavior, population growth and reproduction of the rotifer Brachionus plicatilis. J. Environment. Sci. 28, 54–63 (2015).
  • Won E-J, Byeon E, Lee YH et al. Molecular evidence for suppression of swimming behavior and reproduction in the estuarine rotifer Brachionus koreanus in response to COVID-19 disinfectants. Marine Pollut. Bull. 175, 113396 (2022).
  • Snell TW, Childress MJ, Boyer EM, Hoff FH. Assessing the status of rotifer mass cultures. J. World Aquacult. Soc. 18(4), 270–277 (1987).
  • Yúfera M, Pascual E, Olivares JM. Factors affecting swimming speed in the rotifer Brachionus plicatilis. In: Rotifera X. Herzig A, Gulati RD, Jersabek CD, May L ( Eds). Springer, Dordrecht, The Netherlands, 375–380 (2005).
  • Charoy C, Clément P. Foraging behaviour of Brachionus calyciflorus (Pallas): variations in the swimming path according to presence or absence of algal food (Chlorella). Hydrobiologia 255, 95–100 (1993).
  • Kuefler D, Avgar T, Fryxell JM. Density- and resource-dependent movement characteristics in a rotifer. Functional Ecology 27(2), 323–328 (2013).
  • Mimouni P, Luciani A, Clément P. How females of the rotifer Asplanchna brightwelli swim in darkness and light: an automated tracking study. Hydrobiologia 255, 101–108 (1993).
  • Réale D, Clément P, Esparcia-Collado A. Influence of the concentration of oxygen on the swimming path of Brachionus plicatilis (Rotifera). Hydrobiologia 255, 87–93 (1993).
  • Gilbert JJ. Contact chemoreception, mating behaviour, and sexual isolation in the rotifer genus Brachionus. J. Experiment. Biol. 40(4), 625–641 (1963).
  • Colangeli P, Schlägel UE, Obertegger U, Petermann JS, Tiedemann R, Weithoff G. Negative phototactic response to UVR in three cosmopolitan rotifers: a video analysis approach. Hydrobiologia 844(1), 43–54 (2019).
  • Obertegger U, Cieplinski A, Raatz M, Colangeli P. Switching between swimming states in rotifers – case study Keratella cochlearis. Marine Freshwater Behav. Physiol. 51(3), 159–173 (2018).
  • Panadeiro V, Rodriguez A, Henry J, Wlodkowic D, Andersson M. A review of 28 free animal-tracking software applications: current features and limitations. Lab Animal 50(9), 246–254 (2021).
  • Bruijning M, Visser MD, Hallmann CA, Jongejans E. TRACKDEM: Automated particle tracking to obtain population counts and size distributions from videos in R. Methods Ecol. Evolut. 9(4), 965–973 (2018).
  • Tinevez J-Y, Perry N, Schindelin J et al. TrackMate: An open and extensible platform for single-particle tracking. Methods 115, 80–90 (2017).
  • Zhao K, Luo G, Giannelli S, Szeto HH. Mitochondria-targeted peptide prevents mitochondrial depolarization and apoptosis induced by tert-butyl hydroperoxide in neuronal cell lines. Biochem. Pharmacol. 70(12), 1796–1806 (2005).
  • Cho S, Szeto HH, Kim E, Kim H, Tolhurst AT, Pinto JT. A novel cell-permeable antioxidant peptide, SS31, attenuates ischemic brain injury by down-regulating CD36. J. Biol. Chem. 282(7), 4634–4642 (2007).
  • Chance B, Hollunger G. Inhibition of electron and energy transfer in mitochondria: I. Effects of amytal, thiopental, rotenone, progesterone, and methylene glycol. J. Biol. Chem. 238(1), 418–431 (1963).
  • Li N, Ragheb K, Lawler G et al. Mitochondrial complex I inhibitor rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production. J. Biol. Chem. 278(10), 8516–8525 (2003).
  • Guillard RRL, Ryther JH. Studies of marine planktonic diatoms: I. Cyclotella nana hustedt, and Detonula confervacea (cleve) gran. Canadian J. Microbiol. 8(2), 229–239 (1962).
  • Guillard RRL. Culture of Phytoplankton for Feeding Marine Invertebrates. In: Culture of Marine Invertebrates Animals. Smith ML, Chanley MH ( Eds). Plenum Press, NY, USA, 29–60 (1975).
  • Dolby Laboratories. HitFilm. (vers. 2023.1 [21.0.3.0]). FXHome (2023). https://fxhome.com/product/hitfilm
  • Rodriguez A, Zhang H, Klaminder J, Brodin T, Andersson M. ToxId: an efficient algorithm to solve occlusions when tracking multiple animals. Sci. Rep. 7(1), 14774 (2017).
  • Rodriguez A, Zhang H, Klaminder J, Brodin T, Andersson PL, Andersson M. ToxTrac: a fast and robust software for tracking organisms. Methods Ecol. Evolut. 9(3), 460–464 (2018).
  • R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing (2023). https://www.R-project.org/
  • Mclean DJ, Skowron Volponi MA. trajr: an R package for characterisation of animal trajectories. Ethology 124(6), 440–448 (2018).
  • Batschelet E. Circular Statistics in Biology. Academic Press, MA, USA (1981).
  • Benhamou S. How to reliably estimate the tortuosity of an animal's path: straightness, sinuosity, or fractal dimension? J. Theoret. Biol. 229(2), 209–220 (2004).
  • Bovet P, Benhamou S. Spatial analysis of animals' movements using a correlated random walk model. J. Theoret. Biol. 131(4), 419–433 (1988).
  • Cheung A, Zhang S, Stricker C, Srinivasan MV. Animal navigation: the difficulty of moving in a straight line. Biol. Cybernet. 97(1), 47–61 (2007).
  • Kitamura T, Imafuku M. Behavioural mimicry in flight path of Batesian intraspecific polymorphic butterfly Papilio polytes. Proc. Royal Soc. B: Biol. Sci. 282(1809), 20150483 (2015).
  • Wickham H. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag (2016). https://ggplot2.tidyverse.org
  • Kassambara A. ggpubr: ‘ggplot2’ Based Publication Ready Plots. (vers. 0.6.0) (2023). https://CRAN.R-project.org/package=ggpubr