5,146
Views
7
CrossRef citations to date
0
Altmetric
Perspective

From Cancer to Rejuvenation: Incomplete Regeneration As the Missing Link (Part I: the Same origin, Different outcomes)

&
Article: FSO450 | Received 22 Sep 2019, Accepted 16 Dec 2019, Published online: 14 Jan 2020

References

  • OberlingCh. The Riddle of Cancer.Yale Univ. Press, CT, USA (1946).
  • BaramiyaMG. Aging and carcinogenesis – insufficient metabolic cell repair as the common link. Gerontology46(6), 328–332 (2000).
  • BaramiyaMG. Carcinogenesis, senescence and life duration: potential of transformed cells and restrain of senescence (hypothesis). Adv. Curr. Biol. (Uspekhi Sovremennoy Biologii).118(4), 421–440 (1998).
  • EhrlichM. DNA methylation in cancer: too much, but also too little. Oncogene21(35), 5400–5413 (2002).
  • Perez1RF , TejedorJR , BayonGF , FernandezAF , FragaMF. Distinct chromatin signatures of DNA hypomethylation in aging and cancer. Aging Cell17(3), e12744 (2018).
  • BaylinSB , HermanJG , GraffJR , VertinoPM , IssaJP. Alterations in DNA methylation: a fundamental aspect of neoplasia. Adv. Cancer Res.72, 141–196 (1998).
  • ToyotaM , HoC , Ohe-ToyotaM , BaylinSB , IssaJP. Inactivation of CACNA1G, a T-type calcium channel gene, by aberrant methylation of its 5′ CpG island in human tumors. Cancer Res.59(18), 4535–4541 (1999).
  • SemiK , MatsudaY , OhnishiK , YamadaY. Cellular reprogramming and cancer development. Int. J. Cancer132(6), 1240–1248 (2013).
  • NejmanD , StraussmanR , SteinfeldIet al.Molecular rules governing de novo methylation in cancer. Cancer Res.74(5), 1475–1483 (2014).
  • MaegawaS , GoughSM , Watanabe-OkochiNet al.Age-related epigenetic drift in the pathogenesis of MDS and AML. Genome Res.24(4), 580–591 (2014).
  • PérezRF , TejedorJR , BayónGF , FernándezAF , FragaMF. Distinct chromatin signatures of DNA hypomethylation in aging and cancer. Aging Cell17(3), e12744 (2018).
  • OhYS , JeongSG , ChoGW. Anti-senescence effects of DNA-methyltransferase inhibitor RG108 in human bone morrow mesenchymal stroma cells. Biotechnol. Appl. Biochem.62(5), 583–590 (2015).
  • KimYH , ChoiYW , LeeJ , SohEY , KimJH , TaePark TJ. Senescent tumor cells lead the collective invasion in thyroid cancer. Nat. Commun.8, 15208 (2017).
  • PiaoHL , WangSC , TaoY , FuQ , DuMR , LiDJ. CXCL12/CXCR4 signal involved in the regulation of trophoblasts on peripheral NK cells leading to Th2 bias at the maternal-fetal interface. Eur. Rev. Med. Pharmacol. Sci.19(12), 2153–2161 (2015).
  • SignerRA , MorrisonSJ. Mechanisms that regulate stem cell aging and life span. Cell Stem Cell.12(2), 152–165 (2013).
  • MaierB , GlubaW , BernierBet al.Modulation of mammalian life span by the short isoform of p53. Genes Dev.18(3), 306–319 (2004).
  • DumbleM , MooreL , ChambersSMet al.The impact of altered p53 dosage on hematopoietic stem cell dynamics during aging. Blood109(4), 1736–1742 (2007).
  • Garcia-CaoI , Garcia-CaoM , Martin-CaballeroJet al.“Super p53” mice exhibit enhanced DNA damage response, are tumor resistant and age normally. EMBO J.21(22), 6225–6235 (2002).
  • AubreyBJ , KellyGL , JanicA , HeroldMJ , StrasserA. How does p53 induce apoptosis and how does this relate to p53-mediated tumour suppression?Cell Death Differ.25(1), 104–113 (2018).
  • BakerDJ , Perez-TerzicC , JinFet al.Opposing roles for p16Ink4a and p19Arf in senescence and ageing caused by BubR1 insufficiency. Nat. Cell Biol.10, 825–836 (2008).
  • ColladoM , GilJ , EfeyanAet al.Tumour biology: senescence in premalignant tumours. Nature436, 642 (2005).
  • ZingerA , ChoWC , Ben-YehudaA. Cancer and aging – the inflammatory connection. Aging Dis.8(5), 611–627 (2017).
  • WeiW , JiS. Cellular senescence: molecular mechanisms and pathogenicity. J. Cell. Physiol.233(12), 9121–9135 (2018).
  • LeGros J , DeFeyter R. Cyclic AMP and c-myc gene expression in PY815 mouse mastocytoma cells. FEBS Lett.186(1), 13–16 (1985).
  • WattRA , ShatzmanAR , RosenbergM. Expression and characterization of the human c-myc DNA-binding protein. Mol. Cell. Biol.5(3), 448–456 (1985).
  • LeeC , RobinsonM , WillerthSM. Direct reprogramming of glioblastoma cells into netrons using small molecules. ACS Chem. Neurosci.9(12), 3175–3185 (2018).
  • XuY , SoC , LamHM , FungMC , TsangSY. Apoptosis reversal promotes cancer stem-like cell formation. Neoplasia20(3), 295–303 (2018).
  • MilanovicM , FanDNY , BelenkiDet al.Senescence-associated reprogramming promotes cancer stemness. Nature553(7686), 96–100 (2018).
  • LahmarQ , KeirsseJ , LaouiD , MovahediK , Van OvermeireE , Van GinderachterJA. Tissue-resident versus monocyte-derived macrophages in the tumor microenvironment. Biochim. Biophys. Acta.1865(1), 23–34 (2016).
  • ChafferCL , BrueckmannI , ScheelCet al.Normal and neoplasicnonstem cells spontaneously convert to a stem-like state. Proc. Natl Acad. Sci. USA108(19), 7950–7955 (2011).
  • ZengA , LiH , GuoLet al.Prospectively isolatedtetraspanin+ neoblasts are adult pluripotent stem cells underlying planaria regeneration. Cell173(7), 1593–1608 (2018).
  • SchaperF , van SprielAB. Antitumor immunity is controlled by tetraspaninproteins. Front. Immunol.9, 1185 (2018).
  • BerditchevskiF , OdintsovaE. ErbB receptors and tetraspanins: casting the net wider. Int. J. Biochem. Cell Biol.77(Pt A), 68–71 (2016).
  • SadejR , GrudowskaA , TurczykL , KordekR , RomanskaHM. CD151 in cancer progression and metastasis: a complex scenario. Lab. Invest.94(1), 41–51 (2014).
  • HemlerME. Tetraspanin functions and associated microdomains. Nat. Rev. Mol. Cell Biol.6(10), 801–811 (2005).
  • ZollerM. Tetraspanins: push and pull in suppressing and promoting metastasis. Nat. Rev. Cancer9(1), 40–55 (2009).
  • SeubertB , CuiH , SimonaviciusNet al.Tetraspanin CD63 acts as a pro-metastatic factor via beta-catenin stabilization. Int. J. Cancer136(10), 2304–2315 (2015).
  • PetersenSH , OdintsovaE , HaighTA , RickinsonAB , TaylorGS , BerditchevskiF. The role of tetraspanin CD63 in antigen presentation via MHC class II. Eur. J. Immunol.41(9), 2556–2561 (2011).
  • ShengK-C , van SprielAB , GartlanKHet al.Tetraspanins CD37 and CD151 differentially regulate Ag presentation and T-cell co-stimulation by DC. Eur. J. Immunol.39(1), 50–55 (2009).
  • HoltanSG , CreedonDJ , ThompsonMA , NevalaWK , MarkovicSN. Expansion of CD16-negative natural killer cells in the peripheral blood of patients with metastatic melanoma. Clin. Dev. Immunol.2011, 316314 (2011).
  • KeskinDB , AllanDSJ , RybalovBet al.TGFbeta promotes conversion of CD16+ peripheral blood NK cells into CD16- NK cells with similarities to decidual NK cells. Proc. Natl Acad. Sci. USA104(9), 3378–3383 (2007).
  • KoopmanLA , KopcowHD , RybalovBet al.Human decidual natural killer cells are a unique NK cell subset with immunomodulatory Potential. J. Exp. Med.198(8), 1201–1212 (2003).
  • LitwunM , Szczepanska-BudaA , PiotrovskaA , DziegielP , WitkiewiczW. The meaning of PIWI proteins in cancer development (review). Oncol. Lett.13(5), 3354–3362 (2017).
  • SiddiqiS , MatushanskyI. Piwis and piwi interacting RNAs in the epigenetics of cancer. J. Cell. Biochem.113(2), 373–380 (2012).
  • LitwinM , DubisJ , ArczyńskaKet al.Correlation of HIWI and HILI expression with cancer stem cell markers in colorectal cancer. Anticancer Res.35(6), 3317–3324 (2015).
  • NiuN , Mercado-UribeI , LiuJ. Dedifferentiation into blastomere – like cancer stem cells via formation of polyploid giant cancer cells. Oncogene36(34), 4887–4900 (2017).
  • KelleherFC , O'SullivanH. Oxford and the Savannah: can the Hippo provide an explanation for Peto's paradox?Clin. Cancer Res.20(3), 557–564 (2014).
  • ShvembergerIN. Normalization of Tumor Cells [in Russian]. Nauka,Leningrad, Moscow (1987).
  • WhissonM. Cell Differentiation. de ReuckAVS ( Ed.). London, UK (1967).
  • McKinnellRG , DegginsBA , LabatDD. Transplantation of pluripotential nuclei from triploid frog tumors. Science165(3891), 394–396 (1969).
  • MintzB , IllmenseeK. Normal genetically mosaic mice produced from malignant teratocarcinoma cells. Proc. Natl Acad. Sci. USA72(9), 3585–3589 (1975).
  • PierceGB , WallaceC. Differentiation of malignant to benign cells. Cancer Res.31(2), 127–134 (1971).
  • PierceGB , PantazisCG , CaldwellJE , WellsRS. Specificity of the control of tumor formation by the blastocyst. Cancer Res.42(3), 1082–1087 (1982).
  • PierceGB , ArechagaJ , JonesA , LewellynA , WellsRS. The fate of embryonal-carcinoma cells in mouse blastocysts. Differentiation33(3), 247–253 (1987).
  • VoisinGA. Regulatory facilitation reaction and active tolerance: a non-euclidian view of the immune reaction authenticated by immunology of reproduction. Immunol. Lett.16(3–4), 283–289 (1987).
  • BabaevaAG. Cellular and humoral immune factors as regulators of restorative morphogenesis. Russ. J. Dev. Biol. (Ontogenez).20(5), 453–459 (1989).
  • TishevskayaNV , GevorkyanNM , KozlovaNI. The role of T-lymphocytes in hormonal regulation of morphogenetic processes. Adv. Curr. Biol. (Uspekhi Sovremennoy Biologii).135(2), 189–202 (2015).
  • KhalyavkinAV , Krut'koVN. Early thymus involution-manifestation of an aging program or a program of development?Biochemistry (Mosc).80(12), 1622–1625 (2015).
  • LeviBP , MorrisonSJ. Stem cells use distinct self-renewal programs at different ages. Cold Spring Harb. Symp. Quant. Biol.73, 539–553 (2008).
  • MenendezMT , OngEC , ShepherdBTet al.BRG1 (Brahma-related gene 1) promotes endothelial Mrtf transcription to establish embryonic capillary integrity. Arterioscler. Thromb. Vasc. Biol.37(9), 1674–1682 (2017).
  • WangG , FuY , HuFet al.Loss of BRG1 induces CRC cell senescence by regulating p53/p21 pathway. Cell Death Dis.8(2), e2607 (2017).
  • MoriyaJ , MinaminoT. Angiogenesis, cancer and vascular aging. Front. Cardiovasc. Med.4, 65 (2017).
  • Muñoz-EspínD , CañameroM , MaraverAet al.Programmed cell senescence during mammalian embryonic development. Cell155(5), 1104–1118 (2013).
  • DianatpourA , Ghafouri-FardS. Long non coding RNA expression intersecting cancer and spermatogenesis: a systematic review. Asian Pac. J. Cancer Prev.18(10), 2601–2610 (2017).
  • ChanAL , LaHM , LegrandJMDet al.Germline stem cell activity is sustained by SALL4-dependent silencing of distinct tumor suppressor genes. Stem Cell Rep.9(3), 956–971 (2017).
  • FerreiraHJ , HeynH , Garciadel Muro Xet al.Epigenetic loss of the PIWI/piRNA machinery in human testicular tumorigenesis. Epigenetics9(1), 113–118 (2014).
  • SoudyabM , IranpourM , Ghafouri-FardS. The role of long non-coding RNAs in breast cancer. Arch. Iran Med.19(7), 508–517 (2016).
  • da CostaNM , HautefeuilleA , CrosMPet al.Transcriptional regulation of thymine DNA glycosylase (TDG) by the tumor suppressor protein p53. Cell Cycle.11(24), 4570–4578 (2012).
  • WengYL , AnR , CassinJet al.An intrinsic epigenetic barrier for functional axon regeneration. Neuron94(2), 337–346 (2017).
  • YangK , KangJ. Tissue regeneration enhancer elements: a way to unlock endogenous healing power. Dev. Dyn.248(1), 34–42 (2019).