3,115
Views
4
CrossRef citations to date
0
Altmetric
Perspective

From Cancer to Rejuvenation: Incomplete Regeneration as the Missing Link (Part II: Rejuvenation circle)

ORCID Icon, , &
Article: FSO610 | Received 13 May 2020, Accepted 09 Jun 2020, Published online: 30 Jun 2020

References

  • GOSSRJ. Principles of Regeneration.Academic Press, New York, USA (1969).
  • BaramiyaMG , BaranovE. From cancer to rejuvenation: incomplete regeneration as the missing link (Part I: the same origin, different outcomes). Future Sci. OA6(3), FSO450 (2020).
  • BaramiyaMG. Cancer and anti-aging: same origin-different outcomes (paradigm shift) part.1. Reports Gerontol. Section Soc. Naturalists Moscow State Univ.65, 100–118 (2018).
  • HernebringM , BrolénG , AguilaniuH , SembH , NyströmT. Elimination of damaged proteins during differentiation of embryonic stem cells. Proc. Natl Acad. Sci. USA103(20), 7700–7705 (2006).
  • HernebringM , FredrikssonÅ , LiljevaldMet al.Removal of damaged proteins during ES cell fate specification requires the proteasome activator PA28. Sci. Rep.3, 1381 (2013).
  • ColladoM , GilJ , EfeyanAet al.Tumour Biology: senescence in premalignant tumours. Nature436(7051), 642 (2005).
  • XiongS , FengY , ChengL. Cellular reprogramming as a therapeutic target in cancer. Trends Cell Biol.29(8), 623–634 (2019).
  • Cieślar-PobudaA , KnoflachV , RinghMVet al.Transdifferentiation and reprogramming: overview of the processes, their similarities and differences. Biochim. Biophys. Acta. Mol. Cell Res.1864(7), 1359–1369 (2017).
  • TaguchiJ , YamadaY. In vivo reprogramming for tissue regeneration and organismal rejuvenation. Curr. Opin. Genet. Dev.46, 132–140 (2017).
  • BaramiyaMG. Carcinogenesis, senescence and life duration: potential of transformed cells and restrain of senescence (hypothesis). Adv. Curr. Biol. (UspekhiSovremennoyBiologii).118(4), 421–440 (1998).
  • WebbCW , GootwineE , SachsL. Developmental potential of myeloid leukemia cells injected into rat midgestation embryos. Dev. Biol.101(1), 221–224 (1984).
  • WeaverV , PetersenO , WangFet al.Reversion of the malignant phenotype of human breast cells in three-dimensional culture and in vivo by integrin bloking bodies. J. Cell. Biol.137(1), 231–245 (1997).
  • ColemanWB , WennerbergAE , SmithGJ , GrishamJW. Regulation of differentiation of diploid and some aneuploid rat liver epithelial (stemlike) cells by the hepatic microenvironment. Am. J. Pathol.142(5), 1373–1382 (1993).
  • LiL , ConnellyMC , WetmoreC , CurranT , MorganJI. Mouse embryos cloned from brain tumors. Cancer Res.63(11), 2733–2736 (2003).
  • LeeLMJ , SeftorEA , BondeG , CornellRA , HendrixMJC. The fate of human malignant melanoma cells transplanted into zebrafish embryos: assessment of migration and cell division in the absence of tumor formation. Dev. Dyn.233(4), 1560–1570 (2005).
  • GootwineE , WebbCG , SachsL. Participation of myeloid leukaemia cells injected into embryos in haematopoietic differentiation in adult mice. Nature299(5878), 63–65 (1982).
  • ParkNI , GuilhamonP , DesaiKet al.ASCL1 reorganizes chromatin to direct neuronal fate and suppress tumorigenicity of glioblastoma stem cells. Cell Stem Cell21(2), 209–224 (2017).
  • NeedhamJ. New advances in the chemistry and biology of organized growth. Proc. R. Soc. Med.29(12), 1577–1626 (1936).
  • WaddingtonCH. Cancer and the theory of organizers. Nature135, 606–608 (1935).
  • ShvembergerIN. Normalization of Tumor Cells [in Russian].Nauka, Leningrad (1987).
  • NancyP , TaglianiE , TayCS , AspP , LevyDE , ErlebacherA. Chemokine gene silencing in decidual stromal cells limits T cell access to the maternal-fetal interface. Science336(6086), 1317–1321 (2012).
  • TongM , AbrahamsVM , ChamleyLW. Immunological effects of placental extracellular vesicles. Immunol. Cell Biol. Epub ahead of print (2018).
  • NegishiY , TakahashiH , KuwabaraY , TakeshitaT. Innate immune cells in reproduction. J. Obstet. Gynaecol. Res.44(11), 2025–2036 (2018).
  • ZhaoHX , JiangF , ZhuYJet al.Enhanced immunological tolerance by HLA-G1 from neural progenitor cells (NPCs) derived from human embryonic stem cells (hESCs). Cell Physiol. Biochem.44(4), 1435–1444 (2017).
  • HydeKJ , SchustDG. Immunologic challenges of human reproduction: an evolving story. Fertil. Steril.106(3), 499–4510 (2016).
  • FarjadianS , TabebordbarM , MokhtariM , SafaeiA , MalekzadehM , GhaderiA. HLA-G expression in tumor tissues and soluble HLA-G plasma levels in patients with gastrointestinal cancer. Asian Pac. J. Cancer Prev.19(10), 2731–2735 (2018).
  • AmiotL , FerroneS , Grosse-WildeH , SeligerB. Biology of HLA-G in cancer: a candidate molecule for therapeutic intervention?Cell. Mol. Life Sci.68(3), 417–431 (2011).
  • LinA , YanWH. Heterogeneity of HLA-G expression in cancers: facing the challenges. Front. Immunol.9, 2164; eCollection (2018).
  • DerynckR , WeinbergRA. EMT cancer: more than meets the eye. Dev. Cell49(3), 313–316 (2019).
  • CurriGA , BagehaweKD. The masking of antigene on trophoblast and cancer cells. Lancet1(7492), 708–710 (1967).
  • ClaserEM , SpinkP , O'MearaRA. A screening test for substances inhibiting the cancer coagulative factor. Nature208, (5014), 1008–1009 (1965).
  • UnkellesJ , CordonS , RetchE. Secretion of plasminogen activator by stimulated macrophages. J. Exp. Med.139(4), 834–850 (1974).
  • Veiga-FernandesH , FreitasAA. The s(c)ensory immune system theory. Trends Immunol.38(10), 777–788 (2017).
  • MedzhitovR , SchneiderDS , SoaresMP. Disease tolerance as a defense strategy. Science335(6071), 936–941 (2012).
  • OcampoA , ReddyP , Martinez-RedondoPet al.In vivo amelioration of age-associated hallmarks by partial reprogramming. Cell167(7), 1719–1733 (2016).
  • BakerSG , KramerBS. Paradoxes in carcinogenesis: new opportunities for research directions. BMC Cancer7, 151 (2007).
  • BurgioE , MiglioreL. Towards a systemic paradigm in carcinogenesis: linking epigenetics and genetics. Mol. Biol. Rep.42(4), 777–790 (2015).
  • BrücherBLDM , JamallIS. Somatic mutation theory - why it's wrong for most cancers. Cell Physiol. Biochem.38(5), 1663–1680 (2016).
  • WoodLD , DParsons W , JonesSet al.The genomic landscapes of human breast and colorectal cancers. Science318(5853), 1108–1113 (2007).
  • SonnenscheinC , SotoAM. Somatic mutation theory of carcinogenesis: why it should be dropped and replaced. Mol. Carcinog. 29(4), 205–211 (2000).
  • SonnenscheinC , SotoAM. The society of cells: cancer and control of cell populations. Springer Verlag, New York (1999).
  • DejosezM , UraH , BrandtVL , ZwakaTP. Safeguards for cell cooperation in mouse embryogenesis shown by genome-wide cheater screen. Science341(6153), 1511–1514 (2013).
  • BizzarriM , CucinaA , BiavaPMet al.Embryonic morphogenetic field induces phenotypic reversion in cancer cells. Review Article. Curr. Pharm. Biotechnol.12(2), 243–253 (2011).
  • Kasemeier-KulesaJC , TeddyJM , PostovitLMet al.M. Reprogramming multipotent tumor cells with the embryonic neural crest microenvironment. Dev. Dynam.237(10), 2657–2666 (2008).
  • HochedlingerK , BlellochR , BrennanCet al.Reprogramming of a melanoma genome by nuclear transplantation. Genes Dev.18(15), 1875–1885 (2004).
  • Seilem-AspangF , KratochwilK. In: Regenerationin Animals and Related Problems.KiortsisV, TrampuschH ( Eds). North Holland Publishing Co, Amsterdam, 452–473 (1965).
  • RubinH. Cancer as a dynamic developmental disorder. Cancer Res.45(7), 2935–2942 (1985).
  • ColemanWB , WennerbergAE , SmithGJ , GrishamJW. Regulation of differentiation of diploid and some aneuploid rat liver epithelial (stemlike) cells by the hepatic microenvironment. Am. J. Pathol.142(5), 1373–1382 (1993).
  • TopczewskaJM , PostovitLM , MargaryanNVet al.Embryonic and tumorigenic pathways converge via Nodal signalling: role in melanoma aggressiveness. Nat. Med.12(8), 925–932 (2006).
  • HendrixMJC , SeftorEA , SeftorREB , Kasemeier-KulesaJ , KulesaPM , PostovitLM. Reprogramming metastatic tumour cells with embryonic microenvironments. Nat. Rev. Cancer7(4), 246–255 (2007).
  • HartY , AlonU. The utility of paradoxical components in biological circuits. Mol. Cell49(2), 213–221 (2013).
  • EicherEM , WashburnLL. Normal testis determination in the mouse depends on genetic interaction of a locus on chromosome 17 and the Y chromosome. Genetics123(1), 173–179 (1989).
  • KiddS. Characterization of the Drosophila cactus locus and analysis of interactions between cactus and dorsal proteins. Cell71(4), 623–635 (1992).
  • BinaykeA , MishraS , SumanP , DasS , ChanderH. Awakening the “guardian of genome”: reactivation of mutant p53. Cancer Chemother. Pharmacol.83(1), 1–15 (2019).
  • DonehowerLA , SoussiT , KorkutAet al.Integrated analysis of TP53 gene and pathway alterations in the Cancer Genome Atlas. Cell Rep.28(5), 1370–1384 (2019).
  • AnbarasanT , BourdonJC. The emerging landscape of p53 isoforms in physiology, cancer and degenerative diseases. Int. J. Mol. Sci.20(24), 6257 (2019).
  • DonehowerLA , SoussiT , KorkutAet al.Integrated analysis of TP53 gene and pathway alterations in The Cancer Genome Atlas. Cell Rep.28(5), 1370–1384 (2019).
  • KurokawaK , TanakaT , JKato J. p19ARF prevents G1 cyclin-dependent kinase activation by interacting with MDM2 and activating p53 in mouse fibroblasts. Oncogene18(17), 2718–2727 (1999).
  • NostrandJLV , AttardiLD. Guilty as CHARGED: p53's expanding role in disease. Cell Cycle13(24), 3798–3807 (2014).
  • DolcettiR , DoglioniC , MaestroRet al.p53 over-expression is an early event in the development of human squamous-cell carcinoma of the larynx: genetic and prognostic implications. Int. J. Cancer52(2), 178–182 (1992).
  • CruzIB , SnijdersPJ , MeijerCJet al.p53 expression above the basal cell layer in oral mucosa is an early event of malignant transformation and has predictive value for developing oral squamous cell carcinoma. J. Pathol.184(4), 360–368 (1998).
  • ValenteG , FerrariL , KerimSet al.Evidence of p53 immunohistochemical overexpression in ethmoidal mucosa of woodworkers. Cancer Detect. Prev.28(2), 99–106 (2004).
  • WangX , LvW , QiFet al.Clinical effects of p53 overexpression in squamous cell carcinoma of the sinonasal tract: a systematic meta-analysis with PRISMA guidelines. Medicine (Baltimore)96(12), e6424 (2017).
  • GonfloniS , CaputoV , IannizzottoV. P63 in health and cancer. Int. J. Dev. Biol.59(1–3), 87–93 (2015).
  • StanticM , SakilHA , ZirathHet al.TAp73 suppresses tumor angiogenesis through repression of proangiogenic cytokines and HIF-1α activity. Proc. Natl Acad. Sci. USA.112(1), 220–225 (2015).
  • MelinoG , LaurenziVD , VousdenKH. p73: friend or foe in tumorigenesis. Nat. Rev. Cancer2(8), 605–615 (2002).
  • MehtaSY , MortenBC , AntonyJet al.Regulation of the interferon-gamma (IFN-γ) pathway by p63 and Δ133p53 isoform in different breast cancer subtypes. Oncotarget9(49), 29146–29161 (2018).
  • GongL , PanX , LimCB , PoloA , LittleJB , YuanZM. A functional interplay between Δ133p53 and ΔNp63 in promoting glycolytic metabolism to fuel cancer cell proliferation. Oncogene37(16), 2150–2164 (2018).
  • WuJ , LiangS , BergholzJet al.ΔNp63α activates CD82 metastasis suppressor to inhibit cancer cell invasion. Cell Death Dis.5(6), e1280 (2014).
  • ChenY , LiY , PengYet al.ΔNp63α down-regulates c-Myc modulator MM1 via E3 ligase HERC3 in the regulation of cell senescence. Cell Death Differ.25(12), 2118–2129 (2018).
  • HanA , LiJ , LiYet al.p63α modulates c-Myc activity via direct interaction and regulation of MM1 protein stability. Oncotarget7(28), 44277–44287 (2016).
  • MeyerG , González-ArnayE , MollU , NemajerovaA , TissirF , González-GómezM. Cajal-Retzius neurons are required for the development of the human hippocampal fissure. J. Anat.235(3), 569–589 (2019).
  • SaifudeenZ , DiavolitsisV , StefkovaJ , DippS , FanH , El-DahrSS. Spatiotemporal switch from DeltaNp73 to TAp73 isoforms during nephrogenesis: impact on differentiation gene expression. J. Biol. Chem.280(24), 23094–23102 (2005).
  • BeitzingerMC Oswald C , Beinoraviciute-KellnerR , StieweT. Regulation of telomerase activity by the p53 family member p73. Oncogene25(6), 813–826 (2006).
  • WangL , XiaW , ChenH , XiaoZX. ΔNp63α modulates phosphorylation of p38 MAP kinase in regulation of cell cycle progression and cell growth. Biochem. Biophys. Res. Commun.509(3), 784–789 (2019).
  • MangiulliM , VallettiA , CaratozzoloMFet al.Identification and functional characterization of two new transcriptional variants of the human p63 gene. Nucleic Acids Res.37(18), 6092–6104 (2009).
  • KosterMI , DaiD , MarinariBet al.p63 induces key target genes required for epidermal morphogenesis. Proc. Natl Acad. Sci. USA104(9), 3255–3260 (2007).
  • AnbarasanT , BourdonJC. The emerging landscape of p53 isoforms in physiology, cancer and degenerative diseases. Int. J. Mol. Sci.20(24), 6257 (2019).
  • FujitaK , MondalAM , HorikawaIet al.p53 isoforms, Δ133p53 and p53β, are endogenous regulators of replicative cellular senescence. Nat. Cell Biol.11(9), 1135–1142 (2009).
  • MuhlinenN , HorikawaI , AlamFet al.p53 isoforms regulate premature aging in human cells. Oncogene37(18), 2379–2393 (2018).
  • ArsicN , GadeaG , LagerqvistELet al.The p53 isoform Δ133p53β promotes cancer stem cell potential. Stem Cell Reports4(4), 531–540 (2015).
  • CampbellH , FlemingN , RothIet al.Δ133p53 isoform promotes tumour invasion and metastasis via interleukin-6 activation of JAK-STAT and RhoA-ROCK signalling. Nat. Commun.9(1), 254 (2018).
  • KazantsevaM , MehtaS , EiholzerRAet al.A mouse model of the Δ133p53 isoform: roles in cancer progression and inflammation. Mamm. Genome29(11–12), 831–842 (2018).
  • FragouA , TzimagiorgisG , KarageorgopoulosCet al.Increased Δ133p53 mRNA in lung carcinoma corresponds with reduction of p21 expression. Mol. Med. Rep . 15(4), 1455–1460 (2017).
  • RothI , CampbellH , RubioCet al.The Δ133p53 isoform and its mouse analogue Δ122p53 promote invasion and metastasis involving pro-inflammatory molecules interleukin-6 and CCL2. Oncogene35(38), 4981–4989 (2016).
  • SlatterTL , HungN , BowieSet al.Δ122p53, a mouse model of Δ133p53α, enhances the tumor-suppressor activities of an attenuated p53 mutant. Cell Death Dis.6(6), e1783 (2015).
  • GongL , GongH , PanXet al.p53 isoform Δ113p53/Δ133p53 promotes DNA double-strand break repair to protect cell from death and senescence in response to DNA damage. Cell Res.25(3), 351–369 (2015).
  • GongH , ZhangY , JiangKet al.p73 coordinates with Δ133p53 to promote DNA double-strand break repair. Cell Death Differ.25(6), 1063–1079 (2018).
  • ChenJ , PengJ. Δ113p53/Δ133p53: survival and integrity. Oncotarget6(16), 13850–13851 (2015).
  • HorikawaI , HarrisCC. Δ133p53: a p53 isoform enriched in human pluripotent stem cells. Cell Cycle16(18), 1631–1632 (2017).
  • HorikawaI , FujitaK , JenkinsLMet al.Autophagic degradation of the inhibitory p53 isoform D133p53a as a regulatory mechanism for p53-mediated senescence. Nat. Commun.5, 4706 (2014).
  • TurnquistC , BeckJA , HorikawaIet al.Radiation-induced astrocyte senescence is rescued by Δ133p53. Neuro. Oncol.21(4), 474–485 (2019).
  • MondalAM , HorikawaI , PineSRet al.p53 isoforms regulate aging- and tumor-associated replicative senescence in T lymphocytes. J. Clin. Invest.123(12), 5247–5257 (2013).
  • MondalAM , ZhouH , HorikawaIet al.Δ133p53α, a natural p53 isoform, contributes to conditional reprogramming and long-term proliferation of primary epithelial cells. Cell Death Dis.9(7), 750 (2018).
  • HorikawaI , ParkKY , IsogayaKet al.Δ133p53 represses p53-inducible senescence genes and enhances the generation of human induced pluripotent stem cells. Cell Death Differ.24(6), 1017–1028 (2017).
  • GongL , PanX , ChenHet al.p53 isoform Δ133p53 promotes efciency of induced pluripotent stem cells and ensures genomic integrity during reprogramming. Sci. Rep.6, 37281 (2016).
  • DuttaA , MagnenCL , MitrofanovaA , OuyangX , CalifanoA , Abate-ShenC. Identification of an NKX3.1-G9a-UTY transcriptional regulatory network that controls prostate differentiation. Science352(6293), 1576–1580 (2016).
  • MaiT , MarkovGJ , BradyJJet al.NKX3-1 is required for induced pluripotent stem cell reprogramming and can replace OCT4 in mouse and human iPSC induction. Nat. Cell Biol.20(8), 900–908 (2018).
  • CucinaA , BiavaPM , D'AnselmiFet al.Zebrafish embryo proteins induce apoptosis in human colon cancer cells (Caco2). Apoptosis11(9), 1617–1628 (2006).
  • GuoJ , HaoCh , WangC , LiL. Long noncoding RNA PVT1 modulates hepatocellular carcinoma cell proliferation and apoptosis by recruiting EZH2. Cancer Cell Int.18, 98; eCollection (2018).
  • KongR , ZhangEB , YinDDet al.Long noncoding RNA PVT1 indicates a poor prognosis of gastric cancer and promotes cell proliferation through epigenetically regulating p15 and p16. Mol Cancer14, 82 (2015).
  • RiquelmeE , SuraokarMB , JaimeRodriguez Jet al.Frequent coamplification and cooperation between C-MYC and PVT1 oncogenes promote malignant pleural mesothelioma. J. Thorac. Oncol.9(7), 998–1007 (2014).
  • TsengYY , BagchiA. The PVT1-MYC duet in cancer. Mol. Cell Oncol.2(2), e974467 (2015).
  • TsengYY , MoriarityBS , GongWet al.PVT1 dependence in cancer with MYC copy-number increase. Nature512(7512), 82–86 (2014).
  • ZhangY , YangG , LuoY. Long non-coding RNA PVT1 promotes glioma cell proliferation and invasion by targeting miR-200a. Exp. Ther. Med.17(2), 1337–1345 (2019).
  • ZhaoL , KongH , SunH , ChenZ , ChenB , ZhouM. LncRNA-PVT1 promotes pancreatic cancer cells proliferation and migration through acting as a molecular sponge to regulate miR-448. J. Cell. Physiol.233(5), 4044–4055 (2018).
  • ZhengX , HuH , LiS. High expression of lncRNA PVT1 promotes invasion by inducing epithelial-to-mesenchymal transition in esophageal cancer. Oncol. Lett.12(4), 2357–2362 (2016).
  • GuanY , KuoWL , StilwellJLet al.Amplification of PVT1 contributes to the pathophysiology of ovarian and breast cancer. Clin. Cancer Res.13(19), 5745–5755 (2007).
  • ChoSW , XuJ , SunRet al.Promoter of lncRNA gene PVT1 is a tumor-suppressor DNA boundary element. Cell173(6), 1398–1412.e22 (2018).
  • XuMD , WangY , WengWet al.A positive feedback loop of lncRNA-PVT1 and FOXM1 facilitates gastric cancer growth and invasion. Clin. Cancer Res.23(8), 2071–2080 (2017).
  • OliveroCE , Martínez-TerrobaE , ZimmerJet al.p53 activates the long noncoding RNA Pvt1b to inhibit Myc and suppress tumorigenesis. Mol. Cell77(4), 761–774e8 (2020).
  • BarsottiM , BeckermanR , LaptenkoO , HuppiK , CaplenNJ , PrivesC. p53-dependent induction of PVT1 and miR-1204. J. Biol. Chem.287(4), 2509–2519 (2012).
  • PorterJR , FisherBE , BaranelloLet al.Global inhibition with specific activation: how p53 and MYC redistribute the transcriptome in the DNA double-strand break response. Mol. Cell.67(6), 1013–1025,e9 (2017).
  • DuP , PirouzM , ChoiJet al.An intermediate pluripotent state controlled by microRNAs is required for the naive-to-primed stem cell transition. Cell Stem Cell22(6), 851–864 (2018).
  • Muñoz-GalvánS , Lucena-CacaceA , PerezM , Otero-AlbiolD , Gomez-CambroneroJ , AmancioCarnero A. Tumor cell-secreted PLD increases tumor stemness by senescence mediated communication with microenvironment. Oncogene38(8), 1309–1323 (2018).
  • AndaFC , MadabhushiR , ReiDet al.Cortical neurons gradually attain a post-mitotic state. Cell Res.26(9), 1033–1047 (2016).
  • JoplingC , SleepE , RayaM , MartíM , RayaA , BelmonteJCI. Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature464(7288), 606–609 (2010).
  • TzahorE , PossKD. Cardiac regeneration strategies: staying young at heart. Science356(6342), 1035–1039 (2017).
  • FieldsRD , AraqueA , Johansen-BergHet al.Glial biology in learning and cognition. Neuroscientist20(5), 426–431 (2014).
  • HalassaMM , FellinT , HaydonPG. The tripartite synapse: roles for gliotransmission in health and disease. Trends Mol. Med.13(2), 54–63 (2007).
  • FrancoCA , MoralesF , BoffoS , GiordanoA. CDK9: a key player in cancer and other diseases. J. Cell. Biochem.119(2), 1273–1284 (2018).
  • BywaterMJ , BurkhartDL , StraubeJet al.Reactivation of Myc transcription in the mouse heart unlocks its proliferative capacity. Nat. Commun.11(1), 1827 (2020).
  • PoplawskiGHD , KawaguchiR , NiekerkEVet al.Injured adult neurons regress to an embryonic transcriptional growth state. Nature2020. https://doi.org/10.1038/s41586-020-2200-5
  • ElsasserWM. Outline of a theory of cellular heterogeneity. Proc. Natl Acad. Sci. USA81(16), 5126–5129 (1984).