1,840
Views
2
CrossRef citations to date
0
Altmetric
Review

Harnessing the Potential of Lactobacillus Species for Therapeutic Delivery at the lumenal-mucosal Interface

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Article: FSO671 | Received 28 Aug 2020, Accepted 18 Nov 2020, Published online: 04 Feb 2021

References

  • XuF , LiuY , WheatonAG , RabarisonKM , CroftJB. Trends and factors associated with hospitalization costs for inflammatory bowel disease in the United States. Appl. Health Econ. Health Policy17(1), 77–91 (2019).
  • XuF , WheatonAG , LiuY , LuH , GreenlundKJ. Hospitalizations for inflammatory bowel disease among medicare fee-for-service beneficiaries – United States, 1999–2017. MMWR Morb. Mortal. Wkly Rep.68, 1134–1138 (2019).
  • GrantK , MatousekR , MeyerM , TzeremesNG. Research and development spending and technical efficiency: evidence from biotechnology and pharmaceutical sector. Int. J. Prod. Res.58(20), 6170–6184 (2019).
  • FieldLD , DelehantyJB , ChenY , MedintzIL. Peptides for specifically targeting nanoparticles to cellular organelles: quo vadis?Acc. Chem. Res.48(5), 1380–1390 (2015).
  • WalkerWA , DuffyLC. Diet and bacterial colonization: role of probiotics and prebiotics. J. Nutr. Biochem.9(12), 668–675 (1998).
  • EomJS , SongJ , ChoiHS. Protective effects of a novel probiotic strain of Lactobacillus plantarum jsa22 from traditional fermented soybean food against infection by Salmonella enterica serovar typhimurium. J. Microbiol. Biotechnol.25(4), 479–491 (2015).
  • JungJY , ShinJS , LeeSGet al.Lactobacillus sakei k040706 evokes immunostimulatory effects on macrophages through tlr 2-mediated activation. Int. Immunopharmacol.28(1), 88–96 (2015).
  • EunSH , LimSM , JangSE , HanMJ , KimDH. Lactobacillus sakei K17, an inducer of IL-10 expression in antigen-presenting Cells, attenuates TNBS-induced colitis in mice. Immunopharmacol. Immunotoxicol.38(6), 447–454 (2016).
  • FerreiraDos Santos T , AlvesMelo T , AlmeidaME , PassosRezende R , RomanoCC. Immunomodulatory effects of Lactobacillus plantarum lp62 on intestinal epithelial and mononuclear cells. Biomed. Res. Int.2016 (2016).
  • JoSG , NohEJ , LeeJYet al.Lactobacillus curvatus WiKim38 isolated from kimchi induces IL-10 production in dendritic cells and alleviates DSS-induced colitis in mice. J. Microbiol.54(7), 503–509 (2016).
  • SaxamiG , KarapetsasA , ChondrouPet al.Potentially probiotic Lactobacillus strains with anti-proliferative activity induce cytokine/chemokine production and neutrophil recruitment in mice. Benef. Microbes8(4), 615–623 (2017).
  • ZagoM , ScaltritiE , BonviniBet al.Genomic diversity and immunomodulatory activity of Lactobacillus plantarum isolated from dairy products. Benef. Microbes8(4), 597–604 (2017).
  • TuoY , SongX , SongYet al.Screening probiotics from Lactobacillus strains according to their abilities to inhibit pathogen adhesion and induction of pro-inflammatory cytokine IL-8. J. Dairy Sci.101(6), 4822–4829 (2018).
  • KobayashiK , HonmeY , SashiharaT. Lactobacillus delbrueckii subsp. bulgaricus 2038 and Streptococcus thermophilus 1131 Induce the expression of the reg3 family in the small intestine of mice via the stimulation of dendritic cells and type 3 innate lymphoid cells. Nutrients11(12), 2998, (2019).
  • SloverCM , DanzigerL. Lactobacillus: a review. Clin. Microbiol. Newsl.30(4), 23–27 (2008).
  • LeB , YangSH. Efficacy of Lactobacillus plantarum in prevention of inflammatory bowel disease. Toxicol. Rep.5, 314–317 (2018).
  • ChoSW , YimJ , SeoSW. Engineering tools for the development of recombinant lactic acid bacteria. Biotechnol. J.15(6), e1900344 (2020).
  • SissonsJW. Potential of probiotic organisms to prevent diarrhoea and promote digestion in farm animals – a review. J. Sci. Food Agr.49(1), 1–13 (1989).
  • VouloumanouEK , MakrisGC , KarageorgopoulosDE , FalagasME. Probiotics for the prevention of respiratory tract infections: a systematic review. Int. J. Antimicrob. Ag.34(3), 197.e191–197.e110 (2009).
  • MedvedevAE , SabroeI , HasdayJD , VogelSN. Tolerance to microbial TLR ligands: molecular mechanisms and relevance to disease. J. Endotoxin Res.12(3), 133–150 (2006).
  • IzcueA , PowrieF. Special regulatory T-cell review: regulatory T cells and the intestinal tract--patrolling the frontier. Immunology123(1), 6–10 (2008).
  • IvanovicN , MinicR , DimitrijevicL , RadojevicSkodric S , ZivkovicI , DjordjevicB. Lactobacillus rhamnosus LA68 and Lactobacillus plantarum WCFS1 differently influence metabolic and immunological parameters in high fat diet-induced hypercholesterolemia and hepatic steatosis. Food Funct.6(2), 558–565 (2015).
  • WangK , DongH , QiYet al.Lactobacillus casei regulates differentiation of Th17/Treg cells to reduce intestinal inflammation in mice. Can. J. Vet. Res.81(2), 122–128 (2017).
  • TzangBS , LiuCH , HsuKC , ChenYH , HuangCY , HsuTC. Effects of oral Lactobacillus administration on antioxidant activities and CD4 + CD25 + forkhead box P3 (FoxP3)+ T cells in NZB/W F1 mice. Br. J. Nutr.118(5), 333–342 (2017).
  • MobergslienA , VasovicV , MathiesenGet al.Recombinant Lactobacillus plantarum induces immune responses to cancer testis antigen NY-ESO-1 and maturation of dendritic cells. Hum. Vaccin. Immunother.11(11), 2664–2673 (2015).
  • MikulicJ , LongetS , FavreL , BenyacoubJ , CorthesyB. Secretory IgA in complex with Lactobacillus rhamnosus potentiates mucosal dendritic cell-mediated Treg cell differentiation via TLR regulatory proteins, RALDH2 and secretion of IL-10 and TGF-beta. Cell Mol. Immunol.14(6), 546–556 (2017).
  • Vargas GarciaCE , PetrovaM , ClaesIJet al.Piliation of Lactobacillus rhamnosus GG promotes adhesion, phagocytosis, and cytokine modulation in macrophages. Appl. Environ. Microbiol.81(6), 2050–2062 (2015).
  • Rocha-RamirezLM , Hernandez-OchoaB , Gomez-ManzoSet al.Evaluation of immunomodulatory activities of the heat-killed probiotic strain Lactobacillus casei imau60214 on macrophages in vitro. Microorganisms8(1),79, ( 2020).
  • BoyeL , WelsbyI , LundLD , GorielyS , FrokiaerH. Plasma membrane Toll-like receptor activation increases bacterial uptake but abrogates endosomal Lactobacillus acidophilus induction of interferon-beta. Immunology149(3), 329–342 (2016).
  • LiuQ , NiX , WangQet al.Lactobacillus plantarum BSGP201683 isolated from giant panda feces attenuated inflammation and improved gut microflora in mice challenged with enterotoxigenic Escherichia coli. Front. Microbiol.8, 1885 (2017).
  • JorjaoAL , DeOliveira FE , LeaoMV , CarvalhoCA , JorgeAO , DeOliveira LD. live and heat-killed Lactobacillus rhamnosus ATCC 7469 may induce modulatory cytokines profiles on macrophages RAW 264.7. Sci.World J.2015 (2015).
  • BarnesTC , AndersonME , MootsRJ. The many faces of interleukin-6: the role of IL-6 in inflammation, vasculopathy, and fibrosis in systemic sclerosis. Int. J. Rheumatol.2011 (2011).
  • CoppackSW. Pro-inflammatory cytokines and adipose tissue. Proc. Nutr. Soc.60(3), 349–356 (2001).
  • WatkinsLR , MaierSF , GoehlerLE. Immune activation: the role of pro-inflammatory cytokines in inflammation, illness responses and pathological pain states. Pain63(3), 289–302 (1995).
  • KimDH , KimS , LeeJHet al.Lactobacillus acidophilus suppresses intestinal inflammation by inhibiting endoplasmic reticulum stress. J. Gastroenterol. Hepatol.34(1), 178–185 (2019).
  • ParkJS , ChoiJW , JhunJet al.Lactobacillus acidophilus improves intestinal inflammation in an acute colitis mouse model by regulation of th17 and treg cell balance and fibrosis development. J. Med. Food21(3), 215–224 (2018).
  • ChenL , ZouY , PengJet al.Lactobacillus acidophilus suppresses colitis-associated activation of the IL-23/Th17 axis. J. Immunol. Res.2015, 909514 (2015).
  • KashimaS , FujiyaM , KonishiHet al.Polyphosphate, an active molecule derived from probiotic Lactobacillus brevis, improves the fibrosis in murine colitis. Transl. Res.166(2), 163–175 (2015).
  • LiuYW , OngWK , SuYW , HsuCC , ChengTH , TsaiYC. Anti-inflammatory effects of Lactobacillus brevis K65 on RAW 264.7 cells and in mice with dextran sulphate sodium-induced ulcerative colitis. Benef. Microbes7(3), 387–396 (2016).
  • WasilewskaE , ZlotkowskaD , WroblewskaB. Yogurt starter cultures of Streptococcus thermophilus and Lactobacillus bulgaricus ameliorate symptoms and modulate the immune response in a mouse model of dextran sulfate sodium-induced colitis. J. Dairy Sci.102(1), 37–53 (2019).
  • EslamiS , HadjatiJ , MotevaseliEet al.Lactobacillus crispatus strain SJ-3C-US induces human dendritic cells (DCs) maturation and confers an anti-inflammatory phenotype to DCs. APMIS124(8), 697–710 (2016).
  • LimSM , JangHM , JangSE , HanMJ , KimDH. Lactobacillus fermentum IM12 attenuates inflammation in mice by inhibiting NF-kappaB-STAT3 signalling pathway. Benef. Microbes8(3), 407–419 (2017).
  • JangYJ , KimWK , HanDH , LeeK , KoG. Lactobacillus fermentum species ameliorate dextran sulfate sodium-induced colitis by regulating the immune response and altering gut microbiota. Gut Microbes10(6), 696–711 (2019).
  • SunKY , XuDH , XieCet al.Lactobacillus paracasei modulates LPS-induced inflammatory cytokine release by monocyte-macrophages via the up-regulation of negative regulators of NF-kappaB signaling in a TLR2-dependent manner. Cytokine92, 1–11 (2017).
  • KimJE , SharmaA , SharmaGet al.Lactobacillus pentosus modulates immune response by inducing IL-10 producing Tr1 cells. Immune Netw.19(6), e39 (2019).
  • ToshimitsuT , MochizukiJ , IkegamiS , ItouH. Identification of a Lactobacillus plantarum strain that ameliorates chronic inflammation and metabolic disorders in obese and type 2 diabetic mice. J. Dairy Sci.99(2), 933–946 (2016).
  • LeB , AnhPTN , YangSH. Enhancement of the anti-inflammatory effect of mustard kimchi on RAW 264.7 macrophages by the Lactobacillus plantarum fermentation-mediated generation of phenolic compound derivatives. Foods9(2),181, (2020).
  • StofilovaJ , LangerholcT , BottaCet al.Cytokine production in vitro and in rat model of colitis in response to Lactobacillus plantarum LS/07. Biomed. Pharmacother.94, 1176–1185 (2017).
  • Vareille-DelarbreM , MiquelS , GarcinSet al.Immunomodulatory effects of Lactobacillus plantarum on inflammatory response induced by Klebsiella pneumoniae. Infect. Immun.87(11), e00570–19 (2019).
  • YinX , HeeneyD , SrisengfaY , GolombB , GriffeyS , MarcoM. Bacteriocin biosynthesis contributes to the anti-inflammatory capacities of probiotic Lactobacillus plantarum. Benef Microbes9(2), 333–344 (2018).
  • ZhangW , JiH , ZhangDet al.Complete genome sequencing of Lactobacillus plantarum ZLP001, a potential probiotic that enhances intestinal epithelial barrier function and defense against pathogens in pigs. Front Physiol.9, 1689 (2018).
  • GaoC , MajorA , RendonDet al.Histamine H2 Receptor-mediated suppression of intestinal inflammation by probiotic Lactobacillus reuteri. mBio6(6), e01358–01315 (2015).
  • HouQ , YeL , LiuHet al.Lactobacillus accelerates ISCs regeneration to protect the integrity of intestinal mucosa through activation of STAT3 signaling pathway induced by LPLs secretion of IL-22. Cell Death Differ.25(9), 1657–1670 (2018).
  • SunMC , ZhangFC , YinXet al.Lactobacillus reuteri F-9-35 prevents DSS-induced colitis by inhibiting proinflammatory gene expression and restoring the gut microbiota in mice. J. Food Sci.83(10), 2645–2652 (2018).
  • JinP , ChenY , LvL , YangJ , LuH , LiL. Lactobacillus fermentum ZYL0401 attenuates lipopolysaccharide-induced hepatic TNF-alpha expression and liver injury via an IL-10- and PGE2-EP4-dependent mechanism. PLoS ONE10(5), e0126520 (2015).
  • HarbigeLS , PintoE , AllgroveJ , ThomasLV. Immune response of healthy adults to the ingested probiotic Lactobacillus casei Shirota. Scand. J. Immunol.84(6), 353–364 (2016).
  • Tenorio-JimenezC , Martinez-RamirezMJ , Tercero-LozanoMet al.Evaluation of the effect of Lactobacillus reuteri V3401 on biomarkers of inflammation, cardiovascular risk and liver steatosis in obese adults with metabolic syndrome: a randomized clinical trial (PROSIR). BMC Complement. Altern. Med.18(1), 306 (2018).
  • ChongHX , YusoffNaA , HorYYet al.Lactobacillus plantarum DR7 alleviates stress and anxiety in adults: a randomised, double-blind, placebo-controlled study. Benef. Microbes10(4), 355–373 (2019).
  • WangHJ , ZakhariS , JungMK. Alcohol, inflammation, and gut-liver-brain interactions in tissue damage and disease development. World J. Gastroentero.16(11), 1304–1313 (2010).
  • McguckinMA , EriR , SimmsLA , FlorinTH , Radford-SmithG. Intestinal barrier dysfunction in inflammatory bowel diseases. Inflamm. Bowel Dis.15(1), 100–113 (2009).
  • GuoS , GillinghamT , GuoYet al.Secretions of Bifidobacterium infantis and Lactobacillus acidophilus protect intestinal epithelial barrier function. J. Pediatr. Gastroenterol. Nutr.64(3), 404–412 (2017).
  • WuY , ZhuC , ChenZet al.Protective effects of Lactobacillus plantarum on epithelial barrier disruption caused by enterotoxigenic Escherichia coli in intestinal porcine epithelial cells. Vet Immunol. Immunopathol.172, 55–63 (2016).
  • YangF , WangA , ZengX , HouC , LiuH , QiaoS. Lactobacillus reuteri I5007 modulates tight junction protein expression in IPEC-J2 cells with LPS stimulation and in newborn piglets under normal conditions. BMC Microbiol.15, 32 (2015).
  • QiuY , JiangZ , HuS , WangL , MaX , YangX. Lactobacillus plantarum enhanced IL-22 production in Natural Killer (NK) cells that protect the integrity of intestinal epithelial cell barrier damaged by enterotoxigenic Escherichia coli. Int. J. Mol. Sci.18(11), 2409, (2017).
  • BrufauMT , Campo-SabarizJ , CarneS , FerrerR , Martin-VenegasR. Salmosan, a beta-galactomannan-rich product, in combination with Lactobacillus plantarum contributes to restore intestinal epithelial barrier function by modulation of cytokine production. J. Nutr. Biochem.41, 20–24 (2017).
  • LepineAFP , DeWit N , OosterinkE , WichersH , MesJ , DeVos P. Lactobacillus acidophilus attenuates Salmonella-induced stress of epithelial cells by modulating tight-junction genes and cytokine responses. Front. Microbiol.9, 1439 (2018).
  • WangZ , WangL , ChenZet al.In vitro evaluation of swine-derived Lactobacillus reuteri: probiotic properties and effects on intestinal porcine epithelial cells challenged with enterotoxigenic Escherichia coli K88. J. Microbiol. Biotechnol.26(6), 1018–1025 (2016).
  • WangH , ZhangQ , NiuY , ZhangX , LuR. Surface-layer protein from Lactobacillus acidophilus NCFM attenuates tumor necrosis factor-alpha-induced intestinal barrier dysfunction and inflammation. Int. J. Biol. Macromol.136, 27–34 (2019).
  • ChenRC , XuLM , DuSJet al.Lactobacillus rhamnosus GG supernatant promotes intestinal barrier function, balances Treg and TH17 cells and ameliorates hepatic injury in a mouse model of chronic-binge alcohol feeding. Toxicol. Lett.241, 103–110 (2016).
  • MaoX , GuC , HuHet al.Dietary Lactobacillus rhamnosus GG supplementation improves the mucosal barrier function in the intestine of weaned piglets challenged by porcine rotavirus. PLoS ONE11(1), e0146312 (2016).
  • WangS , LiH , DuCet al.Effects of dietary supplementation with Lactobacillus acidophilus on the performance, intestinal physical barrier function, and the expression of NOD-like receptors in weaned piglets. PeerJ6, e6060 (2018).
  • ZhouY , NiX , WenBet al.Appropriate dose of Lactobacillus buchneri supplement improves intestinal microbiota and prevents diarrhoea in weaning Rex rabbits. Benef. Microbes9(3), 401–416 (2018).
  • GaoJ , LiY , WanYet al.A novel postbiotic from Lactobacillus rhamnosus GG with a beneficial effect on intestinal barrier function. Front. Microbiol.10, 477 (2019).
  • BeneKP , KavanaughDW , LeclaireCet al.Lactobacillus reuteri surface mucus adhesins upregulate inflammatory responses through interactions with innate c-type lectin receptors. Front. Microbiol.8, 321 (2017).
  • GanguliK , ColladoMC , RautavaJet al.Lactobacillus rhamnosus GG and its SpaC pilus adhesin modulate inflammatory responsiveness and TLR-related gene expression in the fetal human gut. Pediatr. Res.77(4), 528–535 (2015).
  • NiuXX , LiT , ZhangX , WangSX , LiuZH. Lactobacillus crispatus modulates vaginal epithelial cell innate response to Candida albicans. Chin. Med. J. (Engl.)130(3), 273–279 (2017).
  • WangB , ChenJ , WangS , ZhaoX , LuG , TangX. Lactobacillus plantarum L9 but not Lactobacillus acidophilus LA reduces tumour necrosis factor induced bacterial translocation in Caco-2 cells. Benef. Microbes8(3), 497–505 (2017).
  • FengJ , LiuP , YangX , ZhaoX. Screening of immunomodulatory and adhesive Lactobacillus with antagonistic activities against Salmonella from fermented vegetables. World J. Microbiol. Biotechnol.31(12), 1947–1954 (2015).
  • KsonzekovaP , BystrickyP , VlckovaSet al.Exopolysaccharides of Lactobacillus reuteri: their influence on adherence of E. coli to epithelial cells and inflammatory response. Carbohydr. Polym.141, 10–19 (2016).
  • LiuM , WuQ , WangM , FuY , WangJ. Lactobacillus rhamnosus GR-1 limits Escherichia coli-induced inflammatory responses via attenuating MyD88-Dependent and MyD88-independent pathway activation in bovine endometrial epithelial cells. Inflammation39(4), 1483–1494 (2016).
  • WuQ , LiuMC , YangJ , WangJF , ZhuYH. Lactobacillus rhamnosus GR-1 ameliorates Escherichia coli-induced inflammation and cell damage via attenuation of ASC-independent NLRP3 inflammasome activation. Appl. Environ. Microbiol.82(4), 1173–1182 (2016).
  • AlamdarySZ , BakhshiB , SoudiS. The anti-apoptotic and anti-inflammatory effect of Lactobacillus acidophilus on Shigella sonnei and Vibrio cholerae interaction with intestinal epithelial cells: a comparison between invasive and non-invasive bacteria. PLoS ONE13(6), e0196941 (2018).
  • HuangL , ZhaoZ , DuanCet al.Lactobacillus plantarum C88 protects against aflatoxin B1-induced liver injury in mice via inhibition of NF-kappaB-mediated inflammatory responses and excessive apoptosis. BMC Microbiol.19(1), 170 (2019).
  • BereswillS , EkmekciuI , EscherU , FiebigerU , StinglK , HeimesaatMM. Lactobacillus johnsonii ameliorates intestinal, extra-intestinal and systemic pro-inflammatory immune responses following murine Campylobacter jejuni infection. Sci. Rep.7(1), 2138 (2017).
  • PanpetchW , SpinlerJK , VersalovicJ , TumwasornS. Characterization of Lactobacillus salivarius strains B37 and B60 capable of inhibiting IL-8 production in Helicobacter pylori-stimulated gastric epithelial cells. BMC Microbiol.16(1), 242 (2016).
  • KimKW , KangSS , WooSJet al.Lipoteichoic acid of probiotic Lactobacillus plantarum attenuates poly I:C-induced IL-8 production in porcine intestinal epithelial cells. Front. Microbiol.8, 1827 (2017).
  • WangH , ZhangL , XuS , PanJ , ZhangQ , LuR. Surface-layer protein from Lactobacillus acidophilus NCFM inhibits lipopolysaccharide-induced inflammation through MAPK and NF-kappaB signaling pathways in RAW264.7 cells. J. Agric. Food Chem.66(29), 7655–7662 (2018).
  • ZhangJ , YiR , QianY , SunP , ZhaoX , YangZ. Lactobacillus plantarum CQPC06 activity prevents dextran sulfate sodium-induced colitis by regulating the IL-8 pathway. J. Food Sci.83(10), 2653–2661 (2018).
  • ChoiJH , MoonCM , ShinTSet al.Lactobacillus paracasei-derived extracellular vesicles attenuate the intestinal inflammatory response by augmenting the endoplasmic reticulum stress pathway. Exp. Mol. Med.52, 423–437 (2020).
  • GinsburgI. Role of lipoteichoic acid in infection and inflammation. Lancet Infect. Dis.2(3), 171–179 (2002).
  • NohSY , KangSS , YunCH , HanSH. Lipoteichoic acid from Lactobacillus plantarum inhibits Pam2CSK4-induced IL-8 production in human intestinal epithelial cells. Mol. Immunol.64(1), 183–189 (2015).
  • WangS , AhmadiS , NagpalRet al.Lipoteichoic acid from the cell wall of a heat killed Lactobacillus paracasei D3–5 ameliorates aging-related leaky gut, inflammation and improves physical and cognitive functions: from C. elegans to mice. Geroscience42(1), 333–352 (2020).
  • AhnJE , KimH , ChungDK. Lipoteichoic acid isolated from Lactobacillus plantarum maintains inflammatory homeostasis through regulation of Th1- and Th2-induced cytokines. J. Microbiol. Biotechnol.29(1), 151–159 (2019).
  • Garcia-VelloP , SharmaG , SpecialeI , MolinaroA , ImSH , DeCastro C. Structural features and immunological perception of the cell surface glycans of Lactobacillus plantarum: a novel rhamnose-rich polysaccharide and teichoic acids. Carbohydr. Polym.233, 115857 (2020).
  • ZhouX , ZhangK , QiWet al.Exopolysaccharides from Lactobacillus plantarum NCU116 enhances colonic mucosal homeostasis by controlling epithelial cell differentiation and c-Jun/Muc2 signaling. J. Agric. Food Chem.67(35), 9831–9839 (2019).
  • Castro-BravoN , WellsJM , MargollesA , Ruas-MadiedoP. Interactions of surface exopolysaccharides from Bifidobacterium and Lactobacillus within the intestinal environment. Front. Microbiol.9, 2426 (2018).
  • SchmidJ , SieberV , RehmB. Bacterial exopolysaccharides: biosynthesis pathways and engineering strategies. Front. Microbiol.6(496), (2015).
  • SutherlandI. Biofilm exopolysaccharides: a strong and sticky framework. Microbiology147(Pt 1), 3–9 (2001).
  • ZivkovicM , Hidalgo-CantabranaC , KojicM , GueimondeM , GolicN , Ruas-MadiedoP. Capability of exopolysaccharide-producing Lactobacillus paraplantarum BGCG11 and its non-producing isogenic strain NB1, to counteract the effect of enteropathogens upon the epithelial cell line HT29-MTX. Food Res. Int.74, 199–207 (2015).
  • LiuZ , ZhangZ , QiuLet al.Characterization and bioactivities of the exopolysaccharide from a probiotic strain of Lactobacillus plantarum WLPL04. J. Dairy Sci.100(9), 6895–6905 (2017).
  • KimK , LeeG , ThanhHDet al.Exopolysaccharide from Lactobacillus plantarum LRCC5310 offers protection against rotavirus-induced diarrhea and regulates inflammatory response. J. Dairy Sci.101(7), 5702–5712 (2018).
  • BiliavskaL , PankivskaY , PovnitsaO , ZagorodnyaS. Antiviral activity of exopolysaccharides produced by lactic acid bacteria of the genera pediococcus, leuconostoc and Lactobacillus against Human Adenovirus Type 5. Medicina (Kaunas)55(9), 519, (2019).
  • Adebayo-TayoB , FashogbonR. In vitro antioxidant, antibacterial, in vivo immunomodulatory, antitumor and hematological potential of exopolysaccharide produced by wild type and mutant Lactobacillus delbureckii subsp. bulgaricus. Heliyon6(2), e03268 (2020).
  • MurofushiY , VillenaJ , MorieKet al.The toll-like receptor family protein RP105/MD1 complex is involved in the immunoregulatory effect of exopolysaccharides from Lactobacillus plantarum N14. Mol. Immunol.64(1), 63–75 (2015).
  • DinicM , PecikozaU , DjokicJet al.Exopolysaccharide produced by probiotic strain Lactobacillus paraplantarum BGCG11 reduces inflammatory hyperalgesia in rats. Front. Pharmacol.9, 1 (2018).
  • KanmaniP , AlbarracinL , KobayashiHet al.Exopolysaccharides from Lactobacillus delbrueckii OLL1073R-1 modulate innate antiviral immune response in porcine intestinal epithelial cells. Mol. Immunol.93, 253–265 (2018).
  • ZhouX , QiW , HongTet al.Exopolysaccharides from Lactobacillus plantarum NCU116 regulate intestinal barrier function via STAT3 signaling pathway. J. Agric. Food Chem.66(37), 9719–9727 (2018).
  • NodaM , SultanaN , HayashiI , FukamachiM , SugiyamaM. Exopolysaccharide produced by Lactobacillus paracasei IJH-SONE68 Prevents and improves the picryl chloride-induced contact dermatitis. Molecules24(16), 2970, (2019).
  • WangJ , FangX , WuT , FangL , LiuC , MinW. In vitro immunomodulatory effects of acidic exopolysaccharide produced by Lactobacillus planetarium JLAU103 on RAW264.7 macrophages. Int. J. Biol. Macromol.156, 1308–1315 (2020).
  • ZhangJ , ZhaoX , JiangYet al.Antioxidant status and gut microbiota change in an aging mouse model as influenced by exopolysaccharide produced by Lactobacillus plantarum YW11 isolated from Tibetan kefir. J. Dairy Sci.100(8), 6025–6041 (2017).
  • LiuZ , DongL , JiaKet al.Sulfonation of Lactobacillus plantarum WLPL04 exopolysaccharide amplifies its antioxidant activities in vitro and in a Caco-2 cell model. J. Dairy Sci.102(7), 5922–5932 (2019).
  • XiaoL , HanS , ZhouJet al.Preparation, characterization and antioxidant activities of derivatives of exopolysaccharide from Lactobacillus helveticus MB2-1. Int. J. Biol. Macromol.145, 1008–1017 (2020).
  • ZhangZ , LiuZ , TaoX , WeiH. Characterization and sulfated modification of an exopolysaccharide from Lactobacillus plantarum ZDY2013 and its biological activities. Carbohydr. Polym.153, 25–33 (2016).
  • LiW , TangW , JiJet al.Characterization of a novel polysaccharide with anti-colon cancer activity from Lactobacillus helveticus MB2-1. Carbohydr. Res.411, 6–14 (2015).
  • SungurT , AslimB , KaraaslanC , AktasB. Impact of Exopolysaccharides (EPSs) of Lactobacillus gasseri strains isolated from human vagina on cervical tumor cells (HeLa). Anaerobe47, 137–144 (2017).
  • WeiY , LiF , LiL , HuangL , LiQ. Genetic and biochemical characterization of an exopolysaccharide with in vitro antitumoral activity produced by Lactobacillus fermentum YL-11. Front. Microbiol.10, 2898 (2019).
  • SasakiE , SuzukiS , FukuiY , YajimaN. Cell-bound exopolysaccharides of Lactobacillus brevis KB290 enhance cytotoxic activity of mouse splenocytes. J. Appl. Microbiol.118(2), 506–514 (2015).
  • BalzarettiS , TavernitiV , GuglielmettiSet al.A novel rhamnose-rich hetero-exopolysaccharide isolated from Lactobacillus paracasei DG activates THP-1 human monocytic cells. Appl. Environ. Microbiol.83(3), e02702–16 (2017).
  • RyanPM , StolteEH , LondonLEEet al.Lactobacillus mucosae DPC 6426 as a bile-modifying and immunomodulatory microbe. BMC Microbiol.19(1), 33 (2019).
  • RenQ , TangY , ZhangL , XuY , LiuN , RenH. Exopolysaccharide produced by Lactobacillus casei promotes the differentiation of CD4(+) T cells into Th17 cells in BALB/c mouse Peyer's Patches in vivo and in vitro. J. Agric. Food Chem.68(9), 2664–2672 (2020).
  • RaniRP , AnandharajM , DavidRavindran A. Characterization of a novel exopolysaccharide produced by Lactobacillus gasseri FR4 and demonstration of its in vitro biological properties. Int. J. Biol. Macromol.109, 772–783 (2018).
  • WangK , NiuM , YaoDet al.Physicochemical characteristics and in vitro and in vivo antioxidant activity of a cell-bound exopolysaccharide produced by Lactobacillus fermentum S1. Int. J. Biol. Macromol.139, 252–261 (2019).
  • SpanglerJR , CaruanaJC , PhillipsDA , WalperSA. Broad range shuttle vector construction and promoter evaluation for the use of Lactobacillus plantarum WCFS1 as a microbial engineering platform. Synth. Biol.4(1), (2019).
  • DeMoreno De Leblanc A , DelCarmen S , ChatelJ-Met al.Current review of genetically modified lactic acid bacteria for the prevention and treatment of colitis using murine models. Gastroenterol. Res. Pract.2015 (2015).
  • WangM , GaoZ , ZhangY , PanL. Lactic acid bacteria as mucosal delivery vehicles: a realistic therapeutic option. Appl. Microbiol. Biotechnol.100(13), 5691–5701 (2016).
  • ReuterG. The Lactobacillus and Bifidobacterium microflora of the human intestine: composition and succession. Curr. Issues Intest. Microbiol.2(2), 43–53 (2001).
  • VaughanEE , HeiligHGHJ , Ben-AmorK , DeVos WM. Diversity, vitality and activities of intestinal lactic acid bacteria and bifidobacteria assessed by molecular approaches. FEMS Microbiol. Rev.29(3), 477–490 (2005).
  • SteidlerL , HansW , SchotteLet al.Treatment of murine colitis by Lactococcus lactis secreting Interleukin-10. Science289(5483), 1352–1355 (2000).
  • AllainT , MansourNM , BahrMMet al.A new lactobacilli in vivo expression system for the production and delivery of heterologous proteins at mucosal surfaces. FEMS Microbiol. Lett.363(13), (2016).
  • CaiR , JiangY , YangWet al.Surface-displayed IL-10 by recombinant Lactobacillus plantarum reduces Th1 responses of RAW264.7 cells stimulated with poly(I:C) or LPS. J. Microbiol. Biotechnol.26(2), 421–431 (2016).
  • LinY , Krogh-AndersenK , HammarstromL , MarcotteH. Lactobacillus delivery of bioactive interleukin-22. Microb. Cell Fact.16(1), 148 (2017).
  • Bermudez-HumaranLG. Lactococcus lactis as a live vector for mucosal delivery of therapeutic proteins. Hum. Vaccin.5(4), 264–267 (2009).
  • VergnolleN. Protease inhibition as new therapeutic strategy for GI diseases. Gut65(7), 1215 (2016).
  • KriaaA , JablaouiA , MkaouarH , AkermiN , MaguinE , RhimiM. Serine proteases at the cutting edge of IBD: focus on gastrointestinal inflammation. FASEB J.34, 7270–7282 (2020).
  • MottaJ-P , Bermúdez-HumaránLG , DeraisonCet al.Food-grade bacteria expressing elafin protect against inflammation and restore colon homeostasis. Sci. Transl. Med.4(158), 158ra144 (2012).
  • PahumuntoN , SophathaB , PiwatS , TeanpaisanR. Increasing salivary IgA and reducing Streptococcus mutans by probiotic Lactobacillus paracasei SD1: a double-blind, randomized, controlled study. J. Dent. Sci.14(2), 178–184 (2019).
  • MowatAM , AgaceWW. Regional specialization within the intestinal immune system. Nat. Rev. Immunol.14(10), 667–685 (2014).
  • WellsJM , MercenierA. Mucosal delivery of therapeutic and prophylactic molecules using lactic acid bacteria. Nat. Rev. Microbiol.6(5), 349–362 (2008).
  • LecureuxJS , DeanGA. Lactobacillus mucosal vaccine vectors: immune responses against bacterial and viral antigens. mSphere3(3), e00061–18 (2018).
  • LinR , ZhangY , LongBet al.Oral immunization with recombinant Lactobacillus acidophilus expressing espA-Tir-M confers protection against enterohemorrhagic Escherichia coli O157:H7 challenge in mice. Front. Microbiol.8, 417 (2017).
  • KajikawaA , ZhangL , LavoyA , BumgardnerS , KlaenhammerTR , DeanGA. Mucosal immunogenicity of genetically modified Lactobacillus acidophilus expressing an HIV-1 epitope within the surface layer protein. PLoS ONE10(10), e0141713 (2015).
  • KuczkowskaK , MathiesenG , EijsinkVG , OynebratenI. Lactobacillus plantarum displaying CCL3 chemokine in fusion with HIV-1 Gag derived antigen causes increased recruitment of T cells. Microb. Cell Fact.14, 169 (2015).
  • KuczkowskaK , KleivelandCR , MinicRet al.Immunogenic properties of Lactobacillus plantarum producing surface-displayed Mycobacterium tuberculosis antigens. Appl. Environ. Microbiol.83(2), e02782–16 (2017).
  • KuczkowskaK , MyrbratenI , OverlandLet al.Lactobacillus plantarum producing a Chlamydia trachomatis antigen induces a specific IgA response after mucosal booster immunization. PLoS ONE12(5), e0176401 (2017).
  • LeiH , ShengZ , DingQet al.Evaluation of oral immunization with recombinant avian influenza virus HA1 displayed on the Lactococcus lactis surface and combined with the mucosal adjuvant cholera toxin subunit B. Clin. Vacc. Immunol.18(7), 1046–1051 (2011).
  • LeiH , PengX , OuyangJet al.Intranasal immunization of recombinant Lactococcus lactis induces protection against H5N1 virus in ferrets. Virus Res.196, 56–59 (2015).
  • WeiW , WigginsJ , HuDet al.Blocking HIV-1 Infection by chromosomal integrative expression of human CD4 on the surface of Lactobacillus acidophilus ATCC 4356. J. Virol.93(8), e01830–18 (2019).
  • WagachchiD , TsaiJ-YC , ChalmersC , BlanchettS , LohJMS , ProftT. PilVax – a novel peptide delivery platform for the development of mucosal vaccines. Sci. Rep.8(1), 2555 (2018).
  • ClowF , PeterkenK , PearsonV , ProftT , RadcliffFJ. PilVax, a novel Lactococcus lactis-based mucosal vaccine platform, stimulates systemic and mucosal immune responses to Staphylococcus aureus. Immunol. Cell Biol.98(5), 369–381 (2020).
  • LiuJ-K , WeiC-H , HouX-L , YuL-Y. Passive protection of mice pups through oral or intranasal immunization of dams with recombinant Lactobacillus casei vaccine against ETEC F41. Res. Vet. Sci.96(2), 283–287 (2014).
  • LeeJ-S , PooH , HanDPet al.Mucosal immunization with surface-displayed severe acute respiratory syndrome coronavirus spike protein on Lactobacillus casei induces neutralizing antibodies in mice. J. Virol.80(8), 4079–4087 (2006).
  • MaBC , YangX , WangHNet al.Characterization of a new Lactobacillus salivarius strain engineered to express IBV multi-epitope antigens by chromosomal integration. Biosci. Biotechnol. Biochem.80(3), 574–583 (2016).
  • YangWT , YangGL , WangQet al.Protective efficacy of Fc targeting conserved influenza virus M2e antigen expressed by Lactobacillus plantarum. Antiviral Res.138, 9–21 (2017).
  • YangWT , YangGL , YangXet al.Recombinant Lactobacillus plantarum expressing HA2 antigen elicits protective immunity against H9N2 avian influenza virus in chickens. Appl. Microbiol. Biotechnol.101(23–24), 8475–8484 (2017).
  • YangWT , YangGL , ZhaoLet al.Lactobacillus plantarum displaying conserved M2e and HA2 fusion antigens induces protection against influenza virus challenge. Appl. Microbiol. Biotechnol.102(12), 5077–5088 (2018).
  • HouX , JiangX , JiangYet al.Oral Immunization against PEDV with recombinant Lactobacillus casei expressing dendritic cell-targeting peptide fusing COE protein of PEDV in piglets. Viruses10(3), 106, ( 2018).
  • BoF , YangWT , ShonyelaSMet al.Immune responses of mice inoculated with recombinant Lactobacillus plantarum NC8 expressing the fusion gene HA2 and 3M2e of the influenza virus and protection against different subtypes of influenza virus. Virus Res.263, 64–72 (2019).
  • WangY , FengB , NiuCet al.Dendritic cell targeting of bovine viral diarrhea virus E2 protein expressed by Lactobacillus casei effectively induces antigen-specific immune responses via oral vaccination. Viruses11(6), 575, ( 2019).
  • RutiglianoG , AccorroniA , ZucchiR. The case for TAAR1 as a modulator of central nervous system function. Front. Pharmacol.8, 987 (2017).
  • EgertonA , ModinosG , FerreraD , McguireP. Neuroimaging studies of GABA in schizophrenia: a systematic review with meta-analysis. Transl. Psychiatry7(6), e1147 (2017).
  • Schmidt-WilckeT , FuchsE , FunkeKet al.GABA-from inhibition to cognition: emerging concepts. Neuroscientist24(5), 501–515 (2018).
  • SavageK , FirthJ , StoughC , SarrisJ. GABA-modulating phytomedicines for anxiety: a systematic review of preclinical and clinical evidence. Phytother. Res.32(1), 3–18 (2018).
  • ErberAC , CetinH , BerryD , SchernhammerES. The role of gut microbiota, butyrate and proton pump inhibitors in amyotrophic lateral sclerosis: a systematic review. Int. J. Neurosci.130(7), 727–737 (2019).
  • HosseiniE , GrootaertC , VerstraeteW , VanDe Wiele T. Propionate as a health-promoting microbial metabolite in the human gut. Nutr. Rev.69(5), 245–258 (2011).
  • ThorburnAN , MaciaL , MackayCR. Diet, metabolites, and “western-lifestyle” inflammatory diseases. Immunity40(6), 833–842 (2014).
  • KhareA , GaurS. Cholesterol-lowering effects of Lactobacillus species. Curr. Microbiol.77(4), 638–644 (2020).
  • ParkS , KangJ , ChoiSet al.Cholesterol-lowering effect of Lactobacillus rhamnosus BFE5264 and its influence on the gut microbiome and propionate level in a murine model. PLoS ONE13(8), e0203150 (2018).
  • WangJ , JiH , WangSet al.Probiotic Lactobacillus plantarum promotes intestinal barrier function by strengthening the epithelium and modulating gut microbiota. Front. Microbiol.9, 1953 (2018).
  • ZhaiQ , ZhangQ , TianF , ZhaoJ , ZhangH , ChenW. The synergistic effect of Lactobacillus plantarum CCFM242 and zinc on ulcerative colitis through modulating intestinal homeostasis. Food Funct.10(9), 6147–6156 (2019).
  • HeT , ZhuYH , YuJet al.Lactobacillus johnsonii L531 reduces pathogen load and helps maintain short-chain fatty acid levels in the intestines of pigs challenged with Salmonella enterica Infantis. Vet Microbiol.230, 187–194 (2019).
  • JiY , ParkS , ChungYet al.Amelioration of obesity-related biomarkers by Lactobacillus sakei CJLS03 in a high-fat diet-induced obese murine model. Sci. Rep.9(1), 6821 (2019).
  • LiS , QiC , ZhuHet al.Lactobacillus reuteri improves gut barrier function and affects diurnal variation of the gut microbiota in mice fed a high-fat diet. Food Funct.10(8), 4705–4715 (2019).
  • VemuriR , GundamarajuR , ShindeTet al.Lactobacillus acidophilus DDS-1 modulates intestinal-specific microbiota, short-chain fatty acid and immunological profiles in aging mice. Nutrients11(6), 1297, (2019).
  • CremonC , GuglielmettiS , GargariGet al.Effect of Lactobacillus paracasei CNCM I-1572 on symptoms, gut microbiota, short chain fatty acids, and immune activation in patients with irritable bowel syndrome: a pilot randomized clinical trial. United Eur. Gastroenterol.6(4), 604–613 (2018).
  • MalikM , SubocTM , TyagiSet al.Lactobacillus plantarum 299v supplementation improves vascular endothelial function and reduces inflammatory biomarkers in men with stable coronary artery disease. Circ. Res.123(9), 1091–1102 (2018).
  • CresciGaM , MayorPC , ThompsonSA. Effect of butyrate and Lactobacillus GG on a butyrate receptor and transporter during Campylobacter jejuni exposure. FEMS Microbiol. Lett.364(6), (2017).
  • KumarA , AlrefaiWA , BorthakurA , DudejaPK. Lactobacillus acidophilus counteracts enteropathogenic E. coli-induced inhibition of butyrate uptake in intestinal epithelial cells. Am. J. Physiol. Gastrointest. Liver Physiol.309(7), G602–607 (2015).
  • WangG , YuY , Garcia-GutierrezEet al.Lactobacillus acidophilus JCM 1132 strain and its mutant with different bacteriocin-producing behaviour have various in situ effects on the gut microbiota of healthy mice. Microorganisms8(1), 49, ( 2019).
  • Zegarra-RuizDF , ElBeidaq A , IniguezAJet al.A diet-sensitive commensal Lactobacillus strain mediates TLR7-dependent systemic autoimmunity. Cell Host Microbe25(1), 113–127e116 (2019).
  • HylandNP , CryanJF. A gut feeling about GABA: focus on GABA(B) receptors. Front. Pharmacol.1, 124 (2010).
  • StrandwitzP. Neurotransmitter modulation by the gut microbiota. Brain Res.1693(Pt B), 128–133 (2018).
  • HuangJ , MeiL-H , WuH , LinD-Q. Biosynthesis of γ-aminobutyric acid (GABA) using immobilized whole cells of Lactobacillus brevis. W. J. Microbiol. Biotechnol.23(6), 865–871 (2007).
  • YunesRA , PoluektovaEU , DyachkovaMSet al.GABA production and structure of gadB/gadC genes in Lactobacillus and Bifidobacterium strains from human microbiota. Anaerobe42, 197–204 (2016).
  • HoriiY , NakakitaY , MisonouY , NakamuraT , NagaiK. The serotonin receptor mediates changes in autonomic neurotransmission and gastrointestinal transit induced by heat-killed Lactobacillus brevis SBC8803. Benef. Microbes6(6), 817–822 (2015).
  • AbdelazezA , AbdelmotaalH , EvivieSEet al.Screening potential probiotic characteristics of Lactobacillus brevis strains in vitro and intervention effect on Type I diabetes in vivo. Biomed.Res. Int.2018 (2018).
  • MarquesTM , PattersonE , WallRet al.Influence of GABA and GABA-producing Lactobacillus brevis DPC 6108 on the development of diabetes in a streptozotocin rat model. Benef Microbes7(3), 409–420 (2016).
  • BajicSS , DokicJ , DinicMet al.GABA potentiate the immunoregulatory effects of Lactobacillus brevis BGZLS10-17 via ATG5-dependent autophagy in vitro. Sci. Rep.10(1), 1347 (2020).
  • ChengR , XuT , ZhangYet al.Lactobacillus rhamnosus GG and Bifidobacterium bifidum TMC3115 can affect development of hippocampal neurons cultured in vitro in a strain-dependent manner. Probiotics Antimicrob. Proteins12, 589–599 (2019).
  • CheonMJ , LimSM , LeeNK , PaikHD. Probiotic properties and neuroprotective effects of Lactobacillus buchneri KU200793 isolated from Korean fermented foods. Int. J. Mol. Sci.21(4), 1227 (2020).
  • KimJK , LeeKE , LeeSA , JangHM , KimDH. Interplay between human gut bacteria Escherichia coli and Lactobacillus mucosae in the occurrence of neuropsychiatric disorders in mice. Front. Immunol.11, 273 (2020).
  • MorshediM , Saghafi-AslM , HosseinifardES. The potential therapeutic effects of the gut microbiome manipulation by synbiotic containing-Lactobacillus plantarum on neuropsychological performance of diabetic rats. J. Transl. Med.18(1), 18 (2020).
  • DhakalR , BajpaiVK , BaekK-H. Production of gaba (γ - aminobutyric acid) by microorganisms: a review. Braz. J. Microbiol.43, 1230–1241 (2012).
  • DeanSN , WalperSA. Variational autoencoder for generation of antimicrobial peptides. ACS Omega5(33), 20746–20754 (2020).
  • TanFHP , LiuG , LauSAet al.Lactobacillus probiotics improved the gut microbiota profile of a Drosophila melanogaster Alzheimer's disease model and alleviated neurodegeneration in the eye. Benef. Microbes11(1), 79–89 (2020).