687
Views
0
CrossRef citations to date
0
Altmetric
Research Article

The Promising Role of hypoxia-resistant insulin-producing Cells in Ameliorating Diabetes Mellitus In Vivo

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Article: FSO811 | Received 19 Jan 2022, Accepted 25 Aug 2022, Published online: 14 Sep 2022

References

  • YongJ , JohnsonJD , ArvanP , HanJ , KaufmanRJ. Therapeutic opportunities for pancreatic β-cell ER stress in diabetes mellitus. Nat. Rev. Endocrinol.17, 455–467 (2021).
  • SaeediP , PetersohnI , SalpeaPet al.Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res. Clin. Pract.157 (2019). https://doi.org/10.1016/j.diabres.2019.107843.
  • ShelbayaS , HalawaM , NasrM. The management of care of Egyptian patients with diabetes: a report from the International Diabetes Management Practices Study Wave 7. Med J Cairo Univ.88(6), 1413–1421 (2020).
  • MarcovecchioML. Complications of acute and chronic hyperglycemia. US Endocrinol.13(1), 17–21 (2017).
  • GuptaR , GhoshA , SinghAK , MisraA. Clinical considerations for patients with diabetes in times of COVID-19 epidemic. Diabetes Metab. Syndr. Clin. Res. Rev.14, 211–212 (2020).
  • ChaiWF , TangKS. Protective potential of cerium oxide nanoparticles in diabetes mellitus. J. Trace Elem. Med. Biol.66, 126742 (2021).
  • WartchowKM , RodriguesL , SuardiLZet al.Short-term protocols to obtain insulin-producing cells from rat adipose tissue: signaling pathways and in vivo effect. Int. J. Mol. Sci.20(10), (2019). https://doi.org/10.3390/ijms20102458.
  • VoltarelliJC , CouriCEB , StracieriABPLet al.Autologous nonmyeloablative hematopoietic stem cell transplantation in newly diagnosed Type I diabetes mellitus. J. Am. Med. Assoc.297, 568–1576 (2007).
  • EstradaEJ , ValacchiF , NicoraEet al.Combined treatment of intrapancreatic autologous bone marrow stem cells and hyperbaric oxygen in Type II diabetes mellitus. Cell Transplant.17, 1295–1304 (2008).
  • ShivakumarSB , LeeHJ , SonYBet al.In vitro differentiation of single donor-derived human dental mesenchymal stem cells into pancreatic β cell-like cells. Biosci. Rep.39 (2019). https://doi.org/10.1042/BSR20182051.
  • VolarevicV , ArsenijevicN , LukicML , StojkovicM. Concise review: mesenchymal stem cell treatment of the complications of diabetes mellitus. Stem Cells29, 5–10 (2011).
  • PrabakarKR , Domínguez-BendalaJ , DamarisMolano Ret al.Generation of glucose-responsive, insulin-producing cells from human umbilical cord blood-derived mesenchymal stem cells. Cell Transplant21, 1321–1339 (2021).
  • LazardD , VardiP , BlochK. Induction of beta-cell resistance to hypoxia and technologies for oxygen delivery to transplanted pancreatic islets. Diabetes. Metab. Res. Rev.28, 475–484 (2012).
  • KrishnanR , KoD. Strategies to combat hypoxia in encapsulated islet transplantation. Surg. Curr. Res.6 (2016). https://doi.org/10.4172/2161-1076.1000259.
  • KieliszekM. Selenium–fascinating microelement, properties and sources in food. Molecules.24 (2019). https://doi.org/10.3390/MOLECULES24071298.
  • SrivastavaP , BragancaJM , KowshikM. In vivo synthesis of selenium nanoparticles by Halococcus salifodinae BK18 and their anti-proliferative properties against HeLa cell line. Biotechnol. Prog.30, 1480–1487 (2014).
  • IkramM , JavedB , RajaNI , MashwaniZ-R. Biomedical potential of plant-based selenium nanoparticles: a comprehensive review on therapeutic and mechanistic aspects. Int. J. Nanomedi.16, 249–268 (2021).
  • HaiderAJ , JameelZN , Al-HussainiIHM. Review on: titanium dioxide applications. Energy Procedia157, 17–29 (2019).
  • CatauroM , BollinoF , PapaleF , MarcianoS , PacificoS. TiO2/PCL hybrid materials synthesized via sol-gel technique for biomedical applications. Mater. Sci. Eng. C.47, 135–141 (2015).
  • SinghKR , NayakV , SarkarT , SinghRP. Cerium oxide nanoparticles: properties, biosynthesis and biomedical application. RSC Adv.10, 27194–27214 (2020).
  • KonthamS , MandavaK , DosaS , MohdFU , MohammedOA , MohammadAU. Review on facile synthesis of cerium oxide nanoparticles and their biomedical applications. Inorg. Nano-Metal Chem. (2021) https://doi.org/10.1080/24701556.2021.1963284.
  • AhmedHH , AglanHA , MabroukM , Abd-RabouAA , BehereiHH. Enhanced mesenchymal stem cell proliferation through complexation of selenium/titanium nanocomposites. J. Mater. Sci. Mater. Med.30, 1–14 (2019).
  • AglanHA , MabroukM , AlyRM , BehereiHH , AhmedHH. Harnessing the antioxidant property of cerium and yttrium oxide nanoparticles to enhance mesenchymal stem cell proliferation. Asian J. Pharm. Clin. Res.11, 436–442 (2018).
  • TomiyamaK , MuraseN , StolzDBet al.Characterization of transplanted GFP+ bone marrow cells into adipose tissue. Stem Cells26, 330 (2008).
  • MahmoudNS , AhmedHH , MohamedMRet al.Role of nanoparticles in osteogenic differentiation of bone marrow mesenchymal stem cells. Cytotechnology.72, 1–22 (2020).
  • WuXH , LiuCP , XuKFet al.Reversal of hyperglycemia in diabetic rats by portal vein transplantation of islet-like cells generated from bone marrow mesenchymal stem cells. World J. Gastroenterol.13, 3342–3349 (2007).
  • LivakKJ , SchmittgenTD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods.25, 402–408 (2001).
  • YuX , LuC , LiuHet al.Hypoxic preconditioning with cobalt of bone marrow mesenchymal stem cells improves cell migration and enhances therapy for treatment of ischemic acute kidney injury. PLOS ONE.8 (2013). https://doi.org/10.1371/journal.pone.0062703.
  • SainiU , GuminaRJ , WolfeB , KuppusamyML , KuppusamyP , BoudoulasKD. Preconditioning mesenchymal stem cells with caspase inhibition and hyperoxia prior to hypoxia exposure increases cell proliferation. J. Cell. Biochem.114, 2612–2623 (2013).
  • DiaoH , LiuB , ShiYet al.MicroRNA-210 alleviates oxidative stress-associated cardiomyocyte apoptosis by regulating BNIP3. Biosci. Biotechnol. Biochem.81, 1712–1720 (2017).
  • ThangarajanS , RamachandranS , KrishnamurthyP. Chrysin exerts neuroprotective effects against 3-Nitropropionic acid induced behavioral despair—Mitochondrial dysfunction and striatal apoptosis via upregulating Bcl-2 gene and downregulating Bax–Bad genes in male Wistar rats. Biomed. Pharmacother.84, 514–525 (2016).
  • UchiyamaS , YamaguchiM. Alteration in serum and bone component findings induced in streptozotocin-diabetic rats is restored by zinc acexamate. Int. J. Mol. Med.12, 949–954 (2003).
  • XinY , JiangX , WangYet al.Insulin-producing cells differentiated from human bone marrow mesenchymal stem cells in vitro ameliorate streptozotocin-induced diabetic hyperglycemia. PLOS ONE11 (2016). https://doi.org/10.1371/journal.pone.0145838.
  • LinCC , HsuYF , LinTC , HsuFL , HsuHY. Antioxidant and hepatoprotective activity of punicalagin and punicalin on carbon tetrachloride-induced liver damage in rats. J. Pharm. Pharmacol.50, 789–794 (1998).
  • CarterLE , KilroyG , GimbleJM , FloydZE. An improved method for isolation of RNA from bone. BMC Biotechnol.12 (2012). https://doi.org/10.1186/1472-6750-12-5.
  • LiuX , LiuC , MaT , JiaoY , MiaoJ , GaoL. Impaired VEGF signaling in lungs with hypoplastic esophageal atresia and effects on branching morphogenesis. Cell. Physiol. Biochem.39, 385–394 (2016).
  • BancroftJD , GambleM. Theory and practice of histological techniques. 6e, 744 (2007).
  • MajeedC , Al-ShammariAM , YausifEHet al.BM-MSCs differentiated insulin-producing cells produce more Insulin in presence of EGF than of FGF. Stem Cell Discov.5, 33–39 (2015).
  • DassayeR , NaidooS , CerfME. Transcription factor regulation of pancreatic organogenesis, differentiation and maturation. Islets.8, 13–34 (2016).
  • SpaethJM , GupteM , PerelisMet al.Defining a novel role for the Pdx1 transcription factor in islet β-Cell maturation and proliferation during weaning. Diabetes66, 2830–2839 (2017).
  • HashemiTabar M , TabandehMR , MoghimipourEet al.The combined effect of Pdx1 overexpression and Shh manipulation on the function of insulin-producing cells derived from adipose-tissue stem cells. FEBS Open Bio.8, 372–382 (2018).
  • JafarianA , TaghikaniM , AbrounSet al.The generation of insulin producing cells from human mesenchymal stem cells by MiR-375 and anti-MiR-9. PLOS ONE10(6), e0128650 (2015).
  • CourtneyML , JonesPM , BurnsCJ. Importance of quantitative analysis in the generation of insulin-expressing cells from human embryonic stem cells. Pancreas39, 105–107 (2010).
  • HalsIK , BruerbergSG , MaZ , ScholzH , BjörklundA , GrillV. Mitochondrial respiration in insulin-producing β cells: general characteristics and adaptive effects of hypoxia. PLOS ONE.10, e0138558 (2015).
  • LaiY , BrandhorstH , HossainHet al.Activation of NFκB dependent apoptotic pathway in pancreatic islet cells by hypoxia. Islets.1, 19–25 (2009).
  • RyuGR , LeeMK , LeeEet al.Activation of AMP-activated protein kinase mediates acute and severe hypoxic injury to pancreatic beta cells. Biochem. Biophys. Res. Commun.386, 356–362 (2009).
  • Muñoz-SánchezJ , Chánez-CárdenasME. The use of cobalt chloride as a chemical hypoxia model. J. Appl. Toxicol.39, 556–570 (2019).
  • MiaoG , OstrowskiRP , MaceJet al.Dynamic production of hypoxia-inducible factor-1α in early transplanted islets. Am. J. Transplant.6, 2636–2643 (2006).
  • JiaX , SharmaA , Kumagai-BraeschMet al.Exendin-4 increases the expression of hypoxia-inducible factor-1α in rat islets and preserves the endocrine cell volume of both free and macroencapsulated islet grafts. Cell Transplant.21, 1269–1283 (2012).
  • GreijerAE , VanDer Wall E. The role of hypoxia inducible factor 1 (HIF-1) in hypoxia induced apoptosis. J. Clin. Pathol.57, 1009–1014 (2004).
  • KubliDA , YcazaJE , GustafssonÅB. Bnip3 mediates mitochondrial dysfunction and cell death through Bax and Bak. Biochem. J.405, 407–415 (2007).
  • RayR , ChenG , VeldeCVet al.BNIP3 heterodimerizes with Bcl-2/Bcl-X(L) and induces cell death independent of a Bcl-2 homology 3 (BH3) domain at both mitochondrial and nonmitochondrial sites. J. Biol. Chem.275, 1439–1448 (2000).
  • JiaX , LiuQ , ZouS , XuX , ZhangL. Construction of selenium nanoparticles/β-glucan composites for enhancement of the antitumor activity. Carbohydr. Polym.117, 434–442 (2015).
  • GhaznaviH , NajafiR , MehrzadiSet al.Neuro-protective effects of cerium and yttrium oxide nanoparticles on high glucose-induced oxidative stress and apoptosis in undifferentiated PC12 cells. Neurol. Res.37, 624–632 (2015).
  • RaoS , LinY , DuYet al.Designing multifunctionalized selenium nanoparticles to reverse oxidative stress-induced spinal cord injury by attenuating ROS overproduction and mitochondria dysfunction. J. Mater. Chem. B.7, 2648–2656 (2019).
  • AryaA , SethyNK , SinghSK , DasM , BhargavaK. Cerium oxide nanoparticles protect rodent lungs from hypobaric hypoxia-induced oxidative stress and inflammation. Int. J. Nanomedicine.8, 4507–4520 (2013).
  • AryaA , SethyNK , DasMet al.Cerium oxide nanoparticles prevent apoptosis in primary cortical culture by stabilizing mitochondrial membrane potential. Free Radic. Res.48, 784–793 (2014).
  • HosseiniA , BaeeriM , RahimifardMet al.Antiapoptotic effects of cerium oxide and yttrium oxide nanoparticles in isolated rat pancreatic islets. Hum. Exp. Toxicol.32, 544–553 (2013).
  • EtukEU. Animals models for studying diabetes mellitus. Agric. Biol. J. North Am.1, 130–134 (2010).
  • IanusA , HolzGG , TheiseND , HussainMA. In vivo derivation of glucose-competent pancreatic endocrine cells from bone marrow without evidence of cell fusion. J. Clin. Invest.111, 843–850 (2003).
  • SordiV. Mesenchymal stem cell homing capacity. Transplantation87 (2009). https://doi.org/10.1097/tp.0b013e3181a28533.
  • ChenC , LiL , QinHet al.Effects of irbesartan pretreatment on pancreatic β-cell apoptosis in STZ-induced acute prediabetic mice. Oxid. Med. Cell. Longev. (2018). https://doi.org/10.1155/2018/8616194.
  • KrishnanB , RamuGanesan A , BalasubramaniRet al.Chrysoeriol ameliorates hyperglycemia by regulating the carbohydrate metabolic enzymes in streptozotocin-induced diabetic rats. Food Sci. Hum. Wellness.9, 346–354 (2020).
  • KotbEl-Sayed MI , Al-MassaraniS , ElGamal A , El-ShaibanyA , Al-MahbashiHM. Mechanism of antidiabetic effects of Plicosepalus Acaciae flower in streptozotocin-induced Type II diabetic rats, as complementary and alternative therapy. BMC Complement. Med. Ther.20, 1–15 (2020).
  • BabukumarS , VinothkumarV , SankaranarayananC , SrinivasanS. Geraniol, a natural monoterpene, ameliorates hyperglycemia by attenuating the key enzymes of carbohydrate metabolism in streptozotocin-induced diabetic rats. Pharm. Biol.55, 1442–1449 (2017).
  • SoumyaD , SrilathaB. Late stage complications of diabetes and insulin resistance. J. Diabetes Metab.2(9), 167 (2011).
  • PrasathGS , SubramanianSP. Antihyperlipidemic effect of fisetin, a bioflavonoid of strawberries, studied in streptozotocin-induced diabetic rats. J. Biochem. Mol. Toxicol.28, 442–449 (2014).
  • NardiGM , FerraraE , ConvertiIet al.Does diabetes induce the vascular endothelial growth factor (Vegf) expression in periodontal tissues? a systematic review. Int. J. Environ. Res. Public Health.17 (2020). https://doi.org/10.3390/ijerph17082765.
  • CovelloKL , SimonMC. HIFs, hypoxia, and vascular development. Curr. Top. Dev. Biol.62, 37–54 (2004).
  • ThangarajahH , YaoD , ChangEIet al.The molecular basis for impaired hypoxia-induced VEGF expression in diabetic tissues. Proc. Natl Acad. Sci. U.S.A.106, 13505–13510 (2009).
  • BuraczynskaM , KsiazekP , Baranowicz-GaszczykI , JozwiakL. Association of the VEGF gene polymorphism with diabetic retinopathy in Type II diabetes patients. Nephrol. Dial. Transplant.22, 827–832 (2007).
  • PedicaF , BeccariS , PedronSetal.PDX-1 (pancreatic/duodenal homeobox-1 protein 1). Pathologica106, 315–321 (2014).
  • RorsmanP , RenströmE. Insulin granule dynamics in pancreatic beta cells. Diabetologia46, 1029–1045 (2003).
  • GaoT , McKennaB , LiCet al.Pdx1 maintains β cell identity and function by repressing an α cell program. Cell Metab.19, 259–271 (2014).
  • WeirGC , Bonner-WeirS. Five of stages of evolving β-cell dysfunction during progression to diabetes, in: diabetes. American Diabetes AssociationS16–S21 (2004). https://doi.org/10.2337/diabetes.53.suppl_3.S16.
  • SadaK , NishikawaT , KukidomeDet al.Hyperglycemia induces cellular hypoxia through production of mitochondrial ROS followed by suppression of aquaporin-1. PLOS ONE11 (2016). https://doi.org/10.1371/journal.pone.0158619.
  • YanJ , ZhangZ , ShiH. HIF-1 is involved in high glucose-induced paracellular permeability of brain endothelial cells. Cell. Mol. Life Sci.69, 115–128 (2012).
  • LiW , LiuH , QianWet al.Hyperglycemia aggravates microenvironment hypoxia and promotes the metastatic ability of pancreatic cancer. Comput. Struct. Biotechnol. J.16, 479–487 (2018).
  • GiulianiM , MoritzW , BodmerEet al.Central necrosis in isolated hypoxic human pancreatic islets: evidence for postisolation ischemia. Cell Transplant.14, 67–76 (2005).
  • LeungPS , de GasparoM. Involvement of the pancreatic renin-angiotensin system in insulin resistance and the metabolic syndrome. J. Cardiometab. Syndr.1, 197–203 (2006).
  • LenzenS. The mechanisms of alloxan- and streptozotocin-induced diabetes. Diabetologia51, 216–226 (2008).
  • QinnaNA , BadwanAA. Impact of streptozotocin on altering normal glucose homeostasis during insulin testing in diabetic rats compared to normoglycemic rats. Drug Des. Devel. Ther.9, 2515 (2015).
  • BrissovaM , ShostakA , ShiotaMet al.Pancreatic islet production of vascular endothelial growth factor-A is essential for islet vascularization, revascularization, and function. Diabetes55, 2974–2985 (2006).
  • AnjumMS , MehmoodA , AliM , ButtH , KhanSN , RiazuddinS. Transplantation of stromal-derived factor 1α and basic fibroblast growth factor primed insulin-producing cells reverses hyperglycemia in diabetic rats. Growth Factors35, 88–99 (2017).
  • XuYX , ChenL , HouWKet al.Mesenchymal stem cells treated with rat pancreatic extract secrete cytokines that improve the glycometabolism of diabetic rats. Transplant. Proc.41, 1878–1884 (2009).