1,762
Views
3
CrossRef citations to date
0
Altmetric
Review

Updates on Drug Designing Approach Through Computational Strategies: a Review

ORCID Icon, ORCID Icon, , &
Article: FSO862 | Received 14 Dec 2022, Accepted 12 Apr 2023, Published online: 04 May 2023

References

  • CeylanZ , MeralR , CetinkayaT. Relevance of SARS-CoV-2 in food safety and food hygiene: potential preventive measures, suggestions and nanotechnological approaches. VirusDisease31(2), 154–160 (2020).
  • MohantySK , SatapathyA , NaiduMMet al.Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and coronavirus disease 19 (COVID-19)- A natomic pathology perspective on current knowledge [internet]. Diagn. Pathol.15(1), 103 (2020).
  • LaiCC , ShihTP , KoWC , TangHJ , HsuehPR. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): the epidemic and the challenges. Int. J. Antimicrob. Agents55(3), 105924 (2020).
  • WuD , WuT , LiuQ , YangZ. The SARS-CoV-2 outbreak: what we know. Int. J. Infect. Dis.94, 44–48 (2020).
  • MacKenzieJS , SmithDW. COVID-19: a novel zoonotic disease caused by a coronavirus from China: What we know and what we don't. Microbiol. Aust.41(1), 45–50 (2020).
  • WuZ , McGooganJM. Characteristics of and Important Lessons from the Coronavirus Disease 2019 (COVID-19) Outbreak in China: summary of a Report of 72314 Cases from the Chinese Center for Disease Control and Prevention. JAMA - J. Am. Med. Assoc.323(13), 1239–1242 (2020).
  • ChaddaRK , DebKS. Indian family systems, collectivistic society and psychotherapy. Indian J. Psychiatry.55(Suppl. SPEC.), S299–S309 (2013).
  • SunW , SandersonPE , ZhengW. Drug combination therapy increases successful drug repositioning. Drug Discov. Today21(7), 1189–1195 (2016).
  • KhannaR , CicinelliM , GilbertS , HonavarS , MurthyGV. COVID-19 pandemic: lessons learned and future directions. Indian J. Ophthalmol.68(5), 703 (2020).
  • VanDer Gronde T , Uyl-DeGroot CA , PietersT. Addressing the challenge of high-priced prescription drugs in the era of precision medicine: a systematic review of drug life cycles, therapeutic drug markets and regulatory frameworks. PLOS ONE12(8), e0182613 (2017).
  • HwangTJ , CarpenterD , LauffenburgerJC , WangB , FranklinJM , KesselheimAS. Failure of investigational drugs in late-stage clinical development and publication of trial results. JAMA Intern. Med.176(12), 1826–1833 (2016).
  • TiloccaB , BrittiD , UrbaniA , RoncadaP. Computational Immune Proteomics Approach to Target COVID-19. J. Proteome Res.19(11), 4233–4241 (2020).
  • SchaduangratN , LampaS , SimeonS , GleesonMP , SpjuthO , NantasenamatC. Towards reproducible computational drug discovery. J. Cheminform.12(1), 1–30 (2020).
  • WilsonRC , CollinsAGE. Ten simple rules for the computational modeling of behavioral data. Elife8, e49547 (2019).
  • LinJ , SahakianD , de MoraisS , XuJ , PolzerR , WinterS. The Role of Absorption, Distribution, Metabolism, Excretion and Toxicity in Drug Discovery. Curr. Top. Med. Chem.3(10), 1125–1154 (2005).
  • LoYC , RensiSE , TorngW , AltmanRB. Machine learning in chemoinformatics and drug discovery. Drug Discov. Today23(8), 1538–1546 (2018).
  • KirchmairJ , WilliamsonMJ , TyzackJDet al.Computational prediction of metabolism: Sites, products, SAR, P450 enzyme dynamics, and mechanisms. J. Chem. Inf. Model.52(3), 617–648 (2012).
  • SliwoskiG , KothiwaleS , MeilerJ , LoweEW. Computational methods in drug discovery. Pharmacol. Rev.66(1), 334–395 (2014).
  • TiwariMK , SinghR , SinghRK , KimIW , LeeJK. Computational approaches for rational design of proteins with novel functionalities. Comput. Struct. Biotechnol. J.2(3), e201204002 (2012).
  • Sequeiros-BorjaCE , SurpetaB , BrezovskyJ. Recent advances in user-friendly computational tools to engineer protein function. Brief. Bioinform.2020(00), 1–15 (2020).
  • ZhouSF , ZhongWZ. Drug design and discovery: principles and applications. Molecules.22(2), 279 (2017).
  • AndersonAC. The process of structure-based drug design. Chem. Biol.10(9), 787–797 (2003).
  • ChadhaN , SinghD , MiltonMDet al.Computational prediction of interaction and pharmacokinetics profile study for polyamino-polycarboxylic ligands on binding with human serum albumin. New J. Chem.44(7), 2907–2918 (2020).
  • SalahudeenMS , NishtalaPS. An overview of pharmacodynamic modelling, ligand-binding approach and its application in clinical practice. Saudi Pharm. J.25(2), 165–175 (2017).
  • ZhaoJ , CaoY , ZhangL. Exploring the computational methods for protein-ligand binding site prediction. Comput. Struct. Biotechnol. J.18, 417–426 (2020).
  • KennethMorrow J , ZhangS. Computational Prediction of Protein Hot Spot Residues. Curr. Pharm. Des.18(9), 1255–1265 (2012).
  • KhazanovNA , CarlsonHA. Exploring the Composition of Protein-Ligand Binding Sites on a Large Scale. PLOS Comput. Biol.9(11), 1003321 (2013).
  • GuedesIA , de MagalhãesCS , DardenneLE. Receptor-ligand molecular docking. Biophys. Rev.6(1), 75–87 (2014).
  • MengX-Y , ZhangH-X , MezeiM , CuiM. Molecular Docking: A Powerful Approach for Structure-Based Drug Discovery. Curr. Comput. Aided-Drug Des.7(2), 146–157 (2012).
  • RamírezD , CaballeroJ. Is It Reliable to Take the Molecular Docking Top Scoring Position as the Best Solution without Considering Available Structural Data?Molecules.23(5), 1038 (2018).
  • LiontaE , SpyrouG , VassilatisD , CourniaZ. Structure-Based Virtual Screening for Drug Discovery: Principles, Applications and Recent Advances. Curr. Top. Med. Chem.14(16), 1923–1938 (2014).
  • PagadalaNS , SyedK , TuszynskiJ. Software for molecular docking: a review. Biophys. Rev.9(2), 91–102 (2017).
  • PantsarT , PosoA. Binding affinity via docking: fact and fiction. Molecules.23(8), 1899 (2018).
  • GuedesIA , PereiraFSS , DardenneLE. Empirical scoring functions for structure-based virtual screening: applications, critical aspects, and challenges. Front. Pharmacol.9(SEP), 1089 (2018).
  • LamPC-H , AbagyanR , TotrovM. Ligand-biased ensemble receptor docking (LigBEnD): a hybrid ligand/receptor structure-based approach. J. Comput. Aided. Mol. Des.32(1), 187–198 (2018).
  • ShoichetBK. Virtual screening of chemical libraries. Nature432(7019), 862–865 (2004).
  • PathanH , WilliamsJ. Basic opioid pharmacology: an update. Br. J. Pain.6(1), 11–16 (2012).
  • SzymańskiP , MarkowiczM , Mikiciuk-OlasikE. Adaptation of high-throughput screening in drug discovery-toxicological screening tests. Int. J. Mol. Sci.13(1), 427–452 (2012).
  • NascimentoIJ dos S , de AquinoTM , da Silva-JúniorEF. The New Era of Drug Discovery: The Power of Computer-aided Drug Design (CADD). Lett. Drug Des. Discov.19(11), 951–955 (2022).
  • BickertonGR , PaoliniGV , BesnardJ , MuresanS , HopkinsAL. Quantifying the chemical beauty of drugs. Nat. Chem.4(2), 90–98 (2012).
  • LimSV , RahmanMBA , TejoBA. Structure-based and ligand-based virtual screening of novel methyltransferase inhibitors of the dengue virus. BMC Bioinformatics.12(Suppl. 13), S24 (2011).
  • YasuoN , SekijimaM. Improved Method of Structure-Based Virtual Screening via Interaction-Energy-Based Learning. J. Chem. Inf. Model.59(3), 1050–1061 (2019).
  • SinghN , ChaputL , VilloutreixBO. Virtual screening web servers: designing chemical probes and drug candidates in the cyberspace. Brief. Bioinform.22(2), 1790–1818 (2021).
  • SchneiderM , PonsJ-L , BourguetW , LabesseG. Towards accurate high-throughput ligand affinity prediction by exploiting structural ensembles, docking metrics and ligand similarity. Bioinformatics.36(1), 160–168 (2020).
  • Crampon K, Giorkallos A, Deldossi M, Baud S, Steffenel LA.Machine-learning methods for ligand–protein molecular docking.Drug Discovery Today27(1), 151–164 (2022).
  • AparoyP , KumarReddy K , ReddannaP. Structure and Ligand Based Drug Design Strategies in the Development of Novel 5- LOX Inhibitors. Curr. Med. Chem.19(22), 3763–3778 (2012).
  • GaoH , WilliamsC , LabuteP , BajorathJ. Binary quantitative structure-activity relationship (QSAR) analysis of estrogen receptor ligands. J. Chem. Inf. Comput. Sci.39(1), 164–168 (1999).
  • BelleraCL , TaleviA. Quantitative structure–activity relationship models for compounds with anticonvulsant activity. Expert Opin. Drug Discov.14(7), 653–665 (2019).
  • VermaJ , KhedkarV , CoutinhoE. 3D-QSAR in Drug Design - A Review. Curr. Top. Med. Chem.10(1), 95–115 (2010).
  • JhotiH , ReesS , SolariR. High-throughput screening and structure-based approaches to hit discovery: is there a clear winner?. Expert Opin. Drug Discov.8(12), 1449–1453 (2013).
  • LiontaE , SpyrouG , VassilatisD , CourniaZ. Structure-Based Virtual Screening for Drug Discovery: Principles, Applications and Recent Advances. Curr. Top. Med. Chem.14(16), 1923–1938 (2014).
  • BatoolM , AhmadB , ChoiS. A structure-based drug discovery paradigm. Int. J. Mol. Sci.20(11), 2783 (2019).
  • FrançaTCC. Homology modeling: an important tool for the drug discovery. J. Biomol. Struct. Dyn.33(8), 1780–1793 (2015).
  • PapadopoulosJS , AgarwalaR. COBALT: constraint-based alignment tool for multiple protein sequences. Bioinformatics.23(9), 1073–1079 (2007).
  • LassmannT , SonnhammerELL. Kalign - An accurate and fast multiple sequence alignment algorithm. BMC Bioinformatics.6(1), 298 (2005).
  • SieversF , HigginsDG. Clustal omega, accurate alignment of very large numbers of sequences. Methods Mol. Biol.1079, 105–116 (2014).
  • McGinnisS , MaddenTL. BLAST: at the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Res.32(WEB SERVER ISS.), W20–25 (2004).
  • dosSantos Nascimento IJ , daSilva Santos-Júnior PF , de Araújo-JúniorJX , da Silva-JúniorEF. Strategies in Medicinal Chemistry to Discover New Hit Compounds against Ebola Virus: Challenges and Perspectives in Drug Discovery. Mini-Reviews Med. Chem.22(22), 2896–2924 (2022).
  • ShenM , TianS , LiYet al.Drug-likeness analysis of traditional Chinese medicines: 1. property distributions of drug-like compounds, non-drug-like compounds and natural compounds from traditional Chinese medicines. J. Cheminform.4(1), 31 (2012).
  • KalyaanamoorthyS , ChenYPP. Structure-based drug design to augment hit discovery. Drug Discov. Today16(17–18), 831–839 (2011).
  • HetényiC , VanDer Spoel D. Blind docking of drug-sized compounds to proteins with up to a thousand residues. FEBS Lett.580(5), 1447–1450 (2006).
  • KumaranD , RawatR , AhmedSA , SwaminathanS. Substrate binding mode and its implication on drug design for botulinum neurotoxin A. PLoS Pathog.4(9), 1000165 (2008).
  • RayS , SrivastavaS. COVID-19 Pandemic: Hopes from Proteomics and Multiomics Research. Omi. A J. Integr. Biol.24(8), 457–459 (2020).
  • OvermyerKA , ShishkovaE , MillerIJet al.Large-Scale Multi-omic Analysis of COVID-19 Severity. Cell Syst.14(1), 23–40.e7 (2021).
  • YuW , MackerellAD.Computer-aided drug design methods. In: Antibiotics. Methods in Molecular Biology.SassP ( Eds). Humana Press Inc, New York, NY, USA, 1520, 85–106 (2017).
  • IvorraB , FerrándezMR , Vela-PérezM , RamosAM. Mathematical modeling of the spread of the coronavirus disease 2019 (COVID-19) taking into account the undetected infections. The case of China. Commun. Nonlinear Sci. Numer. Simul.88, 105303 (2020).
  • RobsonB. COVID-19 Coronavirus spike protein analysis for synthetic vaccines, a peptidomimetic antagonist, and therapeutic drugs, and analysis of a proposed achilles' heel conserved region to minimize probability of escape mutations and drug resistance. Comput. Biol. Med.121, 103749 (2020).
  • CarterLJ , GarnerLV , SmootJWet al.Assay Techniques and Test Development for COVID-19 Diagnosis. ACS Cent. Sci.6(5), 591–605 (2020).
  • ShujaJ , AlanaziE , AlasmaryW , AlashaikhA. COVID-19 open source data sets: a comprehensive survey. Appl. Intell.51(3), 1296–1325 (2021).
  • PierleoniA , MartelliPL , FariselliP , CasadioR. eSLDB: eukaryotic subcellular localization database. Nucleic Acids Res.35(Suppl. 1), D208–212 (2007).
  • PeabodyMA , LairdMR , VlasschaertC , LoR , BrinkmanFSL. PSORTdb: expanding the bacteria and archaea protein subcellular localization database to better reflect diversity in cell envelope structures. Nucleic Acids Res.44(D1), D663–D668 (2016).
  • SprengerJ , LynnFink J , KarunaratneS , HansonK , HamiltonNA , TeasdaleRD. LOCATE: a mammalian protein subcellular localization database. Nucleic Acids Res.36(Suppl. 1), D230–233 (2008).
  • HendlichM , BergnerA , GüntherJ , KlebeG. Relibase: design and development of a database for comprehensive analysis of protein-ligand interactions. J. Mol. Biol.326(2), 607–620 (2003).
  • ChenX , LinY , LiuM , GilsonMK. The binding database: data management and interface design. Bioinformatics.18(1), 130–139 (2002).
  • SalwinskiL , MillerCS , SmithAJ , PettitFK , BowieJU , EisenbergD. The Database of Interacting Proteins: 2004 update. Nucleic Acids Res.32(DATABASE ISS.), D449 (2004).
  • OughtredR , StarkC , BreitkreutzBJet al.The BioGRID interaction database: 2019 update. Nucleic Acids Res.47(D1), D529–D541 (2019).
  • JensenLJ , KuhnM , StarkMet al.STRING 8 - A global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res.37(Suppl. 1), D412 (2009).
  • GhaniSS. A comprehensive review of database resources in chemistry. Eclet. Quim.45(3), 57–68 (2020).
  • MaiaEHB , AssisLC , de OliveiraTA , da SilvaAM , TarantoAG. Structure-Based Virtual Screening: From Classical to Artificial Intelligence. Front. Chem.8, 343 (2020).
  • YasuoN , SekijimaM. Improved Method of Structure-Based Virtual Screening via Interaction-Energy-Based Learning. J. Chem. Inf. Model.59(3), 1050–1061 (2019).
  • ChenP , KeY , LuYet al.Dligand2: an improved knowledge-based energy function for protein–ligand interactions using the distance-scaled, finite, ideal-gas reference state. J. Cheminform.11(1), 52 (2019).
  • dosSantos Nascimento IJ , daSilva Rodrigues ÉE , da SilvaMF , de Araújo-JúniorJX , de MouraRO. Advances in Computational Methods to Discover New NS2B–NS3 Inhibitors Useful Against Dengue and Zika Viruses. Curr. Top. Med. Chem.22(29), 2435–2462 (2022).
  • SugawaraT , BaumgartSJ , NevedomskayaEet al.Darolutamide is a potent androgen receptor antagonist with strong efficacy in prostate cancer models. Int. J. Cancer145(5), 1382 (2019).
  • CurtinNJ. The Development of Rucaparib/Rubraca®: A Story of the Synergy Between Science and Serendipity. Cancers (Basel).12(3), 564 (2020).
  • KimA , CohenMS. The discovery of vemurafenib for the treatment of BRAF-mutated metastatic melanoma. Expert Opin. Drug Discov.11(9), 907 (2016).
  • PollyeaDA , AmayaM , StratiP , KonoplevaMY. Venetoclax for AML: changing the treatment paradigm. Blood Adv.3(24), 4326 (2019).
  • PaulD , SanapG , ShenoyS , KalyaneD , KaliaK , TekadeRK. Artificial intelligence in drug discovery and development. Drug Discov. Today26(1), 80–93 (2021).
  • CarpenterKA , HuangX. Machine Learning-based Virtual Screening and Its Applications to Alzheimer's Drug Discovery: A Review. Curr. Pharm. Des.24(28), 3347–3358 (2018).
  • PuL , NaderiM , LiuT , WuHC , MukhopadhyayS , BrylinskiM. EToxPred: a machine learning-based approach to estimate the toxicity of drug candidates 11 Medical and Health Sciences 1115 Pharmacology and Pharmaceutical Sciences 03 Chemical Sciences 0305 Organic Chemistry 03 Chemical Sciences 0304 Medicinal and Biomolecular Chemistry. BMC Pharmacol. Toxicol.20(1), 2 (2019).
  • LipinskiCF , MaltarolloVG , OliveiraPR , da SilvaABF , HonorioKM. Advances and Perspectives in Applying Deep Learning for Drug Design and Discovery. Front. Robot. AI.6, 108 (2019).
  • LinX , LiX , LinX. A review on applications of computational methods in drug screening and design. Molecules25(6), 1375 (2020).
  • LeelanandaSP , LindertS. Computational methods in drug discovery. Beilstein J. Org. Chem.12(1), 2694–2718 (2016).
  • MuratovEN , BajorathJ , SheridanRPet al.QSAR without borders. Chem. Soc. Rev.49(11), 3525–3564 (2020).
  • MouchlisVD , AfantitisA , SerraAet al.Advances in De Novo Drug Design: From Conventional to Machine Learning Methods. Int. J. Mol. Sci.22(4), 1–22 (2021).
  • FerreiraLG , DosSantos RN , OlivaG , AndricopuloAD. Molecular Docking and Structure-Based Drug Design Strategies. Molecules.20(7), 13384–13421 (2015).
  • PalazzesiF , PozzanA. Deep Learning Applied to Ligand-Based De Novo Drug Design. Methods Mol. Biol.2390, 273–299 (2022).
  • ZhangY , LiS , XingM , YuanQ , HeH , SunS. Universal Approach to De Novo Drug Design for Target Proteins Using Deep Reinforcement Learning. ACS Omega [Internet].8(6), 5464–5474 (2023).
  • BaiQ , LiuS , TianYet al.Application advances of deep learning methods for de novo drug design and molecular dynamics simulation. Wiley Interdiscip. Rev. Comput. Mol. Sci.12(3), e1581 (2022).
  • HillischA , PinedaLF , HilgenfeldR. Utility of homology models in the drug discovery process. Drug Discov. Today9(15), 659–669 (2004).
  • FiserA. Template-based protein structure modeling. Methods Mol. Biol.673, 73–94 (2010).
  • McKeageK , PerryCM , KeamSJ. Darunavir: a review of its use in the management of HIV infection in adults. Drugs69(4), 477–503 (2009).
  • NurwidyaF , TakahashiF , TakahashiK. Gefitinib in the treatment of nonsmall cell lung cancer with activating epidermal growth factor receptor mutation. J. Nat. Sci. Biol. Med.7(2), 119 (2016).
  • BellesoeurA , CartonE , AlexandreJ , GoldwasserF , HuillardO. Axitinib in the treatment of renal cell carcinoma: design, development, and place in therapy. Drug Des. Devel. Ther.11, 2801 (2017).
  • VélezDe Mendizábal N , StrotherRM , FaragSSet al.Modeling Sitagliptin Effect on Dipeptidyl Peptidase 4 (DPP4) Activity inAdults with Hematological Malignancies After Umbilical Cord Blood (UCB) Hematopoietic CellTransplant (HCT). Clin. Pharmacokinet.53(3), 247 (2014).
  • dosSantos Nascimento IJ , de AquinoTM , daSilva Júnior EF. Computer-Aided Drug Design of Anti-inflammatory Agents Targeting Microsomal Prostaglandin E2 Synthase-1 (mPGES-1). Curr. Med. Chem.29(33), 5397–5419 (2022).
  • MazumderM , PonnanP , DasUet al.Investigations on Binding Pattern of Kinase Inhibitors with PPAR γ: Molecular Docking, Molecular Dynamic Simulations, and Free Energy Calculation Studies. PPAR Res.2017, (2017).
  • RamírezD , CaballeroJ. Is it reliable to use common molecular docking methods for comparing the binding affinities of enantiomer pairs for their protein target?Int. J. Mol. Sci.17(4), 525 (2016).
  • PantsarT , PosoA. Binding affinity via docking: fact and fiction. Molecules.23(8), 1899 (2018).
  • GuedesIA , BarretoAMS , MarinhoDet al.New machine learning and physics-based scoring functions for drug discovery. Sci Rep11, 3198 (2021).
  • SalmasoV , MoroS. Bridging molecular docking to molecular dynamics in exploring ligand-protein recognition process: an overview. Front. Pharmacol.9(AUG), 923 (2018).
  • MengX-Y , ZhangH-X , MezeiM , CuiM. Molecular Docking: A Powerful Approach for Structure-Based Drug Discovery. Curr. Comput. Aided-Drug Des.7(2), 146–157 (2012).
  • TA , VAB. Molecular Docking: From Lock and Key to Combination Lock. J. Mol. Med. Clin. Appl.2(1), https://doi.org/10.16966/2575-0305.106 (2018).
  • LexaKW , CarlsonHA. Protein flexibility in docking and surface mapping Q. Rev. Biophys.45(3), 301–343 (2012).
  • AndrusierN , MashiachE , NussinovR , WolfsonHJ. Principles of flexible protein-protein docking Proteins Struct. Funct. Genet.73(2), 271–289 (2008).
  • MorrisGM , GoodsellDS , HallidayRSet al.Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem.19(14), 1639–1662 (1998).
  • TorresPHM , SoderoACR , JofilyP , Silva-JrFP. Key topics in molecular docking for drug design. Int. J. Mol. Sci.20(18), 4574 (2019).
  • AgrawalP , SinghH , SrivastavaHK , SinghS , KishoreG , RaghavaGPS. Benchmarking of different molecular docking methods for protein-peptide docking. BMC Bioinformatics19(Suppl. 13), 426 (2019).
  • MorrisGM , RuthH , LindstromWet al.Software news and updates AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J. Comput. Chem. [Internet].30(16), 2785–2791 (2009).
  • TrottO , OlsonAJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem.31(2), 455–461 (2009).
  • SandeepG , NagasreeKP , HanishaM , KumarMMK. AUDocker LE: a GUI for virtual screening with AUTODOCK Vina. BMC Res. Notes.4(1), 445 (2011).
  • RavindranathPA , ForliS , GoodsellDS , OlsonAJ , SannerMF. AutoDockFR: Advances in Protein-Ligand Docking with Explicitly Specified Binding Site Flexibility. PLOS Comput. Biol.11(12), e1004586 (2015).
  • HsuKC , ChenYF , LinSR , YangJM. Igemdock: a graphical environment of enhancing gemdock using pharmacological interactions and post-screening analysis. BMC Bioinformatics.12(Suppl. 1), S33 (2011).
  • JamkhandePG , GhanteMH , AjgundeBR. Software based approaches for drug designing and development: a systematic review on commonly used software and its applications. Bull. Fac. Pharmacy, Cairo Univ.55(2), 203–210 (2017).
  • TalluriS. Molecular Docking and Virtual Screening based prediction of drugs for COVID-19. Comb. Chem. High Throughput Screen.23, 716–728 (2020).
  • OferkinIV , KatkovaEV , SulimovAVet al.Evaluation of Docking Target Functions by the Comprehensive Investigation of Protein-Ligand Energy Minima. Adv. Bioinformatics2015, 1–12 (2015).
  • MalmstromRD , WatowichSJ. Using free energy of binding calculations to improve the accuracy of virtual screening predictions. J. Chem. Inf. Model.51(7), 1648–1655 (2011).
  • AdcockSA , McCammonJA. Molecular dynamics: survey of methods for simulating the activity of proteins. Chem. Rev.106(5), 1589–1615 (2006).
  • HollingsworthSA , DrorRO. Molecular Dynamics Simulation for All. Neuron99(6), 1129–1143 (2018).
  • GhahremanianS , RashidiMM , RaeisiK , ToghraieD. Molecular dynamics simulation approach for discovering potential inhibitors against SARS-CoV-2: a structural review. J Mol Liq.15(354), 118901 (2022).
  • LeeD , JoH , JangYet al.Alloferon and Zanamivir Show Effective Antiviral Activity against Influenza A Virus (H1N1) Infection In Vitro and In Vivo. Int. J. Mol. Sci.24(1), 678 (2023).
  • IqbalN , IqbalN. Imatinib: A Breakthrough of Targeted Therapy in Cancer. Chemother. Res. Pract.2014, 1–9 (2014).
  • LipworthBJ , AzizI. Bronchodilator Response to Albuterol After Regular Formoterol and Effects of Acute Corticosteroid Administration. Chest117(1), 156–162 (2000).
  • HospitalA , GoñiJR , OrozcoM , GelpíJL. Molecular dynamics simulations: advances and applications. Adv. Appl. Bioinforma. Chem.8(1), 37–47 (2015).
  • ZhangL , LiQ , TianS , HongG. Molecular Dynamics Simulation of the Cu/Au Nanoparticle Alloying Process. J. Nanomater.2019, 1–7 (2019).
  • BraySimon. Running molecular dynamics simulations using GROMACS. (2022).
  • FaizaMuniba. Tutorial: molecular dynamics (MD) simulation using Gromacs. Bioinformatics Review.5(12), (2019). https://bioinformaticsreview.com/20191210/tutorial-molecular-dynamics-md-simulation-using-gromacs/?v=c86ee0d9d7ed
  • DixitVA , BharatamPV. SAR and Computer-Aided Drug Design Approaches in the Discovery of Peroxisome Proliferator-Activated Receptor γ Activators: A Perspective. J. Comput. Med.2013, 1–38 (2013).
  • RichterL. Topliss Batchwise Schemes Reviewed in the Era of Open Data Reveal Significant Differences between Enzymes and Membrane Receptors. J. Chem. Inf. Model.57(10), 2575–2583 (2017).
  • SchäferT , KriegeN , HumbeckL , KleinK , KochO , MutzelP. Scaffold Hunter: a comprehensive visual analytics framework for drug discovery. J. Cheminform.9(1), 28 (2017).
  • VázquezJ , LópezM , GibertE , HerreroE , JavierLuque F. Merging ligand-based and structure-based methods in drug discovery: an overview of combined virtual screening approaches. Molecules25(20), 4723 (2020).
  • Banegas-LunaAJ , Cerón-CarrascoJP , Pérez-SánchezH. A review of ligand-based virtual screening web tools and screening algorithms in large molecular databases in the age of big data. Future Med. Chem.10(22), 2641–2658 (2018).
  • SterlingT , IrwinJJ. ZINC 15 - Ligand Discovery for Everyone. J. Chem. Inf. Model.55(11), 2324–2337 (2015).
  • KadamR , RoyN. Recent trends in drug-likeness prediction: a comprehensive review of in silico methods. Indian J. Pharm. Sci.69(5), 609–615 (2007).
  • SegallMatthew. Rules For Drug Discovery: can simple property criteria help you to find a drug?. Drug Discovery World (DDW) ( Spring2014).
  • VeberDF , JohnsonSR , ChengHY , SmithBR , WardKW , KoppleKD. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem.45(12), 2615–2623 (2002).
  • SchneiderG. Prediction of Drug-Like Properties. In: Madame Curie Bioscience Database.Landes Bioscience, TX, USA, 2000–2013. https://www.ncbi.nlm.nih.gov/books/NBK6404/
  • PajouheshH , LenzGR. Medicinal chemical properties of successful central nervous system drugs. NeuroRx2(4), 541–553 (2005).
  • VeberDF , JohnsonSR , ChengHY , SmithBR , WardKW , KoppleKD. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem.45(12), 2615–2623 (2002).
  • BarretR. Importance and Evaluation of the Polar Surface Area (PSA and TPSA). In: Therapeutical Chemistry.Elsevier, Amsterdam, The Netherlands, 89–95 (2018).
  • KondoHX , KusakaA , KitakawaCKet al.Hydrogen bond donors and acceptors are generally depolarized in α-helices as revealed by a molecular tailoring approach. J. Comput. Chem.40(23), jcc.25859 (2019).
  • DahlgrenD , LennernäsH. Intestinal permeability and drug absorption: predictive experimental, computational and in vivo approaches. Pharmaceutics.11(8), 411 (2019).
  • VertzoniM , AugustijnsP , GrimmMet al.Impact of regional differences along the gastrointestinal tract of healthy adults on oral drug absorption: An UNGAP review. Eur. J. Pharm. Sci.134, 153–175 (2019).
  • MueggeI , HealdSL , BrittelliD. Simple selection criteria for drug-like chemical matter. J. Med. Chem.44(12), 1841–1846 (2001).
  • MueggeI , HealdSL , BrittelliD. Simple selection criteria for drug-like chemical matter. J. Med. Chem.44(12), 1841–1846 (2001).
  • NomeirAA , MorrisonR , PreluskyDet al.Estimation of the extent of oral absorption in animals from oral and intravenous pharmacokinetic data in drug discovery. J. Pharm. Sci.98(11), 4027–4038 (2009).
  • FeixasF , LindertS , SinkoW , McCammonJA. Exploring the role of receptor flexibility in structure-based drug discovery. Biophys. Chem.186, 31–45 (2014).
  • AmaralM , KokhDB , BomkeJet al.Protein conformational flexibility modulates kinetics and thermodynamics of drug binding. Nat. Commun.8(1), 2276 (2017).
  • AzadI , NasibullahM , KhanT , HassanF , AkhterY. Exploring the novel heterocyclic derivatives as lead molecules for design and development of potent anticancer agents. J. Mol. Graph. Model.81, 211–228 (2018).
  • SawaleRT , KalyankarTM , GeorgeR , DeosarkarSD. Molar Refraction and Polarizability of Antiemetic drug 4-amino-5-chloro-N-(2-(diethylamino)ethyl)-2 methoxybenzamide hydrochloride monohydrate in {Aqueous-Sodium or Lithium Chloride} Solutions at 30 o C. J. Appl. Pharm. Sci.6(03), 120–124 (2016).
  • VermaJ , KhedkarVM , CoutinhoEC. 3D-QSAR in drug design–a review. Curr Top Med Chem.10(1), 95–115 (2010).
  • KatritzkyAR , KuanarM , SlavovSet al.Quantitative correlation of physical and chemical properties with chemical structure: utility for prediction. Chem. Rev.110(10), 5714–5789 (2010).
  • KhanT , DixitS , AhmadRet al.Molecular docking, PASS analysis, bioactivity score prediction, synthesis, characterization and biological activity evaluation of a functionalized 2-butanone thiosemicarbazone ligand and its complexes. J. Chem. Biol.10(3), 91–104 (2017).
  • BennionBJ , BeNA , McNerneyMWet al.Predicting a Drug's Membrane Permeability: A Computational Model Validated With in Vitro Permeability Assay Data. J Phys Chem B.121(20), 5228–5237 (2017).
  • AlavijehMS , ChishtyM , QaiserMZ , PalmerAM. Drug metabolism and pharmacokinetics, the blood–brain barrier, and central nervous system drug discovery. NeuroRx.2(4), 554–571 (2005).
  • KhanT , LawrenceAJ , AzadI , RazaS , KhanAR. Molecular Docking Simulation with Special Reference to Flexible Docking Approach. JSM Chem.6(1), 1053 (2018).
  • AlWasidi AS , HassanAS , NaglahAM. In vitro cytotoxicity and druglikeness of pyrazolines and pyridines bearing benzofuran moiety. J. Appl. Pharm. Sci.10(04), 142–148 (2020).
  • BritoMA , AraújoDe Brito M. Pharmacokinetic study with computational tools in the medicinal chemistry course. Braz. J. Pharm. Sci.47(4), 797–805 (2011).
  • HammadS , Bouaziz-TerrachetS , MeghnemR , MezianeD. Pharmacophore development, drug-likeness analysis, molecular docking, and molecular dynamics simulations for identification of new CK2 inhibitors. J. Mol. Model.26(6), 1–17 (2020).
  • PolêtoMD , RusuVH , GrisciBI , DornM , LinsRD , VerliH. Aromatic Rings Commonly Used in Medicinal Chemistry: Force Fields Comparison and Interactions With Water Toward the Design of New Chemical Entities. Front. Pharmacol.9(APR), 395 (2018).
  • AldeghiM , MalhotraS , SelwoodDL , ChanAWE. Two- and three-dimensional rings in drugs. Chem. Biol. Drug Des.83(4), 450–461 (2014).
  • GiordanettoF , JinC , WillmoreL , FeherM , ShawDE. Fragment Hits: What do They Look Like and How do They Bind?. J. Med. Chem.62(7), 3381–3394 (2019).
  • BrocksDR. Drug disposition in three dimensions: an update on stereoselectivity in pharmacokinetics. Biopharm. Drug Dispos.27(8), 387–406 (2006).
  • NguyenLA , HeH , Pham-HuyC. Chiral drugs: an overview. Int. J. Biomed. Sci.2(2), 85–100 (2006).
  • ZhouY , WuS , ZhouHet al.Chiral pharmaceuticals: environment sources, potential human health impacts, remediation technologies and future perspective. Environ. Int.121, 523–537 (2018).
  • InakiM , LiuJ , MatsunoK. Cell chirality: its origin and roles in left-right asymmetric development. Philos. Trans. R. Soc. B Biol. Sci.371(1710), 20150403 (2016).
  • KerruN , GummidiL , MaddilaS , GanguKK , JonnalagaddaSB. A review on recent advances in nitrogen-containing molecules and their biological applications. Molecules25(8), 1909 (2020).
  • JampilekJ. Heterocycles in Medicinal Chemistry. Molecules24(21), 3839 (2019).
  • TaylorAP , RobinsonRP , FobianYM , BlakemoreDC , JonesLH , FadeyiO. Modern advances in heterocyclic chemistry in drug discovery. Org. Biomol. Chem.14(28), 6611–6637 (2016).
  • BodaK , SeidelT , GasteigerJ. Structure and reaction based evaluation of synthetic accessibility. J. Comput. Aided. Mol. Des.21(6), 311–325 (2007).
  • ErtlP , SchuffenhauerA. Estimation of synthetic accessibility score of drug-like molecules based on molecular complexity and fragment contributions. J. Cheminform.1(1), 8 (2009).
  • AzadI , AhmadR , KhanTet al.Phenanthridine derivatives as promising new anticancer agents: synthesis, biological evaluation and binding studies. Future Med. Chem.12(8), 709–739 (2020).
  • RasulevB. Recent developments in 3D QSAR and molecular docking studies of organic and nanostructures. In: Handbook of Computational Chemistry.LeszczynskiJ, Kaczmarek-KedzieraA, PuzynTG, PapadopoulosM, ReisHK, ShuklaM (Eds). Springer International Publishing, Cham, Switzerland, 2133–2161 (2017).
  • MartinekTA , ÖtvösF , DervaricsM , TóthG , FülöpF. Ligand-based prediction of active conformation by 3D-QSAR flexibility descriptors and their application in 3 + 3D-QSAR models. J. Med. Chem.48(9), 3239–3250 (2005).
  • KhanMF , VermaG , AkhtarWet al.Pharmacophore modeling, 3D-QSAR, docking study and ADME prediction of acyl 1,3,4-thiadiazole amides and sulfonamides as antitubulin agents. Arab. J. Chem.12(8), 5000–5018 (2019).
  • KutlushinaA , KhakimovaA , MadzhidovT , PolishchukP. Ligand-based pharmacophore modeling using novel 3D pharmacophore signatures. Molecules.23(12), 3094 (2018).
  • PalS , KumarV , KunduBet al.Ligand-based Pharmacophore Modeling, Virtual Screening and Molecular Docking Studies for Discovery of Potential Topoisomerase I Inhibitors. Comput. Struct. Biotechnol. J.17, 291–310 (2019).
  • ShimJ , MacKerellAD. Computational ligand-based rational design: role of conformational sampling and force fields in model development. Medchemcomm2(5), 356–370 (2011).
  • KatsilaT , SpyrouliasGA , PatrinosGP , MatsoukasMT. Computational approaches in target identification and drug discovery. Comput. Struct. Biotechnol. J.14, 177–184 (2016).
  • AwaleM , ReymondJL. The polypharmacology browser: a web-based multi-fingerprint target prediction tool using ChEMBL bioactivity data. J. Cheminform.9(1), 1–10 (2017).
  • BacilieriM , MoroS. Ligand-Based Drug Design Methodologies in Drug Discovery Process: An Overview. Curr. Drug Discov. Technol.3(3), 155–165 (2007).
  • SukumarN , DasS , SukumarN. Current Trends in Virtual High Throughput Screening Using Ligand-Based and Structure-Based Methods. Comb. Chem. High Throughput Screen.14(10), 872–888 (2011).
  • Cereto-MassaguéA , OjedaMJ , VallsC , MuleroM , Garcia-VallvéS , PujadasG. Molecular fingerprint similarity search in virtual screening. Methods.71(C), 58–63 (2015).
  • BajuszD , RáczA , HébergerK. Why is Tanimoto index an appropriate choice for fingerprint-based similarity calculations?J. Cheminform.7(1), 20 (2015).
  • KhalifaA Al , HaranczykM , HollidayJ. Comparison of nonbinary similarity coefficients for similarity searching, clustering and compound selection. J. Chem. Inf. Model.49(5), 1193–1201 (2009).
  • DrwalMN , GriffithR. Combination of ligand- and structure-based methods in virtual screening. Drug Discov. Today Technol.10(3), e395–401 (2013).
  • HuG , KuangG , XiaoW , LiW , LiuG , TangY. Performance evaluation of 2D fingerprint and 3D shape similarity methods in virtual screening. J. Chem. Inf. Model.52(5), 1103–1113 (2012).
  • GombarV , SilverI , ZhaoZ. Role of ADME Characteristics in Drug Discovery and Their In Silico Evaluation: in Silico Screening of Chemicals for their Metabolic Stability. Curr. Top. Med. Chem.3(11), 1205–1225 (2005).
  • ChengF , LiW , ZhouYet al.AdmetSAR: a comprehensive source and free tool for assessment of chemical ADMET properties. J. Chem. Inf. Model.52(11), 3099–3105 (2012).
  • YangH , LouC , SunLet al.admetSAR 2.0: web-service for prediction and optimization of chemical ADMET properties. Bioinformatics.35(6), 1067–1069 (2019).
  • DainaA , MichielinO , ZoeteV. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep.7, 42717 (2017).
  • KhanT , LawrenceAJ , AzadI , RazaS , JoshiS , KhanAR. Computational Drug Designing and Prediction Of Important Parameters Using in silico Methods- A Review. Curr. Comput. Aided. Drug Des.15(5), 384–397 (2019).
  • LohidashanK kumar , RajanM , GaneshA , PaulM , JerinJ. Pass and Swiss ADME collaborated in silico docking approach to the synthesis of certain pyrazoline spacer compounds for dihydrofolate reductase inhibition and antimalarial activity. Bangladesh J. Pharmacol.13(2018), 23–29 (2018).
  • Viana NunesAM , dasChagas Pereira de Andrade F , FilgueirasLAetal.preADMET analysis and clinical aspects of dogs treated with the Organotellurium compound RF07: a possible control for canine visceral leishmaniasis?Environ. Toxicol. Pharmacol.80, 103470 (2020).
  • HouTJ , XuXJ. ADME Evaluation in Drug Discovery. 3. Modeling Blood–Brain Barrier Partitioning Using Simple Molecular Descriptors. J. Chem. Inf. Comput. Sci.43(6), 2137–2152 (2003).
  • Mangas-SanjuanV , González-AlvarezM , Gonzalez-AlvarezI , BermejoM. Drug penetration across the blood–brain barrier: an overview. Ther. Deliv.1(4), 535–562 (2010).
  • DholakiaD , GoyalS , JamalS , SinghA , DasA , GroverA. Molecular modeling and lead design of substituted zanamivir derivatives as potent anti-influenza drugs. BMC Bioinformatics.17(Suppl. 19), 512 (2016).
  • GuanL , YangH , CaiYet al.ADMET-score-a comprehensive scoring function for evaluation of chemical drug-likeness. Medchemcomm.10(1), 148–157 (2019).
  • AwortweC , FasinuPS , RosenkranzB. Application of Caco-2 cell line in herb-drug interaction studies: current approaches and challenges [Internet]. J. Pharm. Pharm. Sci.17(1), 1 (2014).
  • Van BreemenRB , LiY. Caco-2 cell permeability assays to measure drug absorption. Expert Opin. Drug Metab. Toxicol.1(2), 175–185 (2005).
  • KhanT , AzadI , AhmadRet al.Synthesis, characterization, computational studies and biological activity evaluation of CU, FE, CO and ZN complexes with 2-butanone thiosemicarbazone and 1,10-phenanthroline ligands as anticancer and antibacterial agents. EXCLI J.17, 331–348 (2018).
  • AzadI , AkhterY , KhanTet al.Synthesis, quantum chemical study, AIM simulation, in silico ADMET profile analysis, molecular docking and antioxidant activity assessment of aminofuran derivatives. J. Mol. Struct.1203, 127285 (2020).
  • HaddaT Ben , RastijaV , AlMalkiFet al.Petra/Osiris/Molinspiration and Molecular Docking Analyses of 3-Hydroxy-Indolin-2-one Derivatives as Potential Antiviral Agents. Curr. Comput. Aided. Drug Des.17(1), 123–133 (2021).
  • HerrS , Myers-DeanJ , ReadH , JagodzinskiF. PETRA: Drug Engineering via Rigidity Analysis. Molecules.25(6), 1304 (2020).
  • AzadI , JafriA , KhanTet al.Evaluation of pyrrole-2,3-dicarboxylate derivatives: synthesis, DFT analysis, molecular docking, virtual screening and in vitro anti-hepatic cancer study. J. Mol. Struct.1176, 314–334 (2019).
  • KhanT , AhmadR , AzadI , RazaS , JoshiS , KhanAR. Computer-aided drug design and virtual screening of targeted combinatorial libraries of mixed-ligand transition metal complexes of 2-butanone thiosemicarbazone. Comput. Biol. Chem.75, 178–195 (2018).
  • JarrahpourA , FathiJ , MimouniMet al.Petra, Osiris and Molinspiration (POM) together as a successful support in drug design: antibacterial activity and biopharmaceutical characterization of some azo Schiff bases. Med. Chem. Res.21(8), 1984–1990 (2012).
  • IssaNT , WathieuH , OjoA , ByersSW , DakshanamurthyS. Drug Metabolism in Preclinical Drug Development: A Survey of the Discovery Process, Toxicology, and Computational Tools. Curr. Drug Metab.18(6), 556 (2017).
  • ZhangZ , TangW. Drug metabolism in drug discovery and development. Acta Pharm. Sin.B8(5), 721–732 (2018).
  • JamunaS , RathinavelA , MohammedSadullah S , DevarajS. In silico approach to study the metabolism and biological activities of oligomeric proanthocyanidin complexes. Indian J. Pharmacol.50(5), 242 (2018).
  • Djoumbou-FeunangY , FiamonciniJ , Gil-de-la-FuenteA , GreinerR , ManachC , WishartDS. BioTransformer: a comprehensive computational tool for small molecule metabolism prediction and metabolite identification. J. Cheminform.11(1), 2 (2019).
  • WaseemD , ButtAF , HaqI ul , BhattiMH , KhanGM. Carboxylate derivatives of tributyltin (IV) complexes as anticancer and antileishmanial agents. DARU, J. Pharm. Sci.25(1), 1–14 (2017).
  • Flores-HolguínN , FrauJ , Glossman-MitnikD. Computational prediction of bioactivity scores and chemical reactivity properties of the parasin i therapeutic peptide of marine origin through the calculation of global and local conceptual dft descriptors. Theor. Chem. Acc.138(6), 1–9 (2019).
  • HusainA , AhmadA , KhanSA , AsifM , BhutaniR , Al-AbbasiFA. Synthesis, molecular properties, toxicity and biological evaluation of some new substituted imidazolidine derivatives in search of potent anti-inflammatory agents. Saudi Pharm. J.24(1), 104–114 (2016).
  • Flores-HolguínN , FrauJ , Glossman-MitnikD. Chemical-reactivity properties, drug likeness, and bioactivity scores of seragamides A-F anticancer marine peptides: conceptual density functional theory viewpoint. Computation.7(3), 52 (2019).
  • JazayeriA , DiasJM , MarshallFH. From G Protein-coupled Receptor Structure Resolution to Rational Drug Design. J. Biol. Chem.290(32), 19489–19495 (2015).
  • RajagopalK , LefkowitzRJ , RockmanHA. When 7 transmembrane receptors are not G protein-coupled receptors. J. Clin. Invest.115(11), 2971–2974 (2005).
  • BhullarKS , LagarónNO , McGowanEMet al.Kinase-targeted cancer therapies: progress, challenges and future directions. Mol. Cancer.17(1), 48 (2018).
  • MazairaGI , ZgajnarNR , LotufoCMet al.The Nuclear Receptor Field: A Historical Overview and Future Challenges. Nucl. Recept. Res.5, 101320 (2018).
  • LloydMD. High-Throughput Screening for the Discovery of Enzyme Inhibitors. J. Med. Chem.63(19), 10742–10772 (2020).
  • FontesR , RibeiroJM , SilleroA. Inhibition and activation of enzymes. The effect of a modifier on the reaction rate and on kinetic parameters. Acta Biochim. Pol.47(1), 233–257 (2000).
  • NevesBJ , BragaRC , Melo-FilhoCC , Moreira-FilhoJT , MuratovEN , AndradeCH. QSAR-Based Virtual Screening: Advances and Applications in Drug Discovery. Front. Pharmacol.9(NOV), 1275 (2018).
  • KwonS , BaeH , JoJet al.Comprehensive ensemble in QSAR prediction for drug discovery. BMC Bioinformatics20, 521 (2019).
  • OlandersG , AlogheliH , BrandtP , KarlénA. Conformational analysis of macrocycles: comparing general and specialized methods. J. Comput. Aided. Mol. Des.34(3), 231–252 (2020).
  • PerolaE , CharifsonPS. Conformational Analysis of Drug-Like Molecules Bound to Proteins: An Extensive Study of Ligand Reorganization upon Binding. J. Med. Chem.47(10), 2499–2510 (2004).
  • FriedrichN-O , SimsirM , KirchmairJ. How Diverse Are the Protein-Bound Conformations of Small-Molecule Drugs and Cofactors?Front. Chem.6(MAR), 68 (2018).
  • CherkasovA , MuratovEN , FourchesDet al.QSAR modeling: where have you been? Where are you going to?. J. Med. Chem.57(12), 4977–5010 (2014).
  • KlebeG , AbrahamU , MietznerT. Molecular Similarity Indices in a Comparative Analysis (CoMSIA) of Drug Molecules To Correlate and Predict Their Biological Activity. J. Med. Chem.37(24), 4130–4146 (1994).
  • KimKH. Comparative molecular field analysis (CoMFA). In: Molecular Similarity in Drug Design.DeanPM (Ed.). Springer Netherlands, Dordrecht, The Netherlands, 291–331 (1995).
  • FoscatoM , JensenVR. Automated in Silico Design of Homogeneous Catalysts. ACS Catal.10(3), 2354–2377 (2020).
  • ToulhoatH. Heterogeneous Catalysis: Use of Density Functional Theory. In: Encyclopedia of Materials: Science and Technology.Elsevier, Amsterdam, The Netherlands, 1–7 (2010).
  • CuiQ. Perspective: quantum mechanical methods in biochemistry and biophysics. J. Chem. Phys.145(14), 140901 (2016).
  • SahniV , SahniV. The Hohenberg-Kohn Theorems and Kohn-Sham Density Functional Theory. In: Quantal Density Functional Theory.Springer, Berlin, Heidelberg, Germany, 99–123 (2004).
  • MerzKM. Using quantum mechanical approaches to study biological systems. Acc. Chem. Res.47(9), 2804–2811 (2014).
  • ArodolaOA , SolimanMES. Quantum mechanics implementation in drug-design workflows: does it really help?. Drug Des. Devel. Ther.11, 2551–2564 (2017).
  • CramerCJ , TruhlarDG. Density functional theory for transition metals and transition metal chemistry. Phys. Chem. Chem. Phys.11(46), 10757–10816 (2009).
  • HarveyJN. On the accuracy of density functional theory in transition metal chemistry. Annu. Reports Prog. Chem. - Sect.C102(1), 203–226 (2006).
  • SliwoskiG , KothiwaleS , MeilerJ , LoweEW. Computational methods in drug discovery. Pharmacol. Rev.66(1), 334–395 (2014).
  • WilsonGL , LillMA. Integrating structure-based and ligand-based approaches for computational drug design. Future Med. Chem.3(6), 735–750 (2011).
  • TanL , GeppertH , SisayMT , GütschowM , BajorathJ. Integrating structure- and ligand-based virtual screening: comparison of individual, parallel, and fused molecular docking and similarity search calculations on multiple targets. ChemMedChem.3(10), 1566–1571 (2008).
  • PolgarT , KeseruGM. Integration of Virtual and High Throughput Screening in Lead Discovery Settings. Comb. Chem. High Throughput Screen.14(10), 889–897 (2011).
  • GoodAC , KrystekSR , MasonJS. High-throughput and virtual screening: core lead discovery technologies move towards integration. Drug Discov. Today5(1 Suppl. 12), S61–S69 (2000).
  • TanrikuluY , KrügerB , ProschakE. The holistic integration of virtual screening in drug discovery. Drug Discov. Today18(7–8), 358–364 (2013).
  • HuangSY , LiM , WangJ , PanY. HybridDock: A Hybrid Protein-Ligand Docking Protocol Integrating Protein- and Ligand-Based Approaches. J. Chem. Inf. Model.56(6), 1078–1087 (2016).
  • LamPCH , AbagyanR , TotrovM. Ligand-biased ensemble receptor docking (LigBEnD): a hybrid ligand/receptor structure-based approach. J. Comput. Aided. Mol. Des.32(1), 187–198 (2018).
  • MestresJ , KnegtelRMA. Similarity versus docking in 3D virtual screening. Perspect. Drug Discov. Des.20(1), 191–207 (2000).
  • KrügerDM , EversA. Comparison of structure- and ligand-based virtual screening protocols considering hit list complementarity and enrichment factors. ChemMedChem.5(1), 148–158 (2010).
  • ShihHP , ZhangX , AronovAM. Drug discovery effectiveness from the standpoint of therapeutic mechanisms and indications. Nat. Rev. Drug Discov.17(1), 19–33 (2018).
  • CorselloSM , BittkerJA , LiuZet al.The Drug Repurposing Hub: a next-generation drug library and information resource. Nat. Med.23(4), 405–408 (2017).
  • PushpakomS , IorioF , EyersPAet al.Drug repurposing: progress, challenges and recommendations. Nat. Rev. Drug Discov.18(1), 41–58 (2018).
  • AndersenPI , IanevskiA , LysvandHet al.Discovery and development of safe-in-man broad-spectrum antiviral agents. Int. J. Infect. Dis.93, 268–276 (2020).
  • ItoK , OhmagariN , MikamiA , SugiuraW. Major ongoing clinical trials for COVID-19 treatment and studies currently being conducted or scheduled in Japan. Glob. Heal. Med.2(2), 96–101 (2020).
  • YousefifardM , ZaliA , MohamedAli Ket al.Antiviral therapy in management of COVID-19: a systematic review on current evidence. Arch. Acad. Emerg. Med.8(1), e45 (2020).
  • KharkarPS , WarrierS , GaudRS. Reverse docking: a powerful tool for drug repositioning and drug rescue. Future Med. Chem.6(3), 333–342 (2014).
  • dosSantos Nascimento IJ , de AquinoTM , da Silva-JúniorEF. Drug Repurposing: A Strategy for Discovering Inhibitors against Emerging Viral Infections. Curr. Med. Chem.28(15), 2887–2942 (2020).
  • HatzimouratidisK. Sildenafil in the treatment of erectile dysfunction: an overview of the clinical evidence. Clin. Interv. Aging.1(4), 403 (2006).
  • PalumboA , FaconT , SonneveldPet al.Thalidomide for treatment of multiple myeloma: 10 years later. Blood111(8), 3968–3977 (2008).
  • ChaeYK , AryaA , MalecekMKet al.Repurposing metformin for cancer treatment: current clinical studies. Oncotarget.7(26), 40767 (2016).
  • RascolO , FabbriM , PoeweW. Amantadine in the treatment of Parkinson's disease and other movement disorders. Lancet. Neurol.20(12), 1048–1056 (2021).
  • AmaralL , ViveirosM. Thioridazine: A Non-Antibiotic Drug Highly Effective, in Combination with First Line Anti-Tuberculosis Drugs, against Any Form of Antibiotic Resistance of Mycobacterium tuberculosis Due to Its Multi-Mechanisms of Action. Antibiotics.6(1), 3 (2017).
  • HennekensCH , DykenML , FusterV. Aspirin as a Therapeutic Agent in Cardiovascular Disease. Circulation96(8), 2751–2753 (1997).
  • SohelAJ , ShutterMC , MollaM. Fluoxetine. xPharm Compr. Pharmacol. Ref.1–9 (2022).
  • OgrendikM. Antibiotics for the treatment of rheumatoid arthritis. Int. J. Gen. Med.7, 43 (2014).
  • WiffenPJ , DerryS , BellRFet al.Gabapentin for chronic neuropathic pain in adults. Cochrane Database Syst. Rev.2017(6), CD007938 (2017).
  • WangF , WuFX , LiCZet al.ACID: a free tool for drug repurposing using consensus inverse docking strategy. J. Cheminform.11(1), 73 (2019).
  • PlewczynskiD , ŁaźniewskiM , GrotthussM Von , RychlewskiL , GinalskiK. VoteDock: consensus docking method for prediction of protein-ligand interactions. J. Comput. Chem. [Internet].32(4), 568–581 (2011).
  • HuangLH , HeQS , LiuKet al.ADReCS-Target: target profiles for aiding drug safety research and application. Nucleic Acids Res.46(D1), D911–D917 (2018).
  • GilsonMK , LiuT , BaitalukM , NicolaG , HwangL , ChongJ. BindingDB in 2015: a public database for medicinal chemistry, computational chemistry and systems pharmacology. Nucleic Acids Res.44(D1), D1045–D1053 (2016).
  • TaboureauO , NielsenSK , AudouzeKet al.ChemProt: a disease chemical biology database. Nucleic Acids Res.39(Suppl. 1), D367–D372 (2011).
  • VanhaelenQ , MamoshinaP , AliperAMet al.Design of efficient computational workflows for in silico drug repurposing. Drug Discov. Today22(2), 210–222 (2017).