317
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Nanofabrication of chitosan-based dressing to treat the infected wounds: in vitro and in vivo evaluations

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Article: FSO921 | Received 13 May 2023, Accepted 12 Oct 2023, Published online: 17 Jan 2024

References

  • Sarheed O, Ahmed A, Shouqair D, Boateng J. Antimicrobial dressings for improving wound healing. In: Wound Healing-New Insights into Ancient Challenges. Alexandrescu V ( Ed.). 373–398 (2016).
  • Savitskaya I, Shokatayeva D, Kistaubayeva A, Ignatova L, Digel I. Antimicrobial and wound healing properties of a bacterial cellulose based material containing B. subtilis cells. Heliyon 5(10), e02592 (2019).
  • Halstead FD, Lee KC, Kwei J, Dretzke J, Oppenheim BA, Moiemen NS. A systematic review of quantitative burn wound microbiology in the management of burns patients. Burns 44(1), 39–56 (2018).
  • Percival SL, Finnegan S, Donelli G, Vuotto C, Rimmer S, Lipsky BA. Antiseptics for treating infected wounds: efficacy on biofilms and effect of pH. Crit. Rev. Microbiol. 42(2), 293–309 (2016).
  • Bourtoom T, Chinnan MS. Preparation and properties of rice starch–chitosan blend biodegradable film. LWT-Food Sci. Technol. 41(9), 1633–1641 (2008).
  • Wang K, Pan S, Qi Z et al. Recent advances in chitosan-based metal nanocomposites for wound healing applications. Advan. Mat. Sci. Engin. 2020, 3827912–3827925 (2020).
  • Yang C, Yan Z, Lian Y, Wang J, Zhang K. Graphene oxide coated shell-core structured chitosan/PLLA nanofibrous scaffolds for wound dressing. J. Biomater. Sci. Polym. Ed. 31(5), 622–641 (2020).
  • Oryan A, Sahvieh S. Effectiveness of chitosan scaffold in skin, bone and cartilage healing. Intern. J. Biol. Macromol. 104, 1003–1011 (2017).
  • Kazemi MS, Mohammadi Z, Amini M et al. Thiolated chitosan-lauric acid as a new chitosan derivative: synthesis, characterization and cytotoxicity. Intern. J. Biol. Macromol. 136, 823–830 (2019).
  • Chen S, Wang H, Jian Z et al. Novel poly (vinyl alcohol)/chitosan/modified graphene oxide biocomposite for wound dressing application. Macromol. Biosci. 20(3), 1900385 (2020).
  • Berger J, Reist M, Mayer JM, Felt O, Peppas N, Gurny R. Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. European J. Pharmaceut. Biopharmaceut. 57(1), 19–34 (2004).
  • Chen Q, Xu A, Li Z, Wang J, Zhang S. Influence of anionic structure on the dissolution of chitosan in 1-butyl-3-methylimidazolium-based ionic liquids. Green Chem. 13(12), 3446–3452 (2011).
  • Di Giulio M, Zappacosta R, Di Lodovico S et al. Antimicrobial and antibiofilm efficacy of graphene oxide against chronic wound microorganisms. Antimicrob. Agents Chemother. 62(7), e00547–18 (2018).
  • Mao HY, Laurent S, Chen W et al. Graphene: promises, facts, opportunities, and challenges in nanomedicine. Chem. Rev. 113(5), 3407–3424 (2013).
  • Kuila T, Bose S, Mishra AK, Khanra P, Kim NH, Lee JH. Chemical functionalization of graphene and its applications. Progress Mater. Sci. 57(7), 1061–1105 (2012).
  • Li L, Luo C, Li X, Duan H, Wang X. Preparation of magnetic ionic liquid/chitosan/graphene oxide composite and application for water treatment. Internat. J. Biolog. Macromol. 66, 172–178 (2014).
  • Ali IH, Ouf A, Elshishiny F et al. Antimicrobial and wound-healing activities of graphene-reinforced electrospun chitosan/gelatin nanofibrous nanocomposite scaffolds. ACS Omega 7(2), 1838–1850 (2022).
  • Graça MF, Melo BL, Lima-Sousa R, Ferreira P, Moreira AF, Correia IJ. Reduced graphene oxide-enriched chitosan hydrogel/cellulose acetate-based nanofibers application in mild hyperthermia and skin regeneration. Internat. J. Biolog. Macromol. 229, 224–235 (2023).
  • Wang Y, Liu S, Yu W. Functionalized graphene oxide-reinforced chitosan hydrogel as biomimetic dressing for wound healing. Macromol. Biosci. 21(4), 2000432 (2021).
  • Jin H, Cai M, Deng F. Antioxidation effect of graphene oxide on silver nanoparticles and its use in antibacterial applications. Polymers. 15(14), 3045 (2023).
  • Shahmoradi S, Golzar H, Hashemi M et al. Optimizing the nanostructure of graphene oxide/silver/arginine for effective wound healing. Nanotechnology 29(47), 475101 (2018).
  • Edmonds M. Body of knowledge around the diabetic foot and limb salvage. J. Cardiovasc. Surg. 53(5), 605–616 (2012).
  • James GA, Swogger E, Wolcott R et al. Biofilms in chronic wounds. Wound Repair Regen. 16(1), 37–44 (2008).
  • Zhang L, Jiang Y, Ding Y, Povey M, York D. Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids). J. Nanopart. Res. 9(3), 479–489 (2007).
  • Wang Y-W, Cao A, Jiang Y et al. Superior antibacterial activity of zinc oxide/graphene oxide composites originating from high zinc concentration localized around bacteria. ACS Appl. Mater. Interf. 6(4), 2791–2798 (2014).
  • You J, Zhang Y, Hu Z. Bacteria and bacteriophage inactivation by silver and zinc oxide nanoparticles. Colloids and Surfaces B: Biointerfaces 85(2), 161–167 (2011).
  • Sanmugam A, Vikraman D, Park HJ, Kim H-S. One-Pot facile methodology to synthesize chitosan-ZnO-graphene oxide hybrid composites for better dye adsorption and antibacterial activity. Nanomaterials 7(11), 363 (2017).
  • Shu G, Xu D, Xie S et al. The antioxidant, antibacterial, and infected wound healing effects of ZnO quantum dots-chitosan biocomposite. Applied Surface Sci. 611, 155727 (2023).
  • Govindasamy GA, Mydin RBS, Effendy WNFWE, Sreekantan S. Novel dual-ionic ZnO/CuO embedded in porous chitosan biopolymer for wound dressing application: physicochemical, bactericidal, cytocompatibility and wound healing profiles. Mater. Today Commun. 33, 104545 (2022).
  • Kumar P, Lakshmanan V-K, Anilkumar T et al. Flexible and microporous chitosan hydrogel/nano ZnO composite bandages for wound dressing. Vitro In Vivo Eval. 11, 28596 (2019).
  • Bagheri M, Validi M, Gholipour A, Makvandi P, Sharifi E. Chitosan nanofiber biocomposites for potential wound healing applications: antioxidant activity with synergic antibacterial effect. Bioeng. Translat. Med. 7(1), e10254 (2022).
  • Chowdhuri AR, Tripathy S, Chandra S, Roy S, Sahu SK. A ZnO decorated chitosan–graphene oxide nanocomposite shows significantly enhanced antimicrobial activity with ROS generation. RSC Advan. 5(61), 49420–49428 (2015).
  • Azimi N, Gandomkar A, Sharif M. Relationship between production condition, microstructure and final properties of chitosan/graphene oxide–zinc oxide bionanocomposite. Poly. Bulletin 80(6), 6455–6469 (2023).
  • Li C, Wang X, Chen F et al. The antifungal activity of graphene oxide–silver nanocomposites. Biomaterials 34(15), 3882–3890 (2013).
  • 13726-2: BE. Test Methods for Primary Wound Dressings. Part 1: Aspect of Absorbency, Section 3.6, Dispersion Characteristics (2002). https://www.en-standard.eu/search/?q=13726-2%3A2002
  • International A. ASTM D882-12, Standard Test Method for Tensile Properties of Thin Plastic Sheeting. ASTM International (2012).
  • Standardization IOF. Measurement of Antibacterial Activity on Plastics and Other Non-porous Surfaces ISO 22196. ISO (2011).
  • Standard I. Biological evaluation of medical devices—Part 5: Tests for in vitro cytotoxicity. International Organization for Standardization, Geneve, Switzerland (2009).
  • 10993–10 I. Biological evaluation of medical devices Part 10: tests for irritation and delayed-type hypersensitivity (2010). https://www.iso.org/obp/ui/#iso:std:iso:10993:-10:ed-4:v1:en
  • Han Y, Lu Y. Characterization and electrical properties of conductive polymer/colloidal graphite oxide nanocomposites. Comp. Sci. Technol. 69(7–8), 1231–1237 (2009).
  • Yang X, Tu Y, Li L, Shang S, Tao X-M. Well-dispersed chitosan/graphene oxide nanocomposites. ACS Appl. Mater. Interf. 2(6), 1707–1713 (2010).
  • Salehi R, Arami M, Mahmoodi NM, Bahrami H, Khorramfar S. Novel biocompatible composite (chitosan–zinc oxide nanoparticle): preparation, characterization and dye adsorption properties. Coll. Surfaces B: Biointerfaces 80(1), 86–93 (2010).
  • Zuo P-P, Feng H-F, Xu Z-Z et al. Fabrication of biocompatible and mechanically reinforced graphene oxide-chitosan nanocomposite films. Chem. Central J. 7, 1–11 (2013).
  • El Rouby WM, Farghali AA, Sadek M, Khalil WF. Fast removal of Sr (II) from water by graphene oxide and chitosan modified graphene oxide. J. Inorgan. Organomet. Polym. Mater. 28, 2336–2349 (2018).
  • Sun L, Sun J, Chen L, Niu P, Yang X, Guo Y. Preparation and characterization of chitosan film incorporated with thinned young apple polyphenols as an active packaging material. Carbohyd. Polym. 163, 81–91 (2017).
  • Zuo P-P, Feng H-F, Xu Z-Z et al. Fabrication of biocompatible and mechanically reinforced graphene oxide-chitosan nanocomposite films. Chem. Cent. J. 7(1), 1–11 (2013).
  • Terzioglu P, Altin Y, Kalemtas A, Bedeloglu AC. Graphene oxide and zinc oxide decorated chitosan nanocomposite biofilms for packaging applications. J. Polym. Engin. 40(2), 152–157 (2020).
  • Sathiya S, Okram G, Dhivya SM, Manivannan G, Rajan MJ. Interaction of chitosan/zinc oxide nanocomposites and their antibacterial activities with Escherichia coli. Materials Today: Proceedings 3(10), 3855–3860 (2016).
  • Thomas S, Hughes G, Fram P, Hallett A. An in-vitro comparison of the physical characteristics of hydrocolloids, hydrogels, foams and alginate/CMC fibrous dressings. SMTL Rep 1, 1–24 (2005).
  • Uzun M, Anand S, Shah T. In vitro characterisation and evaluation of different types of wound dressing materials. J. Biomed. Eng. Technol. 1(2013), 1–7 (2013).
  • Helfman T, Ovington L, Falanga V. Occlusive dressings and wound healing. Clin. Dermatol. 12(1), 121–127 (1994).
  • Mir M, Ali MN, Barakullah A et al. Synthetic polymeric biomaterials for wound healing: a review. Progress in Biomat. 7(1), 1–21 (2018).
  • Coleman JN, Khan U, Gun'ko YK. Mechanical reinforcement of polymers using carbon nanotubes. Advan. Mater. 18(6), 689–706 (2006).
  • Najafabadi SAA, Mohammadi A, Kharazi AZ. Polyurethane nanocomposite impregnated with chitosan-modified graphene oxide as a potential antibacterial wound dressing. Mater. Sci. Engin.: C 115, 110899 (2020).
  • Kara F, Aksoy EA, Yuksekdag Z, Hasirci N, Aksoy S. Synthesis and surface modification of polyurethanes with chitosan for antibacterial properties. Carbohyd. Poly. 112, 39–47 (2014).
  • Parwani L, Bhatnagar M, Bhatnagar A, Sharma V, Sharma V. Evaluation of Moringa oleifera seed biopolymer-PVA composite hydrogel in wound healing dressing. Iranian Polymer. J. 25(11), 919–931 (2016).
  • Boateng JS, Matthews KH, Stevens HN, Eccleston GM. Wound healing dressings and drug delivery systems: a review. J. Pharm. Sci. 97(8), 2892–2923 (2008).