340
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Titanium dioxide nanostructure-loaded Adriamycin surmounts resistance in breast cancer therapy: ABCA/P53/C-myc crosstalk

ORCID Icon, ORCID Icon & ORCID Icon
Article: FSO979 | Published online: 20 Mar 2024

References

  • Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics. CA Cancer J. Clin. 73(1), 17–48 (2023).
  • Novelli F, Milella M, Melucci E et al. A divergent role for estrogen receptor-beta in node-positive and node-negative breast cancer classified according to molecular subtypes: an observational prospective study. Breast Cancer Res. 10(5), 1–12 (2008).
  • Kontoyannis A, Sweetland H. Adjuvant therapy for breast cancer. Surgery (Oxford) 25, 272–275 (2007).
  • Christowitz C, Davis T, Isaacs A et al. Mechanisms of doxorubicin-induced drug resistance and drug resistant tumor growth in a murine breast tumor model. B.M.C. cancer 19, 1–10 (2019).
  • Yi X, Lou L, Wang J et al. Honokiol antagonizes doxorubicin resistance in human breast cancer via miR-188-5p/FBXW7/c-Myc pathway. Cancer Chemother. Pharmacol. 87, 647–656 (2021).
  • Hernandez-Aya LF, Gonzalez-Angulo AM. Adjuvant systemic therapies in breast cancer. Surg. Clin. North Am. 93, 473–491 (2013).
  • Shukla A, Hillegass JM, MacPherson MB et al. Blocking of ERK1 and ERK2 sensitizes human mesothelioma cells to doxorubicin. Mol. Cancer 9, 1–13 (2010).
  • Abrams SL, Steelman LS, Shelton JG et al. The Raf/MEK/ERK pathway can govern drug resistance, apoptosis and sensitivity to targeted therapy. Cell Cycle 9, 1781–1791 (2010).
  • Yi GY, Kim MJ, Kim HI et al. Hyperthermia treatment as a promising anti-cancer strategy: therapeutic targets, perspective mechanisms and synergistic combinations in experimental approaches. Antioxidants 11, 625 (2022).
  • Zhang T, He WH, Feng LL, Huang HG. Effect of doxorubicin-induced ovarian toxicity on mouse ovarian granulosa cells. Regul. Toxicol. Pharmacol. 86, 1–10 (2017).
  • Chien J, Kuang R, Landen C, Shridhar V. Platinum-sensitive recurrence in ovarian cancer: the role of tumor microenvironment. Fron. Oncol. 3, 251 (2013).
  • Bukowski K, Kciuk M, Kontek R. Mechanisms of multidrug resistance in cancer chemotherapy. Int. J. Mol. Sci. 21, 3233 (2020).
  • Ween M, Armstrong M, Oehler M, Ricciardelli C. The role of ABC transporters in ovarian cancer progression and chemoresistance. Crit. Rev. Oncol. Hematol. 96, 220–256 (2015).
  • Cerovska E, Elsnerova K, Vaclavikova R, Soucek P. The role of membrane transporters in ovarian cancer chemoresistance and prognosis. Expert Opin. Drug Metab. Toxicol. 13, 741–753 (2017).
  • Wang W, Lokman NA, Noye TM et al. ABCA1 is associated with the development of acquired chemotherapy resistance and predicts poor ovarian cancer outcome. CDR 4, 485 (2021).
  • Rizzotto D, Englmaier L, Villunger A. At a crossroads to cancer: how p53-induced cell fate decisions secure genome integrity. Int. J. Mol. Sci. 22, 10883 (2021).
  • Kastenhuber ER, Lowe SW. Putting p53 in context. Cell 170, 1062–1078 (2017).
  • Krause K, Wasner M, Reinhard W et al. The tumor suppressor protein p53 can repress transcription of cyclin B. Nucleic Acids Res. 28, 4410–4418 (2000).
  • Wang H, Yan C. A small-molecule p53 activator induces apoptosis through inhibiting MDMX expression in breast cancer cells. Neoplasia 13, 611–IN616 (2011).
  • Shamas-Din A, Kale J, Leber B, Andrews DW. Mechanisms of action of Bcl-2 family proteins. Cold Spring Harb. Perspect. Biol. 5, a008714 (2013).
  • Muller PA, Vousden KH. p53 mutations in cancer. Nat. Cell Biol. 15, 2–8 (2013).
  • Huang Y, Liu N, Liu J et al. Mutant p53 drives cancer chemotherapy resistance due to loss of function on activating transcription of PUMA. Cell Cycle 18, 3442–3455 (2019).
  • Masui K, Tanaka K, Akhavan D et al. mTOR complex 2 controls glycolytic metabolism in glioblastoma through FoxO acetylation and upregulation of c-Myc. Cell Metab. 18, 726–739 (2013).
  • Sheth A, Escobar-Alvarez S, Gardner J et al. Inhibition of human mitochondrial peptide deformylase causes apoptosis in c-myc-overexpressing hematopoietic cancers. Cell Death Dis. 5, e1152 (2014).
  • Gomez-Casares M, Garcia-Alegria E, Lopez-Jorge C et al. MYC antagonizes the differentiation induced by imatinib in chronic myeloid leukemia cells through downregulation of p27KIP1. Oncogene 32, 2239–2246 (2013).
  • Singh AM, Dalton S. The cell cycle and Myc intersect with mechanisms that regulate pluripotency and reprogramming. Cell Stem Cell 5, 141–149 (2009).
  • Hoffman B, Amanullah A, Shafarenko M, Liebermann DA. The proto-oncogene c-myc in hematopoietic development and leukemogenesis. Oncogene 21, 3414–3421 (2002).
  • Tsai W-B, Aiba I, Long Y et al. Activation of Ras/PI3K/ERK pathway induces c-Myc stabilization to upregulate argininosuccinate synthetase, leading to arginine deiminase resistance in melanoma cells activation of Ras/PI3K/AKT for c-Myc stability by ADI-PEG20. Cancer Res. 72, 2622–2633 (2012).
  • Pan X-N, Chen J-J, Wang L-X et al. Inhibition of c-Myc overcomes cytotoxic drug resistance in acute myeloid leukemia cells by promoting differentiation. PLOS ONE 9, e105381 (2014).
  • Bengtsson Y, Sandsveden M, Borgquist S, Manjer J. Serum zinc and dietary intake of zinc in relation to risk of different breast cancer subgroups and serum levels as a marker of intake: a prospective nested case-control study. Breast Cancer Res. Treat. 189, 571–583 (2021).
  • Chandler P, Kochupurakkal BS, Alam S et al. Subtype-specific accumulation of intracellular zinc pools is associated with the malignant phenotype in breast cancer. Mol. Cancer 15, 1–19 (2016).
  • Jouybari L, Kiani F, Akbari A et al. A meta-analysis of zinc levels in breast cancer. J. Trace. Elem. Med. Biol. 56, 90–99 (2019).
  • Bong AH, Monteith GR. Calcium signaling and the therapeutic targeting of cancer cells. Biochim. Biophys. Acta - Mol. Cell Res. 1865, 1786–1794 (2018).
  • Venturelli S, Leischner C, Helling T et al. Minerals and cancer: overview of the possible diagnostic value. Cancers 14, 1256 (2022).
  • Kawassaki RK, Romano M, Dietrich N, Araki K. Titanium and iron oxide nanoparticles for cancer therapy: surface chemistry and biological implications. Front. Nanotechnol. 3, 735434 (2021).
  • Kim H, Jeon D, Oh S et al. Titanium dioxide nanoparticles induce apoptosis by interfering with EGFR signaling in human breast cancer cells. Environ. Res. 175, 117–123 (2019).
  • Wang H, Huang Y. Combination therapy based on Nano-delivery for overcoming cancer drug resistance. Med. Drug Discov. 6, 100024 (2020).
  • Hakkak R, Holley AW, MacLeod SL et al. Obesity promotes 7, 12-dimethylbenz (a) anthracene-induced mammary tumor development in female zucker rats. Breast Cancer Res. 7, 1–7 (2005).
  • Gindler EM, King JD. Rapid colorimetric determination of calcium in biologic fluids with methylthymol blue. Am. J. Clin. Pathol. 58, 376–382 (1972).
  • Hayakawa R, Jap J. Chemical method for determination of zinc in serum. Jap. J. Toxic Environ. Health 8, 14–18 (1961).
  • Abdel-Megeed RM, Abd El-Alim SH, Arafa AF et al. Crosslink among phosphatidylinositol-3 kinase/Akt, PTEN and STAT-5A signaling pathways post liposomal galactomannan hepatocellular carcinoma therapy. Toxicol. Rep. 7, 1531–1541 (2020).
  • Abdel-Megeed RM, El Newary SA, Kadry MO et al. Hyssopus officinalis exerts hypoglycemic effects on streptozotocin-induced diabetic rats via modulating GSK-3β, C-fos, NF-κB, ABCA1 and ABGA1 gene expression. J. Diabetes Metab. Disord. 19, 483–491 (2020).
  • Li B, Zhou P, Xu K et al. Metformin induces cell cycle arrest, apoptosis and autophagy through ROS/JNK signaling pathway in human osteosarcoma. Int. J. Biol. Sci. 16, 74 (2020).
  • Alam S, Kelleher SL. Cellular mechanisms of zinc dysregulation: a perspective on zinc homeostasis as an etiological factor in the development and progression of breast cancer. Nutrients 4(8), 875–903 (2012).
  • Shinlapawittayatorn K, Chattipakorn SC, Chattipakorn N. The effects of doxorubicin on cardiac calcium homeostasis and contractile function. J. Cardiol. 80(2), 125–132 (2022).
  • Tajbakhsh A, Pasdar A, Rezaee M et al. The current status and perspectives regarding the clinical implication of intracellular calcium in breast cancer. J. Cell. Physiol. 233(8), 5623–5641 (2018).
  • González de Vega R, Fernández-Sánchez ML, Pisonero J et al. Quantitative bioimaging of Ca, Fe, Cu and Zn in breast cancer tissues by LA-ICP-MS. J. Anal. At. Spectrom. 32, 671–677 (2017).
  • Shang Y, Zhang Z, Liu Z et al. miR-508-5p regulates multidrug resistance of gastric cancer by targeting ABCB1 and ZNRD1. Oncogene 33, 3267–3276 (2014).
  • Wu K, Zou L, Lei X, Yang X. Roles of ABCA1 in cancer. Oncol. Lett. 24, 1–7 (2022).
  • Belisario DC, Akman M, Godel M et al. ABCA1/ABCB1 ratio determines chemo-and immune-sensitivity in human osteosarcoma. Cells 9, 647 (2020).
  • Wang S-M, Lin W-C, Lin H-Y et al. CCAAT/Enhancer-binding protein delta mediates glioma stem-like cell enrichment and ATP-binding cassette transporter ABCA1 activation for temozolomide resistance in glioblastoma. Cell Death Discov. 7, 8 (2021).
  • Jacobo-Albavera L, Domínguez-Pérez M, Medina-Leyte DJ et al. The role of the ATP-binding cassette A1 (ABCA1) in human disease. Int. J. Mol. Sci. 22, 1593 (2021).
  • Hientz K, Mohr A, Bhakta-Guha D, Efferth T. The role of p53 in cancer drug resistance and targeted chemotherapy. Oncotarget 8, 8921 (2017).
  • Aggarwal M. 2,2-diphenethyl isothiocyanate enhances topoisomerase inhibitor-induced cell death and suppresses multi-drug resistance 1 in breast cancer cells. Cancers 15, 928 (2023).
  • Nishikawa S, Iwakuma T. Drugs targeting p53 mutations with FDA approval and in clinical trials. Cancers 15, 429 (2023).
  • Huang Y, Sadée W. Membrane transporters and channels in chemoresistance and-sensitivity of tumor cells. Cancer Lett. 239, 168–182 (2006).
  • Seavey MM, Dobrzanski P. The many faces of Janus kinase. Biochem. Pharmacol. 83, 1136–1145 (2012).
  • Behera R, Kumar V, Lohite K et al. Activation of JAK2/STAT3 signaling by osteopontin promotes tumor growth in human breast cancer cells. Carcinogenesis 31, 192–200 (2010).
  • Schneider J, Jeon YW, Suh YJ, Lim ST. Effects of ruxolitinib and calcitriol combination treatment on various molecular subtypes of breast cancer. Int. J. Mol. Sci. 23, 2535 (2022).
  • Balko JM, Schwarz LJ, Luo N et al. Triple-negative breast cancers with amplification of JAK2 at the 9p24 locus demonstrate JAK2-specific dependence. Sci. Transl. Med. 8, 334ra353 (2016).
  • Soucek L, Evan GI. The ups and downs of Myc biology. Curr. Opin. Genet. Dev. 20, 91–95 (2010).
  • Qu H, Qi D, Wang X et al. CLDN6 suppresses c–MYC–mediated aerobic glycolysis to inhibit proliferation by TAZ in breast cancer. Int. J. Mol. Sci. 23, 129 (2021).
  • Kang JL, Moon C, Lee HS et al. Comparison of the biological activity between ultrafine and fine titanium dioxide particles in RAW 264.7 cells associated with oxidative stress. J. Toxicol. Environ. 71, 478–485 (2008).
  • Kang SJ, Kim BM, Lee YJ, Chung HW. Titanium dioxide nanoparticles trigger p53-mediated damage response in peripheral blood lymphocytes. Environ. Mol. Mutagen. 49, 399–405 (2008).
  • Petković J, Küzma T, Rade K et al. Pre-irradiation of anatase TiO2 particles with UV enhances their cytotoxic and genotoxic potential in human hepatoma HepG2 cells. J. Hazard. Mater. 196, 145–152 (2011).
  • Tian Y et al. A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy. Biomaterials 35(7), 2383–2390 (2014).
  • Vahabi L, Ranjbar PR, Davar F. Cladosporium protease/doxorubicin decorated Fe3O4@ SiO2 nanocomposite: an efficient nanoparticle for drug delivery and combating breast cancer. J. Drug. Deliv. Sci. Technol. 80, 104144 (2023).