343
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Fischer's oligopeptide ratio in ischemic hypoxia: prophylactic amendment of sophoretin and melatonin supplementation

ORCID Icon & ORCID Icon
Article: FSO911 | Received 21 Jun 2023, Accepted 02 Oct 2023, Published online: 20 May 2024

References

  • Semenza GL. Oxygen homeostasis. Wiley Interdiscipl. Rev. 2(3), 336–361 (2010).
  • Knobeloch L, Salna B, Hogan A, Postle J, Anderson H. Blue babies and nitrate-contaminated well water. Environ. Health Perspect. 108(7), 675–678 (2000).
  • Salama MF, Abbas A, Darweish MM, El-Hawwary AA, Al-Gayyar MM. Hepatoprotective effects of cod liver oil against sodium nitrite toxicity in rats. Pharm. Biol. 51, 1435–1443 (2013).
  • Karwowska M, Kononiuk A. Nitrates/nitrites in food-risk for nitrosative stress and benefits. Antioxidants 9, 241 (2020).
  • Lan KM, Tien LT, Cai Z et al. Erythropoietin ameliorates neonatal hypoxia-ischemia-induced neurobehavioral deficits, neuroinflammation, and hippocampal injury in the juvenile rat. Int. J. Mol. Sci. 17, 289 (2016).
  • Barnham KJ, Masters CL, Bush AI. Neurodegenerative diseases and oxidative stress. Nat. Rev. Drug Discov. 3, 205–214 (2004).
  • Sataieva TP, Zadnipryany IV. Hypoxic damage of cardiomyocytes during pregnancy and its experimental treatment. International Student's J. Med. 1(1), 18–21 (2015).
  • Kss S, Veeramohan PH, Mathew T. Nifedipine inhibits hypoxia induced transvascular leakage through down regulation of NF-κB. Respir. Physiol. Neurobiol. 183, 26–34 (2012).
  • Wang J, Ke T, Zhang X et al. Effects of acetazolamide on cognitive performance during high-altitude exposure. Neurotoxicol. Teratol. 35, 28–33 (2013).
  • Aita NA, Mohammed FF. Effect of marjoram oil on the clinicopathological, cytogenetic and histopathological alterations induced by sodium nitrite toxicity in rats. Glob Vet. 12, 606–616 (2014).
  • Petrova E, Gluhcheva Y, Pavlova E, Vladov I, Voyslavov T, Ivanova J. Effect of acute sodium nitrite intoxication on some essential biometals in mouse spleen. Journal of Trace Elements in Medicine and Biology 58, 126431 (2020).
  • Ghosh D, Levault KR, Brewer GJ. Relative importance of buffers GSH and NAD (P) H in age related neurodegeneration and Alzheimer disease like mouse neurons. Aging Cell 13(4), 631–640 (2014).
  • Paffen E, DeMaat MP. C-reactive protein in atherosclerosis: a causal factor? Cardiovasc. Res. 71(1), 30–39 (2006).
  • Yadav RS, Shukla RK, Sankhwar ML et al. Neuroprotective effect of curcumin in arsenic-induced neurotoxicity in rats. Neurotoxicology 31(5), 533–539 (2010).
  • Kumar GK. Hypoxia. 3. Hypoxia and neurotransmitter synthesis. Am. J. Physiol. Cell Physiol. 300(4), C743–C751 (2011).
  • Rizk HA, Masoud MA, Maher OW. Prophylactic effects of ellagic acid and rosmarinic acid on doxorubicin-induced neurotoxicity in rats. J. Biochem. Mol. Toxicol. 31(12), 10 (2017).
  • Attia H, Fadda L, Al-Rasheed N, Al-Rasheed N, Maysarah N. Carnosine and L-arginine attenuate the downregulation of brain monoamines and gamma aminobutyric acid; reverse apoptosis and upregulate the expression of angiogenic factors in a model of hemic hypoxia in rats. Naunyn-Schmiedeberg's Arch. Pharmacol. 393(3), 381–394 (2020).
  • Szereda-Przestaszewska M, Kaczyńska K. Peripheral 5-HT1A receptors are not essential for increased ventilation evoked by systemic 8-OH-DPAT challenge in anaesthetized rats. Exp. Physiol. 5, 953–961 (2007).
  • Hilaire G, Voituron N, Menuet C, Ichiyama RM, Subramanian HH, Dutschmann M. The role of serotonin in respiratory function and dysfunction. Respir. Physiol. Neurobiol. 174, 76–88 (2010).
  • Kaufman DL, Houser CR, Tobin AJ. Two forms of the gamma-aminobutyric acid synthetic enzyme glutamate decarboxylase have distinct intraneuronal distributions and cofactor interactions. J. Neurochem. 56, 720–723 (1991).
  • Schreihofer AM, Guyenet PG. The baroreflex and beyond: control of sympathetic vasomotor tone by GABA ergic neurons in the ventrolateral medulla. Clin. Exp. Pharmacol. Physiol. 29, 514–521 (2002).
  • Matsuoko H, Harada K, Endo Y et al. Molecular mechanisms supporting a paracrine role of GABA in rat adrenal medullary cells. J. Physiol. 20, 4825–4842 (2008).
  • Grosenbaugh DK, Ross BM, Wagley P, Zanelli SA. The role of Kainate receptors in the pathophysiology of hypoxia-induced seizures in the neonatal mouse. Sci. Rep. 8(1), 7035 (2018).
  • Elwyn DH. The role of the liver in regulation of amino acid and protein metabolism. In: Mammalian protein metabolism (vol. 4). Munro HN ( Ed.). Academic Press, NY, USA, 523–557 (1970).
  • Flock EV, Mann FC, Bollman JL. Free amino acids in plasma and muscle following total removal of the liver. J. Biol. Chem. 192, 293–300 (1951).
  • Al-Rasheed NM, Fadda LM, Al-Rasheed NM, Attia H, Ali HM, El-Agami H. Role of natural antioxidants in the modulation of plasma amino acid pattern in rats exposed to hemic hypoxia. Braz Arch. Biol. Technol. 58(5), 741–749 (2015).
  • Muratsubaki H, Yamaki A. Profile of plasma amino acid levels in rats exposed to acute hypoxic hypoxia. Ind. J. Clin. Biochem. 26(4), 416–419 (2011).
  • Fadda LM, Attia HA, Al-Rasheed NM, Ali HM, Al-Rasheed NM. Roles of some antioxidants in modulation of cardiac myopathy induced by sodium nitrite via down-regulation of mRNA expression of NF-κB, Bax, and flt-1 and suppressing DNA damage. Saudi Pharm. J. 26(2), 217–223 (2018).
  • Alshanwani AR, Shaheen S, Faddah LM et al. Manipulation of querectin and Melatonin in the Down-Regulation of HIF-1α, HSP-70 and VEGF Pathways in Rat's Kidneys Induced by Hypoxic Stress. Dose-Response 18(3), 1559325820949797 (2020).
  • Tripathi A, Kumar B, Sagi SS. Hypoxia-mediated alterations in pulmonary surfactant protein expressions: beneficial effects of Querectin prophylaxis. Respir. Physiol. Neurobiol. 291, 103695 (2021).
  • Eskiocak S, Tutunculer F, Basaran UN, Taskiran A, Cakir E. The effect of melatonin on protein oxidation and nitric oxide in the brain tissue of hypoxic neonatal rats. Brain Dev. 29, 19–24 (2007).
  • El-Sokkary GH, Khidr BM, Younes HA. Role of melatonin in reducing hypoxiainduced oxidative stress and morphological changes in the liver of male mice. Eur. J. Pharmacol. 540, 107–114 (2006).
  • Alonso M, Collado PS, González-Gallego J. Melatonin inhibits the expression of the inducible isoform of nitric oxide synthase and nuclear factor kappa B activation in rat skeletal muscle. J. Pineal Res. 41, 8–14 (2006).
  • Ali S, Mann DA. Signal transduction via the NF-κB pathway: a targeted treatment modality for infection, inflammation and repair. Cell Biochem. Funct. 22, 67–79 (2004).
  • Sliwinski T, Rozej W, Bajda AM, Morawiec Z, Reiter R, Blasiak J. Protective action of melatonin against oxidative DNA damage-chemical inactivation versus base-excision repair. Mut. Res. 634, 220–227 (2007).
  • Rodriguez-Reynoso S, Leal C, Portilla E, Olivares N, Muniz J. Effect of exogenous melatonin on hepatic energetic status during ischemia/reperfusion: possible role of tumor necrosis factor-[alpha] and nitric oxide. J. Surg. Res. 100(2), 141–149 (2001).
  • Chirumbolo S. The role of Querectin, flavonols and flavones in modulating inflammatory cell function, Inflamm. Allergy Drug Targets 9, 263–285 (2010).
  • Huang R, Zhong T, Wu H. Querectin protects against lipopolysaccharide-induced acute lung injury in rats through suppression of inflammation and oxidative stress. Arch. Med. Sci. 11, 427–432 (2015).
  • Singh S, Jamwal S, Kumar P. Neuroprotective potential of Querectin in combination with piperine against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity. Neural Regeneration Research 12(7), 1137 (2017).
  • Cigerci IH, Fidan AF, Konuk M et al. The protective potential of Yucca schidigera (Sarsaponin 30) against nitrite-induced oxidative stress in rats. J. Nat. Med. 3(3), 311–317 (2006).
  • Gautam A, Vijayaraghavan R, Pant SC, Kumar O, Singh S, Satish Kumar HT. Protective effect of Querectin against sulphur mustard-induced oxidative stress in mice. Defence Sci. J. 57(5), 707–720 (2007).
  • Rao GN, Ney E, Herbert RA. Effect of melatonin and linolenic acid on mammary cancer in transgenic mice with c-neu breast cancer oncogene. Breast Cancer Res. Treat. 64, 287–296 (2000).
  • Kjeldsberg CR. Principles of hematologic examination. In: Wintrobe's clinical hematology (9th edn.). Lee GR, Bittell TC, Foerster J, Athens JW, Lukens JN ( Eds). Lea & Febiger, London, Philadelphia, 7–37 (1993).
  • Singh NP, McCoy MT, Tice RR, Schneider EL. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp. Cell Res. 175, 184–191 (1988).
  • Kedenburg CP. A lithium buffer system for accelerated single-column amino acid analysis in physiological fluids. Anal. Biochem. 40, 35–42 (1971).
  • Fischer JE, Rosen HM, Ebeid AM, James JH, Keane JM, Soeters PB. The effect of normalization of plasma amino acids on hepatic encephalopathy in man. Surgery 80, 77–91 (1976).
  • Li D, Ren J, Du Q, Liu P, Li Y. The anti-hypoxic effects of oat (Avena sativa L.) oligopeptides in mice. Am. J. Transl. Res. 13(3), 1657–1666 (2021).
  • The ATSDR 2017 Substance Priority List. Toxicological Profile for Nitrate and Nitrite. U.S. Department of Health and Human Services, Public Health Service, Atlanta, GA.
  • David SR, Sawal NS, Hamzah MNSB, Rajabalaya R. The blood blues: a review on methemoglobinemia. J. Pharmacol. Pharmacother. 9(1), 1–5 (2018).
  • Kosaka H, Imaizumi K, Imai K, Tyuma I. Stoichiometry of the reaction of oxyhemoglobin with nitrite. Biochim. Biophys. Acta 581, 184–188 (1979).
  • Spagnuolo C, Rinelli P, Coletta M, Chiancone E, Ascoli F. Oxidation reaction of human oxyhemoglobin with nitrite: a reexamination. Biochim. Biophys. Acta 911, 59–65 (1987).
  • Ozmerdivenli R, Karacabey K, Gundogdu C, Sevindi T. Protective role of melatonin on blood parameters following irradiation in rat. Afr. J. Biotechnol. 10, 18564–18568 (2011).
  • Carrasco-Pozo C, Castillo RL, Beltrán C, Miranda A, Fuentes J, Gottel M. Molecular mechanisms of gastrointestinal protection by Querectin against indomethacin-induced damage: role of NF-κB and Nrf2. J. Nutr. Biochem. 27, 289–298 (2016).
  • Alhusaini A, Alhumaidan S, Almogren R, Alsaif S, Alsultan E, Hussein I. Nano-Curcumin Protects Against Sodium Nitrite-Induced Lung Hypoxia Through Modulation of Mitogen-Activated Protein Kinases/c-Jun NH2-Terminal Kinase Signaling Pathway. Dose-Response 19(3), (2021).
  • Turner MD, Nedjai B, Hurst T, Pennington DJ. Cytokines and chemokines: at the crossroads of cell signalling and inflammatory disease. Biochim. Et. Biophys Acta 1843, 2563–2582 (2014).
  • Ansari FA, Mahmood R. Sodium nitrite enhances generation of reactive oxygen species that decrease antioxidant power and inhibit plasma membrane redox system of human erythrocytes. Cell Biol. Int. 40(8), 887–894 (2016).
  • Bai W, Zhou J, Zhou N et al. Hypoxia increased RAGE expression regulates chemotaxis and proinflammatory cytokines release through nuclear translocation of NF-κB and HIF1α in THP-1 cells. Biochem. Biophys. Res. Commun. 495(3), 2282–2288 (2018).
  • Wang C, Yan M, Jiang H et al. Mechanism of aquaporin 4 (AQP 4) up-regulation in rat cerebral edema under hypobaric hypoxia and the preventative effect of puerarin. Life Sci. 193, 270–281 (2018).
  • Negi G, Kumar A, Sharma SS. Melatonin modulates neuroinflammation and oxidative stress in experimental diabetic neuropathy: Effects on NF-κB and Nrf2 cascades. J. Pineal. Res. 50, 124–131 (2011).
  • Al-Rasheed NM, Fadda L, Attia HA, Sharaf IA, Mohamed AM, Al-Rasheed NM. “Pulmonary prophylactic impact of melatonin and/or Querectin: a novel therapy for inflammatory hypoxic stress in rats”. Acta Pharmaceutica 67(1), 125–135 (2017).
  • Arumugam S, Thandavarayan RA, Arozal W, Sari FR, Giridharan VV, Soetikno V. Querectin offers cardioprotection against progression of experimental autoimmune myocarditis by suppression of oxidative and endoplasmic reticulum stress via endothelin-1/MAPK signaling. Free Rad. Res. 46, 154–163 (2012).
  • Cools R. Role of dopamine in the motivational and cognitive control of behavior. Neuroscientist 14(4), 381–395 (2008).
  • Biradar SM, Joshi H. The influence of ethanolic extract of seeds of Peganum harmala Linn. on behavioral and biochemical studies in cognitive deficit mice. Int. J. Pharm. Phytopharmacol. Res. 4(1), 25–33 (2014).
  • Biradar SM, Joshi H, Tarak KC. Cerebroprotective effect of isolated harmine alkaloids extracts of seeds of Peganum harmala L. on sodium nitrite-induced hypoxia and ethanol-induced neurodegeneration in young mice. Pak. J. Biol. Sci. 16(23), 1687–1697 (2013).
  • Hedner T, Lundborg P. Regional changes in monoamine synthesis in the developing rat brain during hypoxia. Acta Physiol. Scand. 106(2), 139–143 (1979).
  • Nelson RM, Lambert DG, Green AR, Hainsworth AH. Pharmacology of ischemia-induced glutamate efflux from rat cerebral cortex in vitro. Brain Res. 964, 1–8 (2003).
  • Schwartz-Bloom RD, Sah R. Gamma-aminobutyric acid (A) neurotransmission and cerebral ischemia. J. Neurochem. 77, 353–371 (2001).
  • Anju TR, Jayanarayanan S, Paulose CS. Decreased GABAB receptor function in the cerebellum and brain stem of hypoxic neonatal rats: role of glucose, oxygen and epinephrine resuscitation. J. Biomed. Sci. 18(1), 31 (2011).
  • Hassell KJ, Reiter RJ, Robertson NJ. Melatonin and its role in neurodevelopment during the perinatal period: a review. Fetal Matern Med. Rev. 24, 76–107 (2013).
  • Husson I, Mesplès B, Bac P, Vamecq J, Evrard P, Gressens P. Melatoninergic Neuroprotection of the Murine Periventricular White Matter against Neonatal Excitotoxic Challenge. Ann. Neurol. 51, 82–92 (2002).
  • Spasojevic N, Stefanovic B, Jovanovic P, Dronjak S. Anxiety and hyperlocomotion induced by chronic unpredictable mild stress can be moderated with melatonin treatment. Folia Biol. (Praha) 62(6), 250–257 (2016).
  • Hoehn R, Monse M, Pohl E et al. Melatonin acts as an antidepressant by inhibition of the acid sphingomyelinase/ceramide system. Neurosignals 24, 48–58 (2016).
  • Chakraborty J, Singh R, Dutta D, Naskar A, Rajamma U, Mohanakumar KP. Querectin improves behavioral deficiencies, restores astrocytes and microglia, and reduces serotonin metabolism in 3-nitropropionic acid-induced rat model of Huntington's disease. CNS Neurosci. Ther. 20, 10–19 (2014).
  • Karuppagounder SS, Madathil SK, Pandey M, Haobam R, Rajamma U, Mohanakumar KP. Querectin up-regulates mitochondrial complex-I activity to protect against programmed cell death in rotenone model of Parkinson's disease in rats. Neuroscience 236, 136–148 (2013).
  • Pany SU, Pal AB, Sahu PK. Neuroprotective effect of Querectin in neurotoxicity induced rats: role of neuroinflammation in neurodegeneration. Asian J. Pharm. Clin. Res. 7, 152–156 (2014).
  • Haruhiro M, Akiko Y. Profile of Plasma Amino Acid Levels in Rats Exposed to Acute Hypoxic Hypoxia. Indian J. Clin. Biochem. 26(4), 416–419 (2011).
  • Kobayashi S, Millhorn DE. Hypoxia regulates glutamate metabolism and membrane transport in rat PC12 cells. J. Neurochem. 76(6), 1935–1948 (2001).
  • Zunić G, Rolović Z, Basara N, Simović M, Vasiljevski M. Decreased plasma proteins, increased total plasma-free amino acids, and disturbed amino acid metabolism in the hereditary severe anemia of the Belgrade laboratory (b/b) rat. Proc. Soc. Exp. Biol. Med. 203(3), 366–371 (1993).
  • Eung-Kwon P, Audrey JY, Bhoomika A et al. Perinatal intermittent hypoxia alters γ-aminobutyric acid: a receptor levels in rat cerebellum. Int. J. Dev. Neurosci. 29(8), 819–826 (2011).
  • Tice RR, Strauss GHS. The single cell gel electrophoresis comet assay – a potential tool for detecting radiation-induced DNA damage in humans. Stem Cells 13(1), 207–214 (1995).
  • ColLins AR, Dusinska M, Gedik CM, Stetina R. Oxidative damage to DNA:do we have a reliable biomarker? Environ. Health Perspect 104, 465–469 (1996).
  • Yang T, Zhang XM, Tarnawski L et al. Dietary nitrate attenuates renal ischemia-reperfusion injuries by modulation of immune responses and reduction of oxidative stress. Redox. Biol. 13, 320–330 (2017).
  • Sawa T, Ohshima H. Nitrative DNA damage in inflammation and its possible role in carcinogenesis. Nitric Oxide 14, 91–100 (2006).
  • Sen NP, Seaman SW, Baddoo PA, Burgess C, Weber D. Formation of N-nitroso-N-methylurea in various samples of smoked/dried fish, fish sauce, seafoods, and ethnic fermented/pickled vegetables following incubation with nitrite under acidic conditions. J. Agricult. Food Chem. 49(4), 2096–2103 (2001).
  • Ohshima H, Yoshie Y, Auriol S, Gilibert I. Antioxidant and pro-oxidant actions of flavonoids: effects on DNA damage induced by nitric oxide, peroxynitrite and nitroxyl anion. Free Radic. Biol. Med. 25(9), 1057–1065 (1998).
  • Halliwell B, Aruoma OI. DNA damage by oxygen-derived species Its mechanism and measurement in mammalian systems. FEBS Lett. 281(1–2), 9–19 (1991).
  • Rubenchik BL, Osinkovskaya ND, Mikhailenko VM, Furman MA, Boim TM. The carcinogenic danger of nitrie pollution of the environment. J. Environmen. Pathol. Toxicol. Oncol. 10(6), 290–296 (1990).
  • Poon WL, Hung CY, Nakano K, Randall D. An in vivo study of common carp (Cyprinus carpio L.) liver during prolonged hypoxia. Comp. Biochem. 2(4), 295–302 (2007).
  • Rathi V, Tiwari I, Kulshreshtha R, Sagi SSK. Hypobaric hypoxia induced renal injury in rats: prophylactic amelioration by Querectin supplementation. PLOS ONE 18(2), e0279304 (2023).
  • Szárszoi O, Asemu G, Vanecek J, Ost'ádal B, Kolár F. Effects of melatonin on ischemia and reperfusion injury of the rat heart. Cardiovasc. Drugs Ther. 15(3), 251–257 (2001).