392
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Human umbilical cord mesenchymal stem cells combined with porcine small intestinal submucosa promote the healing of full-thickness skin injury in SD rats

ORCID Icon, , , , , , , & show all
Article: FSO955 | Received 02 Jul 2023, Accepted 13 Dec 2023, Published online: 20 May 2024

References

  • Svensjö T, Pomahac B, Yao F, Slama J, Eriksson E. Accelerated healing of full-thickness skin wounds in a wet environment. Plastic Reconstruct. Surg. 106(3), 602–612 (2000).
  • Fiakos G, Kuang Z, Lo E. Improved skin regeneration with acellular fish skin grafts. Engineered Regen. 1, 95–101 (2020).
  • Markiewicz-Gospodarek A, Kozioł M, Tobiasz M, Baj J, Radzikowska-Büchner E, Przekora A. Burn wound healing: clinical complications, medical care, treatment, and dressing types: the current state of knowledge for clinical practice. Int. J. Environ. Res. Public Health 19(3), 1338 (2022).
  • Wang L, Wang W, Liao J et al. Novel bilayer wound dressing composed of SIS membrane with SIS cryogel enhanced the wound healing process. Mater. Sci. Eng. 85, 162–169 (2018).
  • Kolimi P, Narala S, Nyavanandi D, Youssef AAA, Dudhipala N. Innovative treatment strategies to accelerate wound healing: trajectory and recent advancements. Cells 11(15), 2439 (2022).
  • Tottoli EM, Dorati R, Genta I, Chiesa E, Pisani S, Conti B. Skin wound healing process and new emerging technologies for skin wound care and regeneration. Pharmaceutics 12(8), 735 (2020).
  • Han Y, Li X, Zhang Y, Han Y, Chang F, Ding J. Mesenchymal stem cells for regenerative medicine. Cells 8(8), 886 (2019).
  • Raghav PK, Mann Z, Ahlawat S, Mohanty S. Mesenchymal stem cell-based nanoparticles and scaffolds in regenerative medicine. Eur. J. Pharmacol. 918, 174657 (2022).
  • Rawat S, Jain KG, Gupta D et al. Graphene nanofiber composites for enhanced neuronal differentiation of human mesenchymal stem cells. Nanomedicine 16(22), 1963–1982 (2021).
  • Zhang K, Feng Q, Fang Z, Gu L, Bian L. Structurally dynamic hydrogels for biomedical applications: pursuing a fine balance between macroscopic stability and microscopic dynamics. Chem. Rev. 121(18), 11149–11193 (2021).
  • Hassanpour M, Rezaie J, Nouri M, Panahi Y. The role of extracellular vesicles in COVID-19 virus infection. Infect. Genet. Evol. 85, 104422 (2020).
  • Li Y, Wang P, Hu X-D et al. Implantation of bone marrow mesenchymal stem cells into small intestinal submucosa improves bile duct injury in rabbits. Tissue Eng. Regenerative Med. 18(5), 887–893 (2021).
  • Lee DE, Ayoub N, Agrawal DK. Mesenchymal stem cells and cutaneous wound healing: novel methods to increase cell delivery and therapeutic efficacy. Stem Cell Res. Ther. 7(1), 1–8 (2016).
  • Isakson M, De Blacam C, Whelan D, McArdle A, Clover A. Mesenchymal stem cells and cutaneous wound healing: current evidence and future potential. Stem Cells Int. 2015, 6–7 (2015).
  • Silva SS, Motta A, Rodrigues MT et al. Novel genipin-cross-linked chitosan/silk fibroin sponges for cartilage engineering strategies. Biomacromolecules 9(10), 2764–2774 (2008).
  • Sharma AK, Hota PV, Matoka DJ et al. Urinary bladder smooth muscle regeneration utilizing bone marrow-derived mesenchymal stem cell-seeded elastomeric poly (1, 8-octanediol-co-citrate) based thin films. Biomaterials 31(24), 6207–6217 (2010).
  • Baudis S, Nehl F, Ligon SC et al. Elastomeric degradable biomaterials by photopolymerization-based CAD-CAM for vascular tissue engineering. Biomed. Mat. 6(5), 055003 (2011).
  • Ahn HH, Kim KS, Lee JH et al. Porcine small intestinal submucosa sheets as a scaffold for human bone marrow stem cells. Int. J. Biol. Macromol. 41(5), 590–596 (2007).
  • Blanco-Elices C, Chato-Astrain J, González-González A et al. Histological profiling of the human umbilical cord: a potential alternative cell source in tissue engineering. J. Personal. Med. 12(4), 648 (2022).
  • Wang T, Tang W, Sun S et al. Mesenchymal stem cells improve outcomes of cardiopulmonary resuscitation in myocardial infarcted rats. J. Mol. Cell. Cardiol. 46(3), 378–384 (2009).
  • Mendez JJ, Ghaedi M, Sivarapatna A et al. Mesenchymal stromal cells form vascular tubes when placed in fibrin sealant and accelerate wound healing in vivo. Biomaterials 40, 61–71 (2015).
  • An Y, Wei W, Jing H, Ming L, Liu S, Jin Y. Bone marrow mesenchymal stem cell aggregate: an optimal cell therapy for full-layer cutaneous wound vascularization and regeneration. Sci. Rep. 5(1), 17036 (2015).
  • Friedman R, Betancur M, Boissel L, Tuncer H, Cetrulo C, Klingemann H. Umbilical cord mesenchymal stem cells: adjuvants for human cell transplantation. Biol. Blood Marrow Transplant. 13(12), 1477–1486 (2007).
  • Irfan F, Jameel F, Khan I, Aslam R, Faizi S, Salim A. Role of quercetin and rutin in enhancing the therapeutic potential of mesenchymal stem cells for cold induced burn wound. Reg. Ther. 21, 225–238 (2022).
  • Raval Z, Losordo DW. Cell therapy of peripheral arterial disease: from experimental findings to clinical trials. Circ. Res. 112(9), 1288–1302 (2013).
  • Boyce ST, Lalley AL. Tissue engineering of skin and regenerative medicine for wound care. Burns Tauma 6, 2–3 (2018).
  • Kinnaird T, Stabile E, Burnett M et al. Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation 109(12), 1543–1549 (2004).
  • Sasaki M, Abe R, Fujita Y, Ando S, Inokuma D, Shimizu H. Mesenchymal stem cells are recruited into wounded skin and contribute to wound repair by transdifferentiation into multiple skin cell type. J. Immunol. 180(4), 2581–2587 (2008).
  • Habibi M, Chehelcheraghi F. Effect of bone marrow mesenchymal stem cell sheets on skin capillary parameters in a diabetic wound model: a novel preliminary study. Iranian Biomed. J. 25(5), 334 (2021).
  • Yeum CE, Park EY, Lee SB, Chun HJ, Chae GT. Quantification of MSCs involved in wound healing: use of SIS to transfer MSCs to wound site and quantification of MSCs involved in skin wound healing. J. Tissue Eng. Reg. Med. 7(4), 279–291 (2013).
  • Gnecchi M, He H, Liang OD et al. Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells. Nat. Med. 11(4), 367–368 (2005).
  • Judson RN, Rossi FM. Towards stem cell therapies for skeletal muscle repair. NPJ Reg. Med. 5(1), 10 (2020).
  • Xu Q, Torres JE, Hakim M et al. Collagen-and hyaluronic acid-based hydrogels and their biomedical applications. Mat. Sci. Eng. 146, 100641 (2021).
  • Yang P, Ju Y, Hu Y, Xie X, Fang B, Lei L. Emerging 3D bioprinting applications in plastic surgery. Biomater. Res. 27(1), 1–27 (2023).
  • Xia B, Chen G. Research progress of natural tissue-derived hydrogels for tissue repair and reconstruction. Int. J.Biol. Macromol. 214, 480–491 (2022).
  • Gelain F, Luo Z, Zhang S. Self-assembling peptide EAK16 and RADA16 nanofiber scaffold hydrogel. Chem. Rev. 120(24), 13434–13460 (2020).
  • You DG, Lim GT, Kwon S et al. Metabolically engineered stem cell–derived exosomes to regulate macrophage heterogeneity in rheumatoid arthritis. Sci Adv. 7(23), eabe0083 (2021).
  • Hinderer S, Schenke-Layland K. Cardiac fibrosis–A short review of causes and therapeutic strategies. Adv. Drug Deliv. Rev. 146, 77–82 (2019).
  • Keane TJ, Londono R, Turner NJ, Badylak SF. Consequences of ineffective decellularization of biologic scaffolds on the host response. Biomaterials 33(6), 1771–1781 (2012).
  • Li C, Guo C, Fitzpatrick V et al. Design of biodegradable, implantable devices towards clinical translation. Nat. Rev. Mater. 5(1), 61–81 (2020).
  • Ma S, Hu H, Wu J et al. Functional extracellular matrix hydrogel modified with MSC-derived small extracellular vesicles for chronic wound healing. Cell Prolif. 55(4), e13196 (2022).
  • Spang MT, Christman KL. Extracellular matrix hydrogel therapies: in vivo applications and development. Acta Biomaterialia 68, 1–14 (2018).
  • Yeung DA, Kelly NH. The role of collagen-based biomaterials in chronic wound healing and sports medicine applications. Bioengineering 8(1), 8 (2021).
  • Zhao P, Li X, Fang Q et al. Surface modification of small intestine submucosa in tissue engineering. Regen. Biomater. 7(4), 339–348 (2020).
  • Brown M, Li J, Moraes C, Tabrizian M, Li-Jessen NY. Decellularized extracellular matrix: new promising and challenging biomaterials for regenerative medicine. Biomaterials 121786 (2022).
  • Kim W, Kim GH. An intestinal model with a finger-like villus structure fabricated using a bioprinting process and collagen/SIS-based cell-laden bioink. Theranostics 10(6), 2495 (2020).
  • Shah SA, Sohail M, Khan SA, Kousar M. Improved drug delivery and accelerated diabetic wound healing by chondroitin sulfate grafted alginate-based thermoreversible hydrogels. Mater. Sci. Eng. C 126, 112169 (2021).
  • Seddiqi H, Oliaei E, Honarkar H et al. Cellulose and its derivatives: towards biomedical applications. Cellulose 28(4), 1893–1931 (2021).
  • Xing H, Lee H, Luo L, Kyriakides TR. Extracellular matrix-derived biomaterials in engineering cell function. Biotechnol. Adv. 42, 107421 (2020).
  • Gold SM, Köhler-Forsberg O, Moss-Morris R et al. Comorbid depression in medical diseases. Nat. Rev. Dis. Primers 6(1), 69 (2020).
  • Wilkinson HN, Hardman MJ. Wound healing: cellular mechanisms and pathological outcomes. Open Biology 10(9), 200223 (2020).
  • Huang Y-Z, Gou M, Da L-C, Zhang W-Q, Xie H-Q. Mesenchymal stem cells for chronic wound healing: current status of preclinical and clinical studies. Tissue Eng. Part B 26(6), 555–570 (2020).
  • Montero-Vilchez T, Sierra-Sánchez Á, Sanchez-Diaz M et al. Mesenchymal stromal cell-conditioned medium for skin diseases: a systematic review. Front. Cell Dev. Biol. 9, 654210 (2021).
  • Md Fadilah NI, Mohd Abdul Kader Jailani MS, Badrul Hisham MAI et al. Cell secretomes for wound healing and tissue regeneration: next generation acellular based tissue engineered products. J. T. Eng. 13, 20417314221114273 (2022).
  • Silveira BM, Ribeiro TO, Freitas RS et al. Secretome from human adipose-derived mesenchymal stem cells promotes blood vessel formation and pericyte coverage in experimental skin repair. PLOS ONE 17(12), e0277863 (2022).