496
Views
2
CrossRef citations to date
0
Altmetric
Research Article

In silico and pharmacokinetic assessment of echinocystic acid effectiveness in Alzheimer's disease like pathology

ORCID Icon & ORCID Icon
Article: FSO904 | Received 03 Aug 2023, Accepted 12 Sep 2023, Published online: 23 May 2024

References

  • Dugger BN, Dickson DW. Pathology of neurodegenerative diseases. Cold Spring Harb. Perspect. Biol. 9(7), a028035 (2017).
  • Weller J, Budson A. Current understanding of Alzheimer's disease diagnosis and treatment. F1000Research 7, 1161 (2018).
  • Blennow K, Zetterberg H. Biomarkers for Alzheimer's disease: current status and prospects for the future. J. Intern. Med. 284(6), 643–663 (2018).
  • Ouellette J, Lacoste B. From neurodevelopmental to neurodegenerative disorders: the vascular continuum. Front. Aging Neurosci. 13, 749026 (2021).
  • Murphy MP, LeVine H. Alzheimer's disease and the amyloid-β peptide. J. Alzheimer's Dis. 19(1), 311–323 (2010).
  • Cheignon C, Tomas M, Bonnefont-Rousselot D, Faller P, Hureau C, Collin F. Oxidative stress and the amyloid beta peptide in Alzheimer's disease. Redox Biol. 14, 450–464 (2018).
  • Suresh S, Begum RF, Singh SA, Chitra V. Anthocyanin as a therapeutic in Alzheimer's disease: a systematic review of preclinical evidences. Ageing Res. Rev. 76, 101595 (2022).
  • Sadigh-Eteghad S, Sabermarouf B, Majdi A, Talebi M, Farhoudi M, Mahmoudi J. Amyloid-Beta: a crucial factor in Alzheimer's disease. Med. Princ. Pract. 24(1), 1–10 (2015).
  • Singh AS, Vellapandian C. Structure of the bloodߝbrain barrier and its role in the transporters for the movement of substrates across the barriers. Curr. Drug Metab. 24(4), 250–269 (2023).
  • Singh AS, Vellapandian C. The role of plant-based products in the prevention of neurological complications. Drug Metab. Bioanal. Lett. 15(2), 81–92 (2022).
  • Howland RH. Drug therapies for cognitive impairment and dementia. J. Psychosoc. Nurs. Ment. Health Serv. 48(4), 11–14 (2010).
  • Bomasang-Layno E, Bronsther R. Diagnosis and treatment of Alzheimer's disease: Delaware. J. Public Heal. 7(4), 74–85 (2021).
  • Singh AS, Vellapandian C. Phytochemical studies, antioxidant potential, and identification of bioactive compounds using GC-MS of the ethanolic extract of Luffa cylindrica (L.) fruit. Appl. Biochem. Biotechnol. 194(9), 4018–4032 (2022).
  • Akinyinka Akinwumi K, Olusoji Eleyowo O, Omowunmi Oladipo O. A review on the ethnobotanical uses, phytochemistry and pharmacology effect of Luffa cylindrica. In: Pharmacognosy – Medicinal Plants [Working Title]. IntechOpen (2021). https://www.intechopen.com/online-first/a-review-on-the-ethnobotanical-uses-phytochemistry-and-pharmacology-effect-of-luffa-cylindrica
  • Singh AS, Vellapandian C. Phytochemical studies, antioxidant potential, and identification of bioactive compounds using GC-MS of the ethanolic extract of Luffa cylindrica (L.) fruit. Appl. Biochem. Biotechnol. 194(9), 4018–4032 (2022).
  • Bitencourt-Ferreira G, Pintro VO, de Azevedo WF. Docking with AutoDock4. Methods Mol. Biol. 2053, 125–148 (2019).
  • Singh SA, Vellapandian C. The promising guide to LC–MS analysis and cholinesterase activity of Luffa cylindrica (L.) fruit using in vitro and in-silico analyses. Futur. J. Pharm. Sci. 9(1), 33 (2023).
  • Kumar BS, Anuragh S, Kammala AK, Ilango K. Computer aided drug design approach to screen phytoconstituents of Adhatoda vasica as potential inhibitors of SARS-CoV-2 Main Protease enzyme. Life 12(2), 315–339 (2022).
  • Begum RF, Mohan S. Insights into vitamin E with combined oral contraceptive on INSR gene in PCOS by Integrating in silico and in vivo approaches. Appl. Biochem. Biotechnol. doi: 10.1007/s12010-023-04710-8 (2023) ( Online ahead of print).
  • Pires DEV, Blundell TL, Ascher DB. pkCSM: predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J. Med. Chem. 58(9), 4066–4072 (2015).
  • Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 7(1), 42717 (2017).
  • Moka MK, Singh AS, Sumithra M. Computational investigation of four isoquinoline alkaloids against polycystic ovarian syndrome. J. Biomol. Struct. Dyn. 1–13 (2023). https://www.tandfonline.com/doi/full/10.1080/07391102.2023.2222828
  • Hardjono S, Siswandono S, Andayani R. Evaluation of N-benzoylthiourea derivatives as popssible analgesic agents by predicting their hysicochemical and pharmacokinetic properties, toxicity, and analgesic activity. Indones J. Biotechnol. 22(2), 76 (2018).
  • Ayati A, Falahati M, Irannejad H, Emami S. Synthesis, in vitro antifungal evaluation and in silico study of 3-azolyl-4-chromanone phenylhydrazones. DARU J. Pharm. Sci. 20(1), 46 (2012).
  • Filimonov DA, Lagunin AA, Gloriozova TA et al. Prediction of the biological activity spectra of organic compounds using the Pass Online web resource. Chem. Heterocycl. Compd. 50(3), 444–457 (2014).
  • Filimonov DA, Rudik AV, Dmitriev AV, Poroikov VV. Computer-aided estimation of biological activity profiles of drug-like compounds taking into account their metabolism in human body. Int. J. Mol. Sci. 21(20), 7492 (2020).
  • Lagunin A, Stepanchikova A, Filimonov D, Poroikov V. PASS: prediction of activity spectra for biologically active substances. Bioinformatics 16(8), 747–748 (2000).
  • Şenkardeş S, Han Mİ, Kulabaş N et al. Synthesis, molecular docking and evaluation of novel sulfonyl hydrazones as anticancer agents and COX-2 inhibitors. Mol. Divers 24(3), 673–689 (2020).
  • Ajala A, Uzairu A, Shallangwa GA, Abechi SE. QSAR, simulation techniques, and ADMET/pharmacokinetics assessment of a set of compounds that target MAO-B as anti-Alzheimer agent. Futur. J. Pharm. Sci. 9(1), 4 (2023).
  • Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 7(1), 42717 (2017).
  • Husain A, Ahmad A, Khan SA, Asif M, Bhutani R, Al-Abbasi FA. Synthesis, molecular properties, toxicity and biological evaluation of some new substituted imidazolidine derivatives in search of potent anti-inflammatory agents. Saudi Pharm. J. 24(1), 104–114 (2016).
  • Ertl P, Rohde B, Selzer P. Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. J. Med. Chem. 43(20), 3714–3717 (2000).
  • Khan T, Dixit S, Ahmad R et al. Molecular docking, PASS analysis, bioactivity score prediction, synthesis, characterization and biological activity evaluation of a functionalized 2-butanone thiosemicarbazone ligand and its complexes. J. Chem. Biol. 10(3), 91–104 (2017).
  • ul Hassan SS, Abbas SQ, Ali F et al. A comprehensive in silico exploration of pharmacological properties, bioactivities, molecular docking, and anticancer potential of Vieloplain F from Xylopia vielana targeting B-Raf kinase. Molecules 27(3), 917 (2022).
  • Madden JC, Enoch SJ, Paini A, Cronin MTD. A review of in silico tools as alternatives to animal testing: principles, resources and applications. Altern. to Lab. Anim. 48(4), 146–172 (2020).
  • Makhouri FR, Ghasemi JB. In silico studies in drug research against neurodegenerative diseases. Curr. Neuropharmacol. 16(6), 664–725 (2018).
  • Calabrese V, Cornelius C, Dinkova-Kostova AT, Calabrese EJ, Mattson MP. Cellular stress responses, the hormesis paradigm, and vitagenes: novel targets for therapeutic intervention in neurodegenerative disorders. Antioxid. Redox Signal. 13(11), 1763–1811 (2010).
  • Tyagi A, Kamal MA, Poddar NK. Integrated pathways of COX-2 and mTOR: roles in cell sensing and Alzheimer's disease. Front. Neurosci. 14, 693 (2020).
  • Heppner FL, Ransohoff RM, Becher B. Immune attack: the role of inflammation in Alzheimer disease. Nat. Rev. Neurosci. 16(6), 358–372 (2015).
  • Akiyama H. Inflammation and Alzheimer's disease. Neurobiol. Aging 21(3), 383–421 (2000).
  • Walker KA, Ficek BN, Westbrook R. Understanding the role of systemic inflammation in Alzheimer's disease. ACS Chem. Neurosci. 10(8), 3340–3342 (2019).
  • Calabrese V, Mancuso C, Calvani M, Rizzarelli E, Butterfield DA, Giuffrida Stella AM. Nitric oxide in the central nervous system: neuroprotection versus neurotoxicity. Nat. Rev. Neurosci. 8(10), 766–775 (2007).
  • Chew H, Solomon VA, Fonteh AN. Involvement of lipids in Alzheimer's disease pathology and potential therapies. Front. Physiol. 11, 598 (2020).
  • Zhu T-B, Zhang Z, Luo P et al. Lipid metabolism in Alzheimer's disease. Brain Res. Bull. 144, 68–74 (2019).
  • Hone E, Lim F, Martins IJ. Fat and lipid metabolism and the involvement of Apolipoprotein E in Alzheimer'sdisease. In: Neurodegeneration and Alzheimer's Disease. John Wiley & Sons, Ltd, Chichester, UK, 189–231 (2019).
  • Eckert GP, Müller WE, Wood GW. Cholesterol-lowering drugs and Alzheimer's disease. Future Lipidol. 2(4), 423–432 (2007).
  • Chen B, Zhao Y, Li W, Hang J, Yin M, Yu H. Echinocystic acid provides a neuroprotective effect via the PI3K/AKT pathway in intracerebral haemorrhage mice. Ann. Transl. Med. 8(1), 6 (2020).
  • Montine TJ, Neely MD, Quinn JF et al. Lipid peroxidation in aging brain and Alzheimer's disease 1,2 1Guest Editors: Mark A. Smith and George Perry 2This article is part of a series of reviews on “Causes and Consequences of Oxidative Stress in Alzheimer's Disease”. The full list of papers may b. Free Radic. Biol. Med. 33(5), 620–626 (2002).
  • Yu H, Li W, Cao X et al. Echinocystic acid, a natural plant extract, alleviates cerebral ischemia/reperfusion injury via inhibiting the JNK signaling pathway. Eur. J. Pharmacol. 861, 172610 (2019).
  • Kuratsune H, Yamaguti K, Takahashi M, Misaki H, Tagawa S, Kitani T. Acylcarnitine deficiency in chronic fatigue syndrome. Clin. Infect. Dis. 18(Suppl. 1), S62–S67 (1994).
  • Calabrese V, Cornelius C, Dinkova-Kostova AT, Calabrese EJ. Vitagenes, cellular stress response, and acetylcarnitine: relevance to hormesis. Bio Factors 35(2), 146–160 (2009).
  • Jung I-H, Jang S-E, Joh E-H, Chung J, Han MJ, Kim D-H. Lancemaside A isolated from Codonopsis lanceolata and its metabolite echinocystic acid ameliorate scopolamine-induced memory and learning deficits in mice. Phytomedicine 20(1), 84–88 (2012).