320
Views
0
CrossRef citations to date
0
Altmetric
Short Communication

A chemical approach facilitates CRISPRa-only human iPSC generation and minimizes the number of targeted loci required

ORCID Icon, , , , , , , , , & show all
Article: FSO964 | Received 27 Oct 2023, Accepted 19 Jan 2024, Published online: 06 Feb 2024

References

  • Tang S, Xie M, Cao N, Ding S. Patient-specific induced pluripotent stem cells for disease modeling and phenotypic drug discovery. J. Medicinal Chem. 59(1), 2–15 (2016).
  • Saetersmoen ML, Hammer Q, Valamehr B, Kaufman DS, Malmberg K-J. Off-the-shelf cell therapy with induced pluripotent stem cell-derived natural killer cells. Semin. Immunopathol. 41(1), 59–68 (2019).
  • Buganim Y, Faddah DA, Cheng AW et al. Single-cell expression analyses during cellular reprogramming reveal an early stochastic and a late hierarchic phase. Cell 150(6), 1209–1222 (2012).
  • Takahashi K, Tanabe K, Ohnuki M et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5), 861–872 (2007).
  • Okita K, Yamakawa T, Matsumura Y et al. An efficient nonviral method to generate integration-free human-induced pluripotent stem cells from cord blood and peripheral blood cells. Stem Cells 31(3), 458–466 (2013).
  • Yu J, Vodyanik MA, Smuga-Otto K et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 318(5858), 1917–1920 (2007).
  • Menendez S, Camus S, Belmonte JCI. p53: guardian of reprogramming. Cell Cycle 9(19), 3887–3891 (2010).
  • Anokye-Danso F, Trivedi CM, Juhr D et al. Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency. Cell Stem Cell 8(4), 376–388 (2011).
  • Subramanyam D, Lamouille S, Judson RL et al. Multiple targets of miR-302 and miR-372 promote reprogramming of human fibroblasts to induced pluripotent stem cells. Nat. Biotechnol. 29(5), 443–448 (2011).
  • Miyoshi N, Ishii H, Nagano H et al. Reprogramming of mouse and human cells to pluripotency using mature MicroRNAs. Cell Stem Cell 8(6), 633–638 (2011).
  • Chavez A, Tuttle M, Pruitt BW et al. Comparison of Cas9 activators in multiple species. Nat. Methods 13(7), 563–567 (2016).
  • Dominguez AA, Lim WA, Qi LS. Beyond editing: repurposing CRISPR–Cas9 for precision genome regulation and interrogation. Nat. Rev. Mol. Cell Biol. 17(1), 5–15 (2016).
  • Chavez A, Scheiman J, Vora S et al. Highly efficient Cas9-mediated transcriptional programming. Nat. Methods 12(4), 326–328 (2015).
  • Konermann S, Brigham MD, Trevino AE et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 517(7536), 583–588 (2015).
  • Tanenbaum ME, Gilbert LA, Qi LS, Weissman JS, Vale RD. A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell 159(3), 635–646 (2014).
  • Liu P, Chen M, Liu Y, Qi LS, Ding S. CRISPR-based chromatin remodeling of the endogenous Oct4 or Sox2 locus enables reprogramming to pluripotency. Cell Stem Cell 22(2), 252–261.e4 (2018).
  • Sokka J, Yoshihara M, Kvist J et al. CRISPR activation enables high-fidelity reprogramming into human pluripotent stem cells. Stem Cell Reports 17(2), 413–426 (2022).
  • Xiong K, Zhou Y, Blichfeld KA et al. RNA-guided activation of pluripotency genes in human fibroblasts. Cell. Reprogramming 19(3), 189–198 (2017).
  • Balboa D, Weltner J, Eurola S, Trokovic R, Wartiovaara K, Otonkoski T. Conditionally stabilized dCas9 activator for controlling gene expression in human cell reprogramming and differentiation. Stem Cell Reports 5(3), 448–459 (2015).
  • Weltner J, Balboa D, Katayama S et al. Human pluripotent reprogramming with CRISPR activators. Nat. Commun. 9(1), 2643 (2018).
  • Valamehr B, Abujarour R, Robinson M et al. A novel platform to enable the high-throughput derivation and characterization of feeder-free human iPSCs. Sci. Rep-uk 2(1), 213 (2012).
  • Valamehr B, Robinson M, Abujarour R et al. Platform for induction and maintenance of transgene-free hiPSCs resembling ground state pluripotent stem cells. Stem Cell Rep 2(3), 366–381 (2014).
  • Abujarour R, Valamehr B, Robinson M, Rezner B, Vranceanu F, Flynn P. Optimized surface markers for the prospective isolation of high-quality hiPSCs using flow cytometry selection. Sci. Rep-uk 3(1), 1179 (2013).
  • Lin T, Ambasudhan R, Yuan X et al. A chemical platform for improved induction of human iPSCs. Nat. Methods 6(11), 805–808 (2009).