1,405
Views
1
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

In silico Study of Antiviral Activity of Polyphenol Compounds from Ocimum basilicum by Molecular Docking, ADMET, and Drug-Likeness Analysis

ORCID Icon, ORCID Icon, , , ORCID Icon &
Pages 37-47 | Received 11 Jan 2023, Accepted 15 Apr 2023, Published online: 26 Apr 2023

References

  • World Health Organization. COVID-19 Weekly Epidemiological Update. Geneva: World Health Organization; 2021.
  • Junaid K, Qasim S, Yasmeen H, et al. Potential inhibitory effect of vitamins against COVID-19. Comput Mater Contin. 2020;66(1):707–714. doi:10.32604/cmc.2020.012976
  • Chowdhury MA, Hossain N, Kashem MA, Shahid MA, Alam A. Immune response in COVID-19: a review. J Infect Public Health. 2020;13:1619–1629. doi:10.1016/j.jiph.2020.07.001
  • Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395:507–513. doi:10.1016/S0140-6736(20)30211-7
  • Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395:497–506. doi:10.1016/S0140-6736(20)30183-5
  • Zhang L, Lin D, Sun X, et al. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science. 2020;368:409–412. doi:10.1126/science.abb3405
  • El-Demerdash A, Metwaly AM, Hassan A, et al. Comprehensive virtual screening of the antiviral potentialities of marine polycyclic guanidine alkaloids against SARS-CoV-2 (COVID-19). Biomolecules. 2021;11:460. doi:10.3390/biom11030460
  • Anand K, Palm GJ, Mesters JR, Siddell SG, Ziebuhr J, Hilgenfeld R. Structure of coronavirus main proteinase reveals combination of a chymotrypsin fold with an extra α-helical domain. EMBO J. 2002;21:3213–3224. doi:10.1093/emboj/cdf327
  • Hu Q, Xiong Y, Zhu GH, et al. The SARS‐CoV‐2 main protease (Mpro): structure, function, and emerging therapies for COVID‐19. MedComm. 2022;3:e151. doi:10.1002/mco2.151
  • Issa SS, Sokornova SV, Zhidkin RR, Matveeva TV. The main protease of SARS-CoV-2 as a target for phytochemicals against coronavirus. Plants. 2022;11:1862. doi:10.3390/plants11141862
  • Tiwari S, Dubey N. Traditional medicinal plants as promising source of immunomodulator against covid-19. J Exper Biol Agric Sci. 2020;8:S126–S138. doi:10.18006/2020.8(Spl-1-SARS-CoV-2).S126.S138
  • Chali BU, Melaku T, Berhanu N, et al. Traditional medicine practice in the context of COVID-19 pandemic: community claim in Jimma zone, Oromia, Ethiopia. Infect Drug Resist. 2021;14:3773. doi:10.2147/IDR.S331434
  • Chiang LC, Ng LT, Cheng PW, Chiang W, Lin CC. Antiviral activities of extracts and selected pure constituents of Ocimum basilicum. Clin Exp Pharmacol Physiol. 2005;32:811–816. doi:10.1111/j.1440-1681.2005.04270.x
  • Shahrajabian MH, Sun W, Cheng Q. Chemical components and pharmacological benefits of Basil (Ocimum basilicum): a review. Int J Food Propert. 2020;23:1961–1970. doi:10.1080/10942912.2020.1828456
  • Brahmi F, Vejux A, Ghzaiel I, et al. Role of diet and nutrients in SARS-CoV-2 infection: incidence on oxidative stress, inflammatory status and viral production. Nutrients. 2022;14. doi:10.3390/nu14112194
  • Chaudhary KK, Mishra N. A review on molecular docking: novel tool for drug discovery. Databases. 2016;3:1029.
  • Ferreira LG, Dos Santos RN, Oliva G, Andricopulo AD. Molecular docking and structure-based drug design strategies. Molecules. 2015;20:13384–13421. doi:10.3390/molecules200713384
  • Ragi K, Kakkassery JT, Raphael VP, Johnson R. In vitro antibacterial and in silico docking studies of two Schiff bases on Staphylococcus aureus and its target proteins. Future J Pharm Sci. 2021;7:1–9.
  • Pires DE, Blundell TL, Ascher DB. pkCSM: predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J Med Chem. 2015;58:4066–4072. doi:10.1021/acs.jmedchem.5b00104
  • Banerjee P, Eckert AO, Schrey AK, Preissner R. ProTox-II: a webserver for the prediction of toxicity of chemicals. Nucleic Acids Res. 2018;46:W257–W263. doi:10.1093/nar/gky318
  • Nguyen V, Nguyen N, Thi N, Thi C, Truc T, Nghi P, editors. Studies on chemical, polyphenol content, flavonoid content, and antioxidant activity of sweet basil leaves (Ocimum basilicum L.). In: IOP Conference Series: Materials Science and Engineering. IOP Publishing; 2021.
  • Marc RA, Mureșan V, Mureșan AE, et al. Spicy and aromatic plants for meat and meat analogues applications. Plants. 2022;11:960. doi:10.3390/plants11070960
  • Jayasinghe C, Gotoh N, Aoki T, Wada S. Phenolics composition and antioxidant activity of sweet basil (Ocimum basilicum L.). J Agric Food Chem. 2003;51:4442–4449. doi:10.1021/jf034269o
  • Aboulaghras S, Sahib N, Bakrim S, et al. Health benefits and pharmacological aspects of chrysoeriol. Pharmaceuticals. 2022;15:973. doi:10.3390/ph15080973
  • Baderschneider B, Winterhalter P. Isolation and characterization of novel benzoates, cinnamates, flavonoids, and lignans from Riesling wine and screening for antioxidant activity. J Agric Food Chem. 2001;49:2788–2798. doi:10.1021/jf010396d
  • Yang L, Ding W, Xu Y, et al. New insights into the antibacterial activity of hydroxycoumarins against Ralstonia solanacearum. Molecules. 2016;21:468. doi:10.3390/molecules21040468
  • Kang CK, Seong M-W, Choi S-J, et al. In vitro activity of lopinavir/ritonavir and hydroxychloroquine against severe acute respiratory syndrome coronavirus 2 at concentrations achievable by usual doses. Korean J Intern Med. 2020;35:728. doi:10.3904/kjim.2020.157
  • El-Hoshoudy A. Investigating the potential antiviral activity drugs against SARS-CoV-2 by molecular docking simulation. J Mol Liq. 2020;318:113968. doi:10.1016/j.molliq.2020.113968
  • Mulu A, Gajaa M, Woldekidan HB. The impact of curcumin derived polyphenols on the structure and flexibility COVID-19 main protease binding pocket: a molecular dynamics simulation study. PeerJ. 2021;9:e11590. doi:10.7717/peerj.11590
  • Cheng Y-C, Prusoff WH. Relationship between the inhibition constant (Ki) and the concentration of inhibition, which causes 50% inhibition (IC_< 50>) of an enzymatic reaction. Biochem Pharmacol. 1973;22:3099–3108. doi:10.1016/0006-2952(73)90196-2
  • Ul Qamar MT, Alqahtani SM, Alamri MA, Chen L-L. Structural basis of SARS-CoV-2 3CLpro and anti-COVID-19 drug discovery from medicinal plants. J Pharm Anal. 2020;10:313–319. doi:10.1016/j.jpha.2020.03.009
  • Maowa J, Hosen M, Alam A, et al. Pharmacokinetics and molecular docking studies of uridine derivatives as SARS-COV-2 Mpro inhibitors. Phys Chem Res. 2021;9:385–412.
  • Duque-Soto C, Borrás-Linares I, Quirantes-Piné R, et al. Potential antioxidant and antiviral activities of hydroethanolic extracts of selected Lamiaceae species. Foods. 2022;11:1862. doi:10.3390/foods11131862
  • Chattopadhyay D, Naik TN. Antivirals of ethnomedicinal origin: structure-activity relationship and scope. Mini Rev Med Chem. 2007;7:275–301. doi:10.2174/138955707780059844
  • Falcó I, Randazzo W, Gómez-Mascaraque L, Aznar R, López-Rubio A, Sánchez G. Effect of (−)-epigallocatechin gallate at different pH conditions on enteric viruses. LWT Food Sci Technol. 2017;81:250–257. doi:10.1016/j.lwt.2017.03.050
  • Ekins S, Waller CL, Swaan PW, Cruciani G, Wrighton SA, Wikel JH. Progress in predicting human ADME parameters in silico. J Pharmacol Toxicol Methods. 2000;44:251–272. doi:10.1016/S1056-8719(00)00109-X
  • Prasanth D, Murahari M, Chandramohan V, Panda SP, Atmakuri LR, Guntupalli C. In silico identification of potential inhibitors from Cinnamon against main protease and spike glycoprotein of SARS CoV-2. J Biomol Struct Dyn. 2021;39:4618–4632. doi:10.1080/07391102.2020.1779129
  • Cabrera-Pérez MÁ, Pham-The H. Computational modeling of human oral bioavailability: what will be next? Expert Opin Drug Discov. 2018;13:509–521. doi:10.1080/17460441.2018.1463988
  • Falcón-Cano G, Molina C, Cabrera-Pérez MÁ. ADME prediction with KNIME: in silico aqueous solubility consensus model based on supervised recursive random forest approaches. ADMET DMPK. 2020;8:251–273. doi:10.5599/admet.852
  • Khan MF, Nahar N, Rashid RB, Chowdhury A, Rashid MA. Computational investigations of physicochemical, pharmacokinetic, toxicological properties and molecular docking of betulinic acid, a constituent of Corypha taliera (Roxb.) with Phospholipase A2 (PLA2). BMC Complement Altern Med. 2018;18:1–15. doi:10.1186/s12906-018-2116-x
  • Alhazmi MI. Molecular docking of selected phytocompounds with H1N1 Proteins. Bioinformation. 2015;11:196. doi:10.6026/97320630011196
  • Lombardo F, Gifford E, Shalaeva MY. In silico ADME prediction: data, models, facts and myths. Mini Rev Med Chem. 2003;3:861–875. doi:10.2174/1389557033487629
  • Smith DA, Beaumont K, Maurer TS, Di L. Volume of distribution in drug design: miniperspective. J Med Chem. 2015;58:5691–5698. doi:10.1021/acs.jmedchem.5b00201
  • Hwang J, Youn K, Ji Y, et al. Biological and computational studies for dual cholinesterases inhibitory effect of zerumbone. Nutrients. 2020;12:1215. doi:10.3390/nu12051215
  • X-l. M, Chen C, Yang J. Predictive model of blood-brain barrier penetration of organic compounds. Acta Pharmacol Sin. 2005;26:500–512. doi:10.1111/j.1745-7254.2005.00068.x
  • Guttman Y, Kerem Z. Computer-aided (in silico) modeling of cytochrome P450-mediated Food–Drug Interactions (FDI). Int J Mol Sci. 2022;23:8498. doi:10.3390/ijms23158498
  • El-Shamy NT, Alkaoud AM, Hussein RK, Ibrahim MA, Alhamzani AG, Abou-Krisha MM. DFT, ADMET and molecular docking investigations for the antimicrobial activity of 6, 6′-Diamino-1, 1′, 3, 3′-tetramethyl-5, 5′-(4-chlorobenzylidene) bis [pyrimidine-2, 4 (1H, 3H)-dione]. Molecules. 2022;27:620. doi:10.3390/molecules27030620
  • Alves VM, Muratov EN, Zakharov A, Muratov NN, Andrade CH, Tropsha A. Chemical toxicity prediction for major classes of industrial chemicals: is it possible to develop universal models covering cosmetics, drugs, and pesticides? Food Chem Toxicol. 2018;112:526–534. doi:10.1016/j.fct.2017.04.008
  • Toropov AA, Toropova AP, Raska JI, Leszczynska D, Leszczynski J. Comprehension of drug toxicity: software and databases. Comput Biol Med. 2014;45:20–25. doi:10.1016/j.compbiomed.2013.11.013
  • Drwal MN, Banerjee P, Dunkel M, Wettig MR, Preissner R. ProTox: a web server for the in silico prediction of rodent oral toxicity. Nucleic Acids Res. 2014;42:W53–W58. doi:10.1093/nar/gku401
  • El-Din HMA, Loutfy SA, Fathy N, et al. Molecular docking based screening of compounds against VP40 from Ebola virus. Bioinformation. 2016;12:192. doi:10.6026/97320630012192
  • Lipinski CA. Lead-and drug-like compounds: the rule-of-five revolution. Drug Discov Today. 2004;1:337–341. doi:10.1016/j.ddtec.2004.11.007
  • Tumilaar SG, Fatimawali F, Niode NJ, et al. The potential of leaf extract of Pangium edule Reinw as HIV-1 protease inhibitor: a computational biology approach. J Appl Pharm Sci. 2021;11:101–110.
  • Shaji D. Molecular docking studies of human MCT8 protein with soy isoflavones in Allan-Herndon-Dudley syndrome (AHDS). J Pharm Anal. 2018;8:318–323. doi:10.1016/j.jpha.2018.07.001
  • Tallei TE, Tumilaar SG, Niode NJ, et al. Potential of plant bioactive compounds as SARS-CoV-2 main protease (Mpro) and spike (S) glycoprotein inhibitors: a molecular docking study. Scientifica. 2020;2020. doi:10.1155/2020/6307457
  • Benet LZ, Hosey CM, Ursu O, Oprea TI. BDDCS, the Rule of 5 and drugability. Adv Drug Deliv Rev. 2016;101:89–98. doi:10.1016/j.addr.2016.05.007