410
Views
9
CrossRef citations to date
0
Altmetric
Review

Metastasis inhibition in breast cancer by targeting cancer cell extravasation

, &
Pages 165-178 | Published online: 18 Apr 2019

References

  • BrayF, FerlayJ, SoerjomataramI, SiegelRL, TorreLA, JemalA. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424.
  • FitzmauriceC, AllenC, BarberRM, et al. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 32 cancer groups, 1990 to 2015: a systematic analysis for the global burden of disease study global burden. JAMA Oncol. 2017. doi:10.1001/jamaoncol.2016.5688
  • CianfroccaM, GradisharW. New molecular classifications of breast cancer. CA Cancer J Clin. 2009. doi:10.3322/caac.20029
  • StrickerTP, BrownCD, BandlamudiC, et al. Robust stratification of breast cancer subtypes using differential patterns of transcript isoform expression. PLoS Genet. 2017. doi:10.1371/journal.pgen.1006589
  • KoboldtDC, FultonRS, McLellanMD, et al. Comprehensive molecular portraits of human breast tumours. Nature. 2012. doi:10.1038/nature11412
  • PerouCM, SørlieT, EisenMB, et al. Molecular portraits of human breast tumours. Nature. 2000. doi:10.1038/35021093
  • SledgeGW, MamounasEP, HortobagyiGN, BursteinHJ, GoodwinPJ, WolffAC. Past, present, and future challenges in breast cancer treatment. J Clin Oncol. 2014. doi:10.1200/JCO.2014.55.4139
  • JinX, MuP. Targeting breast cancer metastasis. Breast Cancer Basic Clin Res. 2015. doi:10.4137/BCBCR.S25460
  • SharmaP. Biology and management of patients with triple-negative breast cancer. Oncologist. 2016. doi:10.1634/theoncologist.2016-0067
  • BersiniS, JeonJS, MorettiM, KammRD. In vitro models of the metastatic cascade: from local invasion to extravasation. Drug Discov Today. 2014. doi:10.1016/j.drudis.2013.12.006
  • FidlerIJ. The pathogenesis of cancer metastasis: the “seed and soil” hypothesis revisited. Nat Rev Cancer. 2003. doi:10.1038/nrc1098
  • RankinEB, NamJM, GiacciaAJ. Hypoxia: signaling the metastatic cascade. Trends in Cancer. 2016. doi:10.1016/j.trecan.2016.05.006
  • VermaV, LautenschlaegerT. MicroRNAs in non-small cell lung cancer invasion and metastasis: from the perspective of the radiation oncologist. Expert Rev Anticancer Ther. 2016. doi:10.1080/14737140.2016.1191950
  • DasguptaA, LimAR, GhajarCM. Circulating and disseminated tumor cells: harbingers or initiators of metastasis?Mol Oncol. 2017. doi:10.1002/1878-0261.12022
  • GrzelakCA, GhajarCM. Metastasis ‘systems’ biology: how are macro-environmental signals transmitted into microenvironmental cues for disseminated tumor cells?Curr Opin Cell Biol. 2017. doi:10.1016/j.ceb.2017.06.002
  • HosseiniH, ObradovicMMS, HoffmannM, et al. Early dissemination seeds metastasis in breast cancer. Nature. 2016. doi:10.1038/nature20785
  • SemenzaGL. Hypoxia, clonal selection, and the role of HIF-1 in tumor progression. Crit Rev Biochem Mol Biol. 2000. doi:10.1080/10409230091169186
  • ZimnaA, KurpiszM. Hypoxia-Inducible factor-1 in physiological and pathophysiological angiogenesis: applications and therapies. Biomed Res Int. 2015. doi:10.1155/2015/549412
  • De PalmaM, BiziatoD, PetrovaTV. Microenvironmental regulation of tumour angiogenesis. Nat Rev Cancer. 2017. doi:10.1038/nrc.2017.51
  • KessenbrockK, PlaksV, WerbZ. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell. 2010. doi:10.1016/j.cell.2010.03.015
  • CfM, ClS-P, JuR, et al. Blocking αvβ3 integrin by a recombinant RGD disintegrin impairs VEGF signaling in endothelial cells. Biochimie. 2012. doi:10.1016/j.biochi.2012.04.020
  • SubhaniS, VavilalaDT, MukherjiM. HIF inhibitors for ischemic retinopathies and cancers: options beyond anti-VEGF therapies. Angiogenesis. 2016. doi:10.1007/s10456-016-9510-0
  • JiangM, QinC, HanM. Primary breast cancer induces pulmonary vascular hyperpermeability and promotes metastasis via the VEGF-PKC pathway. Mol Carcinog. 2016. doi:10.1002/mc.22352
  • FerraraN. Pathways mediating VEGF-independent tumor angiogenesis. Cytokine Growth Factor Rev. 2010. doi:10.1016/j.cytogfr.2009.11.003
  • JainRK. Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat Med. 2001. doi:10.1038/nm0901-987
  • CarmelietP, JainRK. Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nat Rev Drug Discov. 2011. doi:10.1038/nrd3455
  • CrawfordY, FerraraN. VEGF inhibition: insights from preclinical and clinical studies. Cell Tissue Res. 2009. doi:10.1007/s00441-008-0675-8
  • YeungKT, YangJ. Epithelial-mesenchymal transition in tumor metastasis. Mol Oncol. 2017. doi:10.1002/1878-0261.12017
  • HegerfeldtY, TuschM, BröckerEB, FriedlP. Collective cell movement in primary melanoma explants: plasticity of cell-cell interaction, β1-integrin function, and migration strategies. Cancer Res. 2002;62(7):2125–2130.
  • WolfK, MazoI, LeungH, et al. Compensation mechanism in tumor cell migration: mesenchymal-amoeboid transition after blocking of pericellular proteolysis. J Cell Biol. 2003. doi:10.1083/jcb.200209006
  • NietoMA. Epithelial plasticity: a common theme in embryonic and cancer cells. Science. 2013;80. doi:10.1126/science.1234850.
  • YangJ, WeinbergRA. Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell. 2008. doi:10.1016/j.devcel.2008.05.009
  • WuY, DengJ, RychahouPG, QiuS, EversBM, ZhouBP. Stabilization of Snail by NF-κB is required for inflammation-induced cell migration and invasion. Cancer Cell. 2009. doi:10.1016/j.ccr.2009.03.016
  • LoHW, HsuSC, XiaW, et al. Epidermal growth factor receptor cooperates with signal transducer and activator of transcription 3 to induce epithelial-mesenchymal transition in cancer cells via up-regulation of TWIST gene expression. Cancer Res. 2007. doi:10.1158/0008-5472.CAN-07-0575
  • YangMH, WuMZ, ChiouSH, et al. Direct regulation of TWIST by HIF-1α promotes metastasis. Nat Cell Biol. 2008. doi:10.1038/ncb1691
  • WeiSC, FattetL, TsaiJH, et al. Matrix stiffness drives epithelial-mesenchymal transition and tumour metastasis through a TWIST1-G3BP2 mechanotransduction pathway. Nat Cell Biol. 2015. doi:10.1038/ncb3157
  • Van ZijlF, KrupitzaG, MikulitsW. Initial steps of metastasis: cell invasion and endothelial transmigration. Mutat Res - Rev Mutat Res. 2011. doi:10.1016/j.mrrev.2011.05.002
  • PeinadoH, OlmedaD, CanoA. Snail ZEB and bHLH factors in tumour progression: an alliance against the epithelial phenotype?Nat Rev Cancer. 2007. doi:10.1038/nrc2131
  • CanoA, Pérez-MorenoMA, RodrigoI, et al. The transcription factor Snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol. 2000. doi:10.1038/35000025
  • TaniaM, KhanMA, FuJ. Epithelial to mesenchymal transition inducing transcription factors and metastatic cancer. Tumor Biol. 2014. doi:10.1007/s13277-014-2163-y
  • TranDD, CorsaCAS, BiswasH, AftRL, LongmoreGD. Temporal and spatial cooperation of Snail1 And Twist1 during epithelial-mesenchymal transition predicts for human breast cancer recurrence. Mol Cancer Res. 2011. doi:10.1158/1541-7786.MCR-11-0371
  • LiCW, XiaW, HuoL, et al. Epithelial-mesenchymal transition induced by TNF-α requires NF-κB-mediated transcriptional upregulation of Twist1. Cancer Res. 2012. doi:10.1158/0008-5472.CAN-11-3123
  • WongTS, GaoW, ChanJYW. Transcription regulation of E-cadherin by zinc finger E-box binding homeobox proteins in solid tumors. Biomed Res Int. 2014. doi:10.1155/2014/921564
  • QinY, CapaldoC, GumbinerBM, MacaraIG. The mammalian scribble polarity protein regulates epithelial cell adhesion and migration through E-cadherin. J Cell Biol. 2005. doi:10.1083/jcb.200506094
  • LamouilleS, XuJ, DerynckR. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 2014. doi:10.1038/nrm3758
  • LeongHS, RobertsonAE, StoletovK, et al. Invadopodia are required for cancer cell extravasation and are a therapeutic target for metastasis. Cell Rep. 2014. doi:10.1016/j.celrep.2014.07.050
  • ThieryJP. Epithelial–mesenchymal transitions in tumour progression. Nat Rev Cancer. 2002. doi:10.1038/nrc822
  • VlahakisA, DebnathJ. The interconnections between autophagy and integrin-mediated cell adhesion. J Mol Biol. 2017. doi:10.1016/j.jmb.2016.11.027
  • TowersCG, ThorburnA. Therapeutic targeting of autophagy. EBioMedicine. 2016. doi:10.1016/j.ebiom.2016.10.034
  • WangC, HuQ, ShenHM. Pharmacological inhibitors of autophagy as novel cancer therapeutic agents. Pharmacol Res. 2016. doi:10.1016/j.phrs.2016.01.028
  • BrownP. Lymphatic system: unlocking the drains. Nature. 2005. doi:10.1038/436456a
  • MauriC, WangG, Schulte-MerkerS. From fish embryos to human patients: lymphangiogenesis in development and disease. Curr Opin Immunol. 2018;53:167–172. doi:10.1016/J.COI.2018.05.00329800868
  • MassaguéJ, ObenaufAC. Metastatic colonization by circulating tumour cells. Nature. 2016. doi:10.1038/nature17038
  • FollainG, OsmaniN, AzevedoAS, et al. Hemodynamic forces tune the arrest, adhesion, and extravasation of circulating tumor cells. Dev Cell. 2018. doi:10.1016/j.devcel.2018.02.015
  • LabelleM, BegumS, HynesRO. Direct signaling between platelets and cancer cells induces an epithelial-mesenchymal-like transition and promotes metastasis. Cancer Cell. 2011. doi:10.1016/j.ccr.2011.09.009
  • Le GalK, IbrahimMX, WielC, et al. Antioxidants can increase melanoma metastasis in mice. Sci Transl Med. 2015. doi:10.1126/scitranslmed.aad3740
  • PiskounovaE, AgathocleousM, MurphyMM, et al. Oxidative stress inhibits distant metastasis by human melanoma cells. Nature. 2015. doi:10.1038/nature15726
  • LabelleM, HynesRO. The initial hours of metastasis: the importance of cooperative host-tumor cell interactions during hematogenous dissemination. Cancer Discov. 2012. doi:10.1158/2159-8290.CD-12-0329
  • GayLJ, Felding-HabermannB. Contribution of platelets to tumour metastasis. Nat Rev Cancer. 2011. doi:10.1038/nrc3004
  • WojtukiewiczMZ, HempelD, SierkoE, TuckerSC, HonnKV. Antiplatelet agents for cancer treatment : a real perspective or just an echo from the past? Cancer Metastasis Rev. 2017;36(2):305–329. doi:10.1007/s10555-017-9683-z.
  • AcetoN, BardiaA, MiyamotoDT, et al. Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis. Cell. 2014. doi:10.1016/j.cell.2014.07.013
  • ChoEH, WendelM, LuttgenM, et al. Characterization of circulating tumor cell aggregates identified in patients with epithelial tumors. Phys Biol. 2012. doi:10.1088/1478-3975/9/1/016001
  • GlinskyVV, GlinskyGV, GlinskiiOV, et al. Intravascular metastatic cancer cell homotypic aggregation at the sites of primary attachment to the endothelium. Cancer Res. 2003;63(13):3805–3811.
  • ErEE, ValienteM, GaneshK, et al. Pericyte-like spreading by disseminated cancer cells activates YAP and MRTF for metastatic colonization. Nat Cell Biol. 2018. doi:10.1038/s41556-018-0138-8
  • BarnhillRL, LugassyC. Angiotropic malignant melanoma and extravascular migratory metastasis: description of 36 with emphasis on a new mechanism of tumour spread. Pathology. 2004. doi:10.1080/00313020412331282708
  • KienastY, Von BaumgartenL, FuhrmannM, et al. Real-time imaging reveals the single steps of brain metastasis formation. Nat Med. 2010. doi:10.1038/nm.2072
  • BanyardJ, BielenbergDR. The role of EMT and MET in cancer dissemination. Connect Tissue Res. 2015. doi:10.3109/03008207.2015.1060970
  • ChuiMH. Insights into cancer metastasis from a clinicopathologic perspective: epithelial-mesenchymal transition is not a necessary step. Int J Cancer. 2013. doi:10.1002/ijc.27745
  • GunasingheNPAD, WellsA, ThompsonEW, HugoHJ. Mesenchymal-epithelial transition (MET) as a mechanism for metastatic colonisation in breast cancer. Cancer Metastasis Rev. 2012. doi:10.1007/s10555-012-9377-5
  • IrmischA, HuelskenJ. Metastasis: new insights into organ-specific extravasation and metastatic niches. Exp Cell Res. 2013. doi:10.1016/j.yexcr.2013.02.012
  • MacKGS, MarshallA. Lost in migration. Nat Biotechnol. 2010. doi:10.1038/nbt0310-214
  • LuzziKJ, MacDonaldIC, SchmidtEE, et al. Multistep nature of metastatic inefficiency: dormancy of solitary cells after successful extravasation and limited survival of early micrometastases. Am J Pathol. 1998. doi:10.1016/S0002-9440(10)65628-3
  • WillisL, AlarcónT, EliaG, et al. Breast cancer dormancy can be maintained by small numbers of micrometastases. Cancer Res. 2010. doi:10.1158/0008-5472.CAN-09-3144
  • ChenMT, SunHF, ZhaoY, et al. Comparison of patterns and prognosis among distant metastatic breast cancer patients by age groups: A SEER population-based analysis. Sci Rep. 2017. doi:10.1038/s41598-017-10166-8
  • FidlerIJ, PosteG. The “seed and soil” hypothesis revisited. Lancet Oncol. 2008. doi:10.1016/S1470-2045(08)70201-8
  • GuiseT. Examining the Metastatic Niche: targeting the Microenvironment. Semin Oncol. 2010. doi:10.1053/j.seminoncol.2010.10.007
  • CarliniMJ, De LorenzoMS, PuricelliL. Cross-talk between tumor cells and the microenvironment at the metastatic niche. Curr Pharm Biotechnol. 2011(11):1900–1908. doi:BSP/CPB/E-Pub/000182-12-12 [pii].
  • ValastyanS, WeinbergRA. Tumor metastasis: molecular insights and evolving paradigms. Cell. 2011. doi:10.1016/j.cell.2011.09.024
  • DenèveE, RiethdorfS, RamosJ, et al. Capture of viable circulating tumor cells in the liver of colorectal cancer patients. Clin Chem. 2013. doi:10.1373/clinchem.2013.202846
  • AirdWC. Phenotypic heterogeneity of the endothelium: I. Structure, function, and mechanisms. Circ Res. 2007. doi:10.1161/01.RES.0000255691.76142.4a
  • BudcziesJ, von WinterfeldM, KlauschenF, et al. The landscape of metastatic progression patterns across major human cancers. Oncotarget. 2015. doi:10.18632/oncotarget.2677
  • Al-SahafO, WangJH, BrowneTJ, CotterTG, RedmondHP. Surgical injury enhances the expression of genes that mediate breast cancer metastasis to the lung. Ann Surg. 2010. doi:10.1097/SLA.0b013e3181efc635
  • SungBH, KetovaT, HoshinoD, ZijlstraA, WeaverAM. Directional cell movement through tissues is controlled by exosome secretion. Nat Commun. 2015. doi:10.1038/ncomms8164
  • SteinbichlerTB, DudásJ, RiechelmannH, SkvortsovaII. The role of exosomes in cancer metastasis. Semin Cancer Biol. 2017. doi:10.1016/j.semcancer.2017.02.006
  • HoshinoA, Costa-SilvaB, ShenTL, et al. Tumour exosome integrins determine organotropic metastasis. Nature. 2015. doi:10.1038/nature15756
  • PalmieriD, BronderJL, HerringJM, et al. Her-2 overexpression increases the metastatic outgrowth of breast cancer cells in the brain. Cancer Res. 2007. doi:10.1158/0008-5472.CAN-06-3316
  • SantarelliJG, SarkissianV, HouLC, VeeravaguA, TseV. Molecular events of brain metastasis. Neurosurg Focus. 2007. doi:10.3171/foc.2007.22.3.2
  • FitzgeraldDP, PalmieriD, HuaE, et al. Reactive glia are recruited by highly proliferative brain metastases of breast cancer and promote tumor cell colonization. Clin Exp Metastasis. 2008. doi:10.1007/s10585-008-9193-z
  • Lefort. Genes that mediate breast cancer metastasis to lung. Nature. 2005. doi:10.1038/nature03799
  • MatsudaY, SchlangeT, OakeleyEJ, BoulayA, HynesNE. WNT signaling enhances breast cancer cell motility and blockade of the WNT pathway by sFRP1 suppresses MDA-MB-231 xenograft growth. Breast Cancer Res. 2009. doi:10.1186/bcr2317
  • PaduaD, ZhangXHF, WangQ, et al. TGFβ primes breast tumors for lung metastasis seeding through angiopoietin-like 4. Cell. 2008. doi:10.1016/j.cell.2008.01.046
  • GuptaGP, NguyenDX, ChiangAC, et al. Mediators of vascular remodelling co-opted for sequential steps in lung metastasis. Nature. 2007. doi:10.1038/nature05760
  • ChenJ, XueC, ZhaoY, ChenD, WuMH, WangJ. Microfluidic impedance flow cytometry enabling high-throughput single-cell electrical property characterization. Int J Mol Sci. 2015. doi:10.3390/ijms16059804
  • MarcucciF, StassiG, De MariaR. Epithelial–mesenchymal transition: a new target in anticancer drug discovery. Nat Publ Gr. 2016;15(5):311–325. doi:10.1038/nrd.2015.13
  • Raab-WestphalS, MarshallJF, GoodmanSL. Integrins as therapeutic targets : successes and cancers. Cancers (Basel). 2017;9(9):pii:E110. doi:10.3390/cancers9090110
  • RoselD, FernandesM, VeselýP, et al. Migrastatics — anti-metastatic and anti-invasion drugs : promises and challenges. Trends Cancer2017;3(6):391–406. doi:10.1016/j.trecan.2017.04.008
  • SiniV, CassanoA, CorsiD, et al. Bevacizumab as first-line treatment in HER2-negative advanced breast cancer: pros and cons. Tumori J. 2016;102(5):472–480. doi:10.5301/tj.5000555
  • ChinotOL. Cilengitide in glioblastoma: when did it fail?Lancet Oncol. 2014. doi:10.1016/S1470-2045(14)70403-6
  • StuppR, HegiME, GorliaT, et al. Cilengitide combined with standard treatment for patients with newly diagnosed glioblastoma with methylated MGMT promoter (CENTRIC EORTC 26071–22072 study): a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol. 2014. doi:10.1016/S1470-2045(14)70379-1
  • KakkarAK, LevineMN, KadziolaZ, et al. Low molecular weight heparin, therapy with dalteparin, and survival in advanced cancer: the fragmin advanced malignancy outcome study (FAMOUS). J Clin Oncol. 2004. doi:10.1200/JCO.2004.10.002
  • ManiSA, GuoW, LiaoMJ, et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 2008. doi:10.1016/j.cell.2008.03.027
  • GalanteJM, MortensonMM, BowlesTL, VirudachalamS, BoldRJ. ERK/BCL-2 pathway in the resistance of pancreatic cancer to anoikis. J Surg Res. 2009. doi:10.1016/j.jss.2008.05.017
  • OudenaardenCRL, van de VenRAH, DerksenPWB. Re-inforcing the cell death army in the fight against breast cancer. J Cell Sci. 2018;131. doi:10.1242/jcs.212563.
  • LiebleinJC, BallS, HutzenB, et al. STAT3 can be activated through paracrine signaling in breast epithelial cells. BMC Cancer. 2008. doi:10.1186/1471-2407-8-302
  • JainRK, DudaDG, ClarkJW, LoefflerJS. Lessons from phase III clinical trials on anti-VEGF therapy for cancer. Nat Clin Pract Oncol. 2006. doi:10.1038/ncponc0403
  • AlgraAM, RothwellPM. Effects of daily aspirin in secondary prevention of stroke on cancer mortality and non-vascular death: analysis of individual patient data from randomised controlled trials. Cerebrovasc Dis. 2013. doi:10.1159/000353129
  • AlgraAM, RothwellPM. Effects of regular aspirin on long-term cancer incidence and metastasis: A systematic comparison of evidence from observational studies versus randomised trials. Lancet Oncol. 2012. doi:10.1016/S1470-2045(12)70112-2
  • RothwellPM, WilsonM, ElwinCE, et al. Long-term effect of aspirin on colorectal cancer incidence and mortality: 20 year follow-up of five randomised trials. Lancet. 2010. doi:10.1016/S0140-6736(10)61543-7
  • LiN. Platelets in cancer metastasis: to help the “villain” to do evil. Int J Cancer. 2016. doi:10.1002/ijc.29847
  • Mahauad-FernandezWD, OkeomaCM. Cysteine-linked dimerization of BST-2 confers anoikis resistance to breast cancer cells by negating proapoptotic activities to promote tumor cell survival and growth. Cell Death Dis. 2017. doi:10.1038/cddis.2017.68
  • RostasJW, PruittHC, MetgeBJ, et al. MicroRNA-29 negatively regulates EMT regulator N-myc interactor in breast cancer. Mol Cancer. 2014. doi:10.1186/1476-4598-13-200
  • YuJ, XieF, BaoX, ChenW, XuQ. MiR-300 inhibits epithelial to mesenchymal transition and metastasis by targeting Twist in human epithelial cancer. Mol Cancer. 2014. doi:10.1186/1476-4598-13-121
  • LvZD, KongB, LiuXP, et al. miR-655 suppresses epithelial-to-mesenchymal transition by targeting Prrx1 in triple-negative breast cancer. J Cell Mol Med. 2016. doi:10.1111/jcmm.12770
  • ChenD, DangB-L, HuangJ, et al. MiR-373 drives the epithelial-to-mesenchymal transition and metastasis via the miR-373-TXNIP-HIF1α-TWIST signaling axis in breast cancer. Oncotarget. 2015. doi:10.18632/oncotarget.4702
  • Aitken M, Kleinrock M, Simorellis A, Nass D; IQVIA Institute for Human Data Science. Global Oncology Trends 2018; Innovation, Expansion and Disruption [May 2018]. Available from: https://www.healthpharma.gr/wp-content/uploads/2018/06/GlobalOncologyTrends2018.pdf. Accessed March 21, 2019.
  • GoetzMP, ToiM, CamponeM, et al. MONARCH 3: abemaciclib as initial therapy for advanced breast cancer. J Clin Oncol. 2017;35(32):3638–3646. doi:10.1200/JCO.2017.75.615528968163
  • StegerGG, GnantM, BartschR. Palbociclib for the treatment of postmenopausal breast cancer – an update. Expert Opin Pharmacother. 2016;17(2):255–263. doi:10.1517/14656566.2016.113359026679057
  • McShaneTM, WolfeTA, RyanJC. Updates on managing advanced breast cancer with palbociclib combination therapy. Ther Adv Med Oncol. 2018;10:175883591879384. doi:10.1177/1758835918793849
  • Lopez-TarruellaS, JerezY, Marquez-RodasI, EchavarriaI, MartinM. Ribociclib for the treatment of advanced hormone receptor-positive, HER2-negative breast cancer. Future Oncol. 2017;13(24):2137–2149. doi:10.2217/fon-2017-018328758424
  • KwapiszD. Cyclin-dependent kinase 4/6 inhibitors in breast cancer: palbociclib, ribociclib, and abemaciclib. Breast Cancer Res Treat. 2017;166(1):41–54. doi:10.1007/s10549-017-4385-328741274
  • LambR, LehnS, RogersonL, ClarkeRB, LandbergG. Cell cycle regulators cyclin D1 and CDK4/6 have estrogen receptor-dependent divergent functions in breast cancer migration and stem cell-like activity. Cell cycle. 2013;12(15):2384–2394. doi:10.4161/cc.2540323839043
  • FinnRS, DeringJ, ConklinD, et al. PD 0332991, a selective cyclin D kinase 4/6 inhibitor, preferentially inhibits proliferation of luminal estrogen receptor-positive human breast cancer cell lines in vitro. Breast Cancer Res. 2009;11(5):1–13. doi:10.1186/bcr2419
  • Ministérioda Saúde. Portaria Conjunta Nº 19 de 3 de Julho ed 2018 Aprova as Diretrizes Diagnósticas e Terapêuticas do Carcinoma de Mama [Joint ordinance number 19, 73, 2018 Approves the diagnostic and therapeutic breast carcinoma guidelines];2018. Available from: http://portalarquivos2.saude.gov.br/images/pdf/2018/julho/16/Portaria-Conjunta-n-19--PCDT-Carcinoma-de-Mama.pdf. Accessed328, 2018. Portuguese
  • Ministério da Saúde. Trastuzumabe para o tratamento do câncer de mama HER2-positivo metastático em primeira linha de tratamento [Trastuzumab for the treatment of HER2-positive breast cancer, metastatic in first line treatment];2017. Available from: http://conitec.gov.br/images/Consultas/Relatorios/2017/Relatorio_Trastuzumabe_CA_MamaMetastatico_CP14_2017.pdf. Accessed January 16, 2018. Portuguese
  • Instituto Nacional de Câncer; Ministério da Saúde. Diretrizes para a Detecção Precoce do Câncer de Mama no Brasil [Guidelines for the early detection of breast cancer in Brazil];2015. Available from: http://www1.inca.gov.br/inca/Arquivos/livro_deteccao_precoce_final.pdf. Accessed116, 2018. Portuguese.
  • Comissão Nacional de Incorporação de Tecnologias em Saúde. Diretrizes para Detecção Precoce do Câncer de Mama [Guidelines for early detection of breast cancer];2015. Available from: http://conitec.gov.br/images/Relatorios/2015/Relatorio_DDT_CancerMama_final.pdf. Accessed116, 2018. Portuguese.
  • GadiVK, DavidsonNE. Practical approach to triple-negative breast cancer. J Oncol Pract. 2017;13(5):293–300. doi:10.1200/JOP.2017.02263228489980
  • JitariuA, CîmpeanAM, RibattiD, RaicaM. Triple negative breast cancer: the kiss of death. Oncotarget. 2017;8(28):46652–46662. doi:10.18632/oncotarget.1693828445140
  • Drugs Approved for Breast Cancer. Available from: https://www.cancer.gov/about-cancer/treatment/drugs. Accessed 1210, 2018.
  • Drugs Approved for Breast Cancer. National Cancer Institute. Available from: https://www.cancer.gov/about-cancer/treatment/drugs/breast#3. Accessed 128, 2018.
  • Paclitaxel Albumin-stabilized Nanoparticle Formulation. National Cancer Institute. Available from: https://www.cancer.gov/about-cancer/treatment/drugs/nanoparticlepaclitaxel. Accessed 128, 2018.