185
Views
5
CrossRef citations to date
0
Altmetric
Review

Mechanisms behind prometastatic changes induced by neoadjuvant chemotherapy in the breast cancer microenvironment

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 209-219 | Published online: 05 Jul 2019

References

  • CortazarP, ZhangI, UntchM, et al. Pathological complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis. Lancet. 2014;384:164–172. doi:10.1016/S0140-6736(13)62422-824529560
  • Early Breast Cancer Trialists’ Collaborative Group (EBCTCG). Long-term outcomes for neoadjuvant versus adjuvant chemotherapy in early breast cancer: meta-analysis of individual patient data from ten randomised trials. Lancet Oncol. 2018;19:27–39. doi:10.1016/S1470-2045(18)30144-X29242041
  • MiddletonJD, StoverDG, HaiT. Chemotherapy-exacerbated breast cancer metastasis: a paradox explainable by dysregulated adaptive-response. Int J Mol Sci. 2018;19(11):3333. doi:10.3390/ijms19113333
  • ChangYS, JalgaonkarSP, MiddletonJD, HaiT. Stress-inducible gene Atf3 in the noncancer host cells contributes to chemotherapy-exacerbated breast cancer metastasis. Proc Natl Acad Sci U S A. 2017;114(34):E7159–E7168. doi:10.1073/pnas.170045511428784776
  • WolfordCC, McConougheySJ, JalgaonkarSP, et al. Transcription factor ATF3 links host adaptive response to breast cancer metastasis. J Clin Invest. 2013;123(7):2893–2906. doi:10.1172/JCI6441023921126
  • HasimMS, NessimC, VilleneuvePJ, VanderhydenBC, DimitroulakosJ. Activating transcription factor 3 as a novel regulator of chemotherapy response in breast cancer. Transl Oncol. 2018;11(4):988–998. doi:10.1016/j.tranon.2017.10.00429940414
  • HaiT, WolfordCC, ChangYS. ATF3, a hub of the cellular adaptive-response network, in the pathogenesis of diseases: is modulation of inflammation a unifying component?Gene Expr. 2010;15:1–11. doi:10.3727/105221610X1281968655501521061913
  • KrallJA, ReinhardtF, MercuryOA, et al. The systemic response to surgery triggers the outgrowth of distant immune-controlled tumors in mouse models of dormancy. Sci Transl Med. 2018;10(436):eaan3464. doi:10.1126/scitranslmed.aao449629643230
  • KaplanRN, RibaRD, ZacharoulisS, et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature. 2005;438:820–827. doi:10.1038/nature0418616341007
  • ChabnerBA. Does chemotherapy induce metastases?Oncologist. 2018;23:273–274. doi:10.1634/theoncologist.2017-064829523674
  • GianniL, BaselgaJ, EiermannW, et al. Phase III trial evaluating the addition of paclitaxel to doxorubicin followed by cyclophosphamide, methotrexate, and fluorouracil, as adjuvant or primary systemic therapy: European Cooperative Trial in Operable Breast Cancer. J Clin Oncol. 2009;27:2474–2481. doi:10.1200/JCO.2008.19.256719332727
  • KaragiannisGS, PastorizaJM, WangY, et al. Neoadjuvant chemotherapy induces breast cancer metastasis through a TMEM-mediated mechanism. Sci Transl Med. 2017;9(397):eaan0026. doi:10.1126/scitranslmed.aan002628679654
  • Volk-DraperL, HallK, GriggsC, et al. Paclitaxel therapy promotes breast cancer metastasis in a TLR4-dependent manner. Cancer Res. 2014;74:5421–5434. doi:10.1158/0008-5472.CAN-14-006725274031
  • De LarcoJE, WuertzBR, ManivelJC, FurchtLT. Progression and enhancement of metastatic potential after exposure of tumor cells to chemotherapeutic agents. Cancer Res. 2001;61(7):2857–2861.11306458
  • GerashchenkoTS, DenisovEV, LitviakovNV, et al. Intratumor heterogeneity: nature and biological significance. Biochemistry (Mosc). 2013;78(11):1201–1215. doi:10.1134/S000629791311001124460935
  • MordantP, LoriotY, LahonB, et al. Minimal residual disease in solid neoplasia: new frontier or red-herring?Cancer Treat Rev. 2012;38:101–110. doi:10.1016/j.ctrv.2011.04.01421612875
  • BlatterS, RottenbergS. Minimal residual disease in cancer therapy – small things make all the difference. Drug Resist Updat. 2015;21-22:1–10. doi:10.1016/j.drup.2015.08.00326307504
  • CukiermanE, BassiDE. The mesenchymal tumor microenvironment: a drug-resistant niche. Cell Adh Migr. 2012;6(3):285–296. doi:10.4161/cam.2021022568991
  • AggarwalBB, ShishodiaS, TakadaY, et al. Curcumin suppresses the paclitaxel-induced nuclear factor-kappaB pathway in breast cancer cells and inhibits lung metastasis of human breast cancer in nude mice. Clin Cancer Res. 2005;11(20):7490–7498. doi:10.1158/1078-0432.CCR-05-119216243823
  • AoudjitF, VuoriK. Integrin signaling inhibits paclitaxel-induced apoptosis in breast cancer cells. Oncogene. 2001;20:4995–5004. doi:10.1038/sj.onc.120455411526484
  • RoodhartJM, DaenenLG, StigterEC, et al. Mesenchymal stem cells induce resistance to chemotherapy through the release of platinum-induced fatty acids. Cancer Cell. 2011;20(3):370–383. doi:10.1016/j.ccr.2011.08.01021907927
  • TrédanO, GalmariniCM, PatelK, TannockIF. Drug resistance and the solid tumor microenvironment. J Natl Cancer Inst. 2007;99:1441–1454. doi:10.1093/jnci/djm13517895480
  • Peiris-PagesM, SotgiaF, LisantiMP. Chemotherapy induces the cancer-associated fibroblast phenotype, activating paracrine Hedgehog-GLI signalling in breast cancer cells. Oncotarget. 2015;6:10728–10745. doi:10.18632/oncotarget.382825915429
  • CuiQ, WangB, LiK, et al. Upregulating MMP-1 in carcinoma-associated fibroblasts reduces the efficacy of Taxotere on breast cancer synergized by Collagen IV. Oncol Lett. 2018;16:3537–3544. doi:10.3892/ol.2018.909230127959
  • WangT, SrivastavaS, HartmanM, et al. High expression of intratumoral stromal proteins is associated with chemotherapy resistance in breast cancer. Oncotarget. 2016;7(34):55155–55168.27487140
  • DaenenLG, RoodhartJM, van AmersfoortM, et al. Chemotherapy enhances metastasis formation via VEGFR-1-expressing endothelial cells. Cancer Res. 2011;71(22):6976–6985. doi:10.1158/0008-5472.CAN-11-062721975929
  • Gingis-VelitskiS, LovenD, BenayounL, et al. Host response to short-term, single-agent chemotherapy induces matrix metalloproteinase-9 expression and accelerates metastasis in mice. Cancer Res. 2011;71:6986–6996. doi:10.1158/0008-5472.CAN-11-062921978934
  • AlishekevitzD, Gingis-VelitskiS, Kaidar-PersonO, et al. Macrophage-induced lymphangiogenesis and metastasis following paclitaxel chemotherapy is regulated by VEGFR3. Cell Rep. 2016;17(5):1344–1356. doi:10.1016/j.celrep.2016.09.08327783948
  • VyasD, LaputG, VyasAK. Chemotherapy-enhanced inflammation may lead to the failure of therapy and metastasis. Onco Targets Ther. 2014;7:1015–1023. doi:10.2147/OTT.S6011424959088
  • BruchardM, MignotG, DerangereV, et al. Chemotherapy-triggered cathepsin B release in myeloid-derived suppressor cells activates the Nlrp3 inflammasome and promotes tumor growth. Nat Med. 2013;19:57–64. doi:10.1038/nm.299923202296
  • BhateliaK, SinghK, SinghR. TLRs: linking inflammation and breast cancer. Cell Signal. 2014;26(11):2350–2357. doi:10.1016/j.cellsig.2014.07.03525093807
  • LawAM, LimE, OrmandyCJ, Gallego-OrtegaD. The innate and adaptive infiltrating immune systems as targets for breast cancer immunotherapy. Endocr Relat Cancer. 2017;24(4):R123–R144. doi:10.1530/ERC-16-040428193698
  • TashirevaLA, PerelmuterVM, ManskikhVN, et al. Types of immune-inflammatory responses as a reflection of cell-cell interactions under conditions of tissue regeneration and tumor growth. Biochemistry (Mosc). 2017;82(5):542–555. doi:10.1134/S000629791705002928601064
  • PerelmuterVM, TashirevaLA, ManskikhVN, et al. Heterogeneity and plasticity of immune inflammatory responses in the tumor microenvironment: their role in the antitumor effect and tumor aggressiveness. Biol Bull Rev. 2018;8(5):431–449. doi:10.1134/S2079086418050055
  • FridmanWH, PagèsF, Sautès-FridmanC, GalonJ. The immune contexture in human tumours: impact on clinical outcome. Nature Rev Cancer. 2012;12(4):298–306. doi:10.1038/nrc324522419253
  • YamaguchiR, TanakaM, YanoA, et al. Tumor-infiltrating lymphocytes are important pathologic predictors for neoadjuvant chemotherapy in patients with breast cancer. Hum Pathol. 2012;43(10):1688–1694. doi:10.1016/j.humpath.2011.12.01322516244
  • OldfordSA, RobbJD, CodnerD, GadagV, WatsonPH, DroverS. Tumor cell expression of HLA-DM associates with a Th1 profile and predicts improved survival in breast carcinoma patients. Int Immunol. 2006;18(11):1591–1602. doi:10.1093/intimm/dxl09216987935
  • YoonN, HanKM, ChoSY, et al. Tumor-associated macrophages (TAMs) and tumor-infiltrating lymphocytes (TILs) in pretherapeutic breast cancer core biopsies: anti-tumoral effect of immune cells associated with neoadjuvant chemotherapy. Int J Clin Exp Pathol. 2017;10(2):1738–1746.
  • GuoS, DengCX. Effect of stromal cells in tumor microenvironment on metastasis initiation. Int J Biol Sci. 2018;14(14):2083–2093. doi:10.7150/ijbs.2462630585271
  • IshigamiE, SakakibaraM, SakakibaraJ, et al. Coexistence of regulatory B cells and regulatory T cells in tumor-infiltrating lymphocyte aggregates is a prognostic factor in patients with breast cancer. Breast Cancer. 2019;26(2):180–189. doi:10.1007/s12282-018-0910-430244409
  • ZhangQ, QinJ, ZhongL, et al. CCL5-mediated Th2 immune polarization promotes metastasis in luminal breast cancer. Cancer Res. 2015;75(20):4312–4321. doi:10.1158/0008-5472.CAN-14-359026249173
  • LitviakovN, TsyganovM, LarionovaI, et al. Expression of M2 macrophage markers YKL-39 and CCL18 in breast cancer is associated with the effect of neoadjuvant chemotherapy. Cancer Chemother Pharmacol. 2018;82(1):99–109. doi:10.1007/s00280-018-3594-829728799
  • DeNardoDG, BrennanDJ, RexhepajE, et al. Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Discov. 2011;1:54–67. doi:10.1158/2159-8274.CD-10-002822039576
  • RuffellB, Chang-StrachanD, ChanV, et al. Macrophage IL-10 blocks CD8+ T cell-dependent responses to chemotherapy by suppressing IL-12 expression in intratumoral dendritic cells. Cancer Cell. 2014;26(5):623–637. doi:10.1016/j.ccell.2014.09.00625446896
  • LiuT, LarionovaI, LitviakovN, et al. Tumor-associated macrophages in human breast cancer produce new monocyte attracting and pro-angiogenic factor YKL-39 indicative for increased metastasis after neoadjuvant chemotherapy. Oncoimmunology. 2018;7(6):e1436922. doi:10.1080/2162402X.2018.149085429872578
  • FengYH, TsaoCJ. Emerging role of microRNA-21 in cancer. Biomed Rep. 2016;5(4):395–402. doi:10.3892/br.2016.74727699004
  • LuTX, MunitzA, RothenbergME. MicroRNA-21 is up-regulated in allergic airway inflammation and regulates IL-12p35 expression. J Immunol. 2009;182:4994–5002. doi:10.4049/jimmunol.080277519342679
  • LuTX, HartnerJ, LimEJ, et al. MicroRNA-21 limits in vivo immune response-mediated activation of the IL-12/IFN-gamma pathway, Th1 polarization, and the severity of delayed-type hypersensitivity. J Immunol. 2011;187:3362–3373. doi:10.4049/jimmunol.110096721849676
  • MurugaiyanG, GaroLP, WeinerHL. MicroRNA-21, T helper lineage and autoimmunity. Oncotarget. 2015;6:9644–9645. doi:10.18632/oncotarget.v6i1225991670
  • De Mattos-ArrudaL, BottaiG, NuciforoPG, et al. MicroRNA-21 links epithelial-to-mesenchymal transition and inflammatory signals to confer resistance to neoadjuvant trastuzumab and chemotherapy in HER2-positive breast cancer patients. Oncotarget. 2015;6(35):37269–37280. doi:10.18632/oncotarget.549526452030
  • LiuL, YangL, YanW, et al. Chemotherapy induces breast cancer stemness in association with dysregulated monocytosis. Clin Cancer Res. 2018;24:2370–2382. doi:10.1158/1078-0432.CCR-17-254529500278
  • Sakaki-YumotoM, KatsunoY, DerynckR. TGF-β family signaling in stem cells. Biochim Biophys Acta. 2013;1830(2):2280–2296. doi:10.1016/j.bbagen.2012.08.00822959078
  • AyadiM, BouyguesA, OuaretD, et al. Chronic chemotherapeutic stress promotes evolution of stemness and WNT/beta-catenin signaling in colorectal cancer cells: implications for clinical use of WNT-signaling inhibitors. Oncotarget. 2015;6(21):18518–18533. doi:10.18632/oncotarget.393426041882
  • GaloczovaM, CoatesP, VojtesekB. STAT3, stem cells, cancer stem cells and p63. Cell Mol Biol Lett. 2018;23:12. doi:10.1186/s11658-018-0078-029588647
  • ChanTS, HsuCC, PaiVC, et al. Metronomic chemotherapy prevents therapy-induced stromal activation and induction of tumor-initiating cells. J Exp Med. 2016;213:2967–2988. doi:10.1084/jem.2015166527881732
  • RongG, KangH, WangY, HaiT, SunH. Candidate markers that associate with chemotherapy resistance in breast cancer through the study on Taxotere-induced damage to tumor microenvironment and gene expression profiling of carcinoma-associated fibroblasts (CAFs). PLoS One. 2013;8:e70960. doi:10.1371/journal.pone.007096023951052
  • DaenenLGM, HouthuijzenJM, CirkelGA, RoodhartJML, ShakedY, VoestEE. Treatment-induced host-mediated mechanisms reducing the efficacy of antitumor therapies. Oncogene. 2014;33:1341–1347. doi:10.1038/onc.2013.9423524584
  • VoloshinT, AlishekevitzD, KanetiL, et al. Blocking IL1beta pathway following paclitaxel chemotherapy slightly inhibits primary tumor growth but promotes spontaneous metastasis. Mol Cancer Ther. 2015;14:1385–1394. doi:10.1158/1535-7163.MCT-14-096925887886
  • RobinsonBD, SicaGL, LiuYF, et al. Tumor microenvironment of metastasis in human breast carcinoma: a potential prognostic marker linked to hematogenous dissemination. Clin Cancer Res. 2009;15(7):2433–2441. doi:10.1158/1078-0432.CCR-08-217919318480
  • JinDK, ShidoK, KoppHG, et al. Cytokine-mediated deployment of SDF-1 induces revascularization through recruitment of CXCR4+ hemangiocytes. Nat Med. 2006;12:557–567. doi:10.1038/nm140016648859
  • KerbelRS. Antiangiogenic therapy: a universal chemosensitization strategy for cancer?Science. 2006;312:1171–1175. doi:10.1126/science.112595016728631
  • De PalmaM, VenneriMA, GalliR, et al. Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell. 2005;8:211–226. doi:10.1016/j.ccr.2005.08.00216169466
  • GrunewaldM, AvrahamI, DorY, et al. VEGF-induced adult neovascularization: recruitment, retention, and role of accessory cells. Cell. 2006;124:175–189. doi:10.1016/j.cell.2005.10.03616413490
  • UdagawaT, PuderM, WoodM, SchaeferBC, D’AmatoRJ. Analysis of tumor-associated stromal cells using SCID GFP transgenic mice: contribution of local and bone marrow-derived host cells. Faseb J. 2006;20:95–102. doi:10.1096/fj.04-3669com16394272
  • RoussosET, CondeelisJS, PatsialouA. Chemotaxis in cancer. Nat Rev Cancer. 2011;11:573–587. doi:10.1038/nrc307821779009
  • DovasA, PatsialouA, HarneyAS, CondeelisJ, CoxD. Imaging interactions between macrophages and tumour cells that are involved in metastasis in vivo and in vitro. J Microsc. 2013;251:261–269. doi:10.1111/j.1365-2818.2012.03667.x23198984
  • PatsialouA, Bravo-CorderoJJ, WangY, et al. Intravital multiphoton imaging reveals multicellular streaming as a crucial component of in vivo cell migration in human breast tumors. Intravital. 2013;2:e25294. doi:10.4161/intv.2529425013744
  • GoswamiS, PhilipparU, SunD, et al. Identification of invasion specific splice variants of the cytoskeletal protein Mena present in mammary tumor cells during invasion in vivo. Clin Exp Metastasis. 2009;26:153–159. doi:10.1007/s10585-008-9225-818985426
  • HughesR, QianBZ, RowanC, et al. Perivascular M2 macrophages stimulate tumor relapse after chemotherapy. Cancer Res. 2015;75:3479–3491. doi:10.1158/0008-5472.CAN-14-356926269531
  • RoussosET, WangY, WyckoffJB, et al. Mena deficiency delays tumor progression and decreases metastasis in polyoma middle-T transgenic mouse mammary tumors. Breast Cancer Res. 2010;12:R101. doi:10.1186/bcr272221108830
  • PignatelliJ, Bravo-CorderoJJ, Roh-JohnsonM, et al. Macrophage-dependent tumor cell transendothelial migration is mediated by Notch1/MenaINV-initiated invadopodium formation. Sci Rep. 2016;6:37874. doi:10.1038/srep3787427901093
  • ZheX, CherML, BonfilRD. Circulating tumor cells: finding the needle in the haystack. Am J Cancer Res. 2011;1(6):740–751.22016824
  • OnstenkW, KraanJ, MostertB, et al. Improved circulating tumor cell detection by a combined EpCAM and MCAM CellSearch enrichment approach in patients with breast cancer undergoing neoadjuvant chemotherapy. Mol Cancer Ther. 2015;14:821–827. doi:10.1158/1535-7163.MCT-14-065325552367
  • KaigorodovaEV, SavelievaOE, TashirevaLA, et al. Heterogeneity of circulating tumor cells in neoadjuvant chemotherapy of breast cancer. Molecules. 2018;23(4):E727. doi:10.3390/molecules2304072729565320
  • RafiiS, LydenD, BenezraR, HattoriK, HeissigB. Vascular and haematopoietic stem cells: novel targets for anti-angiogenesis therapy?Nat Rev Cancer. 2002;2:826–835. doi:10.1038/nrc92512415253
  • ShakedY, HenkeE, RoodhartJML, et al. Rapid chemotherapy-induced acute endothelial progenitor cell mobilization: implications for antiangiogenic drugs as chemosensitizing agents. Cancer Cell. 2008;14:263–273. doi:10.1016/j.ccr.2008.08.00118772115
  • RoodhartJM, LangenbergMH, VermaatJS, et al. Late release of circulating endothelial cells and endothelia progenitor cells after chemotherapy predicts response and survival in cancer patients. Neoplasia. 2010;12:87–94. doi:10.1593/neo.9146020072657
  • LiangW-C, WuX, PealeFV, et al. Cross-species vascular endothelial growth factor (VEGF)-blocking antibodies completely inhibit the growth of human tumor xenografts and measure the contribution of stromal VEGF. J Biol Chem. 2006;281:951–961. doi:10.1074/jbc.M50819920016278208
  • Diaz-MonteroCM, SalemML, NishimuraMI, Garrett-MayerE, ColeDJ, MonteroAJ. Cancer increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy. Immunol Immunother. 2009;58(1):49–59. doi:10.1007/s00262-008-0523-4
  • KeklikoglouI, CianciarusoC, GüçE, et al. Chemotherapy elicits pro-metastatic extracellular vesicles in breast cancer models. Nat Cell Biol. 2019;21:190–202. doi:10.1038/s41556-018-0256-330598531