146
Views
2
CrossRef citations to date
0
Altmetric
Original Research

APR-246 alone and in combination with a phosphatidylserine-targeting antibody inhibits lung metastasis of human triple-negative breast cancer cells in nude mice

, , , , &
Pages 249-259 | Published online: 31 Jul 2019

References

  • SiegelRL, MillerKD, JemalA. Cancer statistics, 2018. CA Cancer J Clin. 2018;68:7–30. doi:10.3322/caac.2144229313949
  • ValentinMD, Da SilvaSD, PrivatM, Alaoui-JamaliM, BignonYJ. Molecular insights on basal-like breast cancer. Breast Cancer Res Treat. 2012;134:21–30. doi:10.1007/s10549-011-1934-z22234518
  • Garrido-CastroAC, LinNU, PolyakK. Insights into molecular classifications of triple-negative breast cancer: improving patient selection for treatment. Cancer Discov. 2019;9:176–198. doi:10.1158/2159-8290.CD-18-117730679171
  • EngebraatenO, VollanHK, Børresen-DaleAL. Triple-negative breast cancer and the need for new therapeutic targets. Am J Pathol. 2013;183:1064–1074. doi:10.1016/j.ajpath.2013.05.03323920327
  • Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490:61–70. doi:10.1038/nature1141223000897
  • WalerychD, NapoliM, CollavinL, Del SalG. The rebel angel: mutant p53 as the driving oncogene in breast cancer. Carcinogenesis. 2012;33:2007–2017. doi:10.1093/carcin/bgs23222822097
  • DhakalHP, NaumeB, SynnestvedtM, et al. Expression of vascular endothelial growth factor and vascular endothelial growth factor receptors 1 and 2 in invasive breast carcinoma: prognostic significance and relationship with markers for aggressiveness. Histopathology. 2012;61:350–364. doi:10.1111/j.1365-2559.2012.04223.x22690749
  • BernsEM, KlijnJG, LookMP, et al. Combined vascular endothelial growth factor and TP53 status predicts poor response to tamoxifen therapy in estrogen receptor-positive advanced breast cancer. Clin Cancer Res. 2003;9:1253–1258.12684392
  • NishizakiM, FujiwaraT, TanidaT, et al. Recombinant adenovirus expressing wild-type p53 is antiangiogenic: a proposed mechanism for bystander effect. Clin Cancer Res. 1995;5:1015–1023.
  • AndréF, JobB, DessenP, et al. Molecular characterization of breast cancer with high-resolution oligonucleotide comparative genomic hybridization array. Clin Cancer Res. 2009;15:441–451. doi:10.1158/1078-0432.CCR-09-054719147748
  • TurnerN, MorettiE, SiclariO, et al. Targeting triple negative breast cancer: is p53 the answer?Cancer Treat Rev. 2013;39:541–550. doi:10.1016/j.ctrv.2012.12.00123321033
  • MohammedRA, EllisIO, MahmmodAM, et al. Lymphatic and blood vessels in basal and triple-negative breast cancers: characteristics and prognostic significance. Mod Pathol. 2011;24:774–785. doi:10.1038/modpathol.2011.421378756
  • BassettEA, WangW, RastinejadF, El-DeiryWS. Structural and functional basis for therapeutic modulation of p53 signaling. Clin Cancer Res. 2008;14:6376–6386. doi:10.1158/1078-0432.CCR-08-152618927276
  • RivlinN, BroshR, OrenM, RotterV. Mutations in the p53 tumor suppressor gene: important milestones at the various steps of tumorigenesis. Genes Cancer. 2011;2:466–474. doi:10.1177/194760191140888921779514
  • RahkoE, BlancoG, SoiniY, BloiguR, JukkolaA. A mutant TP53 gene status is associated with a poor prognosis and anthracycline- resistance in breast cancer patients. Eur J Cancer. 2003;39:447–453. doi:10.1016/s0959-8049(02)00499-912751374
  • SpikeBT, WahlGM. p53, stem cells, and reprogramming: tumor suppression beyond guarding the genome. Genes Cancer. 2011;2:404–419. doi:10.1177/194760191141022421779509
  • GodarS, InceTA, BellGW, et al. Growth-inhibitory and tumor- suppressive functions of p53 depend on its repression of CD44 expression. Cell. 2008;134:62–73. doi:10.1016/j.cell.2008.06.00618614011
  • ChangCJ, ChaoCH, XiaW, et al. p53 regulates epithelial-mesenchymal transition and stem cell properties through modulating miRNAs. Nat Cell Biol. 2011;13:317–323. doi:10.1038/ncb217321336307
  • BykovVJ, WimanKG. Mutant p53 reactivation by small molecules makes its way to the clinic. FEBS Lett. 2014;588:2622–2627. doi:10.1016/j.febslet.2014.04.01724768524
  • KaarJL, BasseN, JoergerAC, StephensE, RutherfordTJ, FershtAR. Stabilization of mutant p53 via alkylation of cysteines and effects on DNA binding. Protein Sci. 2010;19:2267–2278. doi:10.1002/pro.50720878668
  • LambertJM, GorzovP, VeprintsevDB, et al. PRIMA-1 reactivates mutant p53 by covalent binding to the core domain. Cancer Cell. 2009;15:376–388. doi:10.1016/j.ccr.2009.03.00319411067
  • ZandiR, SelivanovaG, ChristensenCL, GerdsTA, WillumsenBM, PoulsenHS. PRIMA-1Met/APR-246 induces apoptosis and tumor growth delay in small cell lung cancer expressing mutant p53. Clin Cancer Res. 2011;17:2830–2841. doi:10.1158/1078-0432.CCR-10-316821415220
  • SynnottNC, MurrayA, McGowanPM, et al. Mutant p53: a novel target for the treatment of patients with triple-negative breast cancer?Int J Cancer. 2017;140:234–246. doi:10.1002/ijc.3042527615392
  • LehmannS, BykovVJ, AliD, et al. Targeting p53 in vivo: a first-in-human study with p53-targeting compound APR-246 in refractory hematologic malignancies and prostate cancer. J Clin Oncol. 2012;30:3633–3639. doi:10.1200/JCO.2011.40.778322965953
  • DenebergS, CherifH, LazarevicV, et al. An open-label phase I dose-finding study of APR-246 in hematological malignancies. Blood Cancer J. 2016;6:e447. doi:10.1038/bcj.2016.6027421096
  • RanS, HeJ, HuangX, SoaresM, ScothornD, ThorpePE. Antitumor effects of a monoclonal antibody that binds anionic phospholipids on the surface of tumor blood vessels in mice. Clin Cancer Res. 2005;15:1551–1562. doi:10.1158/1078-0432.CCR-04-1645
  • HeJ, LusterTA, ThorpePE. Radiation-enhanced vascular targeting of human lung cancers in mice with a monoclonal antibody that binds anionic phospholipids. Clin Cancer Res. 2007;13:5211–5218. doi:10.1158/1078-0432.CCR-07-079317785577
  • HeJ, YinY, LusterTA, WatkinsL, ThorpePE. Antiphosphatidylserine antibody combined with irradiation damages tumor blood vessels and induces tumor immunity in a rat model of glioblastoma. Clin Cancer Res. 2009;15:6871–6880. doi:10.1158/1078-0432.CCR-09-149919887482
  • KorkayaH, WichaMS. Selective targeting of cancer stem cells: a new concept in cancer therapeutics. BioDrugs. 2007;21:299–310. doi:10.2165/00063030-200721050-0000217896836
  • LiuP, KumarIS, BrownS, et al. Disulfiram targets cancer stem-like cells and reverses resistance and cross-resistance in acquired paclitaxel-resistant triple-negative breast cancer cells. Br J Cancer. 2013;109:1876–1885. doi:10.1038/bjc.2013.53424008666
  • MinnAJ, GuptaGP, SiegelPM, et al. Genes that mediate breast cancer metastasis to lung. Nature. 2005;436:518–524. doi:10.1038/nature0379916049480
  • LusterTA, HeJ, HuangX, et al. Plasma protein beta-2-glycoprotein 1 mediates interaction between the anti- tumor monoclonal antibody 3G4 and anionic phospholipids on endothelial cells. J Biol Chem. 2006;281:29863–29871. doi:10.1074/jbc.M60525220016905548
  • HuangX, BennettM, ThorpePE. A monoclonal antibody that binds anionic phospholipids on tumor blood vessels enhances the antitumor effect of docetaxel on human breast tumor in mice. Cancer Res. 2005;65:4408–4416. doi:10.1158/0008-5472.CAN-05-003115899833
  • ZhaoX, RezonzewG, WangD, SiegalGP, HardyRW. Diet modulation is an effective complementary agent in preventing and treating breast cancer lung metastasis. Clin Exp Metastasis. 2014;31:625–638.24832758
  • CookMT, LiangY, Besch-WillifordC, HyderSM. Luteolin inhibits lung metastasis, cell migration, and viability of triple-negative breast cancer cells. Breast Cancer. 2016;9:9–19.28096694
  • MarcatoP, DeanCA, PanD, et al. Aldehyde dehydrogenase activity of breast cancer stem cells is primarily due to isoform ALDH1A3 and its expression is predictive of metastasis. Stem Cells. 2011;29:32–45.21280157
  • CioceM, GherardiS, VigliettoG, et al. Mammosphere-forming cells from breast cancer cell lines as a tool for the identification of CSC-like- and early progenitor- targeting drugs. Cell Cycle. 2010;9:2878–2887.20581442
  • ZhengT, LuM, WangT, ZhangC, DuX.NRBE3 promotes metastasis of breast cancer by down-regulating E-cadherin expression. Biochim Biophys Acta Mol Cell Res. 2018;1865:1869–1877. doi:10.1016/j.bbamcr.2018.09.00330262434
  • XiangL, SemenzaGL. Hypoxia-inducible factors promote breast cancer stem cell specification and maintenance in response to hypoxia or cytotoxic chemotherapy. Adv Cancer Res. 2019;141:175–212. doi:10.1016/bs.acr.2018.11.00130691683
  • TsangJY, HuangYH, LuoMH, et al. Cancer stem cell markers are associated with adverse biomarker profiles and molecular subtypes of breast cancer. Breast Cancer Res Treat. 2012;136:407–417. doi:10.1007/s10549-012-2271-623053657
  • LiangY, MafuvadzeB, Besch-WillifordC, HyderSM. A combination of p53-activating APR-246 and phosphatidylserine-targeting antibody potently inhibits tumor development in hormone-dependent mutant p53-expressing breast cancer xenografts. Breast Cancer. 2018;10:53–67.29606888
  • LiangY, Besch-WillifordC, HyderSM. PRIMA-1 inhibits growth of breast cancer cells by re-activating mutant p53 protein. Int J Oncol. 2009;35:1015–1023. doi:10.3892/ijo_0000041619787255
  • YinY, HuangX, LynnKD, ThorpePE. Phosphatidylserine-targeting antibody induces M1 macrophage polarization and promotes myeloid-derived suppressor cell differentiation. Cancer Immunol Res. 2013;1:256–268. doi:10.1158/2326-6066.CIR-13-007324777853
  • ChengX, LiL, ThorpePE, YoppAC, BrekkenRA, HuangX. Antibody-mediated blockade of phosphatidylserine enhances the antitumor effect of sorafenib in hepatocellular carcinomas xenografts. Ann Surg Oncol. 2016;23(Suppl 5):583–591. doi:10.1245/s10434-016-5107-526847681
  • FolkmanJ. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med. 1995;1:27–31.7584949
  • BergersG, BenjaminLE. Tumorigenesis and the angiogenic switch. Nat Rev Cancer. 2003;3:401–410. doi:10.1038/nrc109312778130
  • BurrowsFJ, ThorpePE. Vascular targeting agents as cancer therapeutics. Clin Cancer Res. 2004;10:415–427.14760060
  • DenekampJ. Angiogenesis, neovascular proliferation and vascular pathophysiology as targets for cancer therapy. Br J Radiol. 1993;66:181–196. doi:10.1259/0007-1285-66-783-1817682469