297
Views
2
CrossRef citations to date
0
Altmetric
Review

Biomarkers for Inflammatory Breast Cancer: Diagnostic and Therapeutic Utility

&
Pages 153-163 | Published online: 14 Oct 2020

References

  • HanceKW, AndersonWF, DevesaSS, et al. Trends in inflammatory breast carcinoma incidence and survival: the surveillance, epidemiology, and end results program at the National Cancer Institute. J Natl Cancer Inst. 2005;97:966–975. doi:10.1093/jnci/dji17215998949
  • DawoodS, LeiX, DentR, et al. Survival of women with inflammatory breast cancer: a large population-based study. Ann Oncol. 2014;25:1143–1151. doi:10.1093/annonc/mdu12124669011
  • BoussenH, BouzaieneH, Ben HassounaJ, et al. Inflammatory breast cancer in Tunisia: epidemiological and clinical trends. Cancer. 2010;116(S11):2730–2735. doi:10.1002/cncr.2517520503401
  • LymanGH, GiulianoAE, SomerfieldMR, et al. American Society of Clinical Oncology guideline recommendations for sentinel lymph node biopsy in early-stage breast cancer. J Clin Oncol. 2005;23:7703. doi:10.1200/JCO.2005.08.00116157938
  • DawoodS, MerajverSD, ViensP, et al. International expert panel on inflammatory breast cancer: consensus statement for standardized diagnosis and treatment. Ann Oncol. 2011;22:515. doi:10.1093/annonc/mdq34520603440
  • McCarthyNJ, YangX, LinnoilaIR, et al. Microvessel density, expression of estrogen receptor alpha, MIB-1, p53, and c-erbB-2 in inflammatory breast cancer. Clin Cancer Res. 2002;8:3857.12473600
  • LimB, WoodwardWA, WangX, et al. Inflammatory breast cancer biology: the tumour microenvironment is key. Nat Rev Cancer. 2018;18:485–499. doi:10.1038/s41568-018-0010-y29703913
  • RobbinsGF, ShahJ, RosenP, et al. Inflammatory carcinoma of the breast. Surg Clin North Am. 1974;54:801. doi:10.1016/S0039-6109(16)40383-X4372732
  • BonnierP, Charpin C, Lejeune C, et al. Inflammatory carcinomas of the breast: a clinical, pathological, or a clinical and pathological definition?Int J Cancer. 1995;62:382–385. doi:10.1002/ijc.29106204047635562
  • ManfrinE, Remo A, Pancione M, et al. Comparison between invasive breast cancer with extensive peritumoral vascular invasion and inflammatory breast carcinoma: a clinicopathologic study of 161 cases. Am J Pathol. 2014;142:299–306.
  • CharpinC, Bonnier P, Khouzami A, et al. Inflammatory breast carcinoma: an immunohistochemical study using monoclonal anti- pHER-2/neu, pS2, cathepsin, ER and PR. Anticancer Res. 1992;12:591–597.1352440
  • XiaoY, YeY, ZouX, et al. The lymphovascular embolus of inflammatory breast cancer exhibits a Notch 3 addiction. Oncogene. 2011;30(3):287–300. doi:10.1038/onc.2010.40520838375
  • YeY, GaoJ-X, TianH, et al. Early to intermediate steps of tumor embolic formation involve specific proteolytic processing of E- cadherin regulated by Rab7. Mol Cancer Res. 2012;10:713–726. doi:10.1158/1541-7786.MCR-12-000922638108
  • Charafe-JauffretE, GinestierC, IovinoF, et al. Aldehyde dehydrogenase 1-positive cancer stem cells mediate metastasis and poor clinical outcome in inflammatory breast cancer. Clin Cancer Res. 2010;16:45–55. doi:10.1158/1078-0432.CCR-09-163020028757
  • SilveraD, SchneiderRJ. Inflammatory breast cancer cells are constitutively adapted to hypoxia. Cell Cycle. 2009;8:3091–3096. doi:10.4161/cc.8.19.963719755858
  • Grosse-WildeA, Fouquier d’HérouëlA, McIntoshE, et al. Stemness of the hybrid epithelial/mesenchymal state in breast cancer and its association with poor survival. PLoS One. 2015;10:e0126522. doi:10.1371/journal.pone.012652226020648
  • JollyMK, BoaretoM, DebebBG, et al. Inflammatory breast cancer: a model for investigating cluster-based dissemination. NPJ Breast Cancer. 2017;3(1):21. doi:10.1038/s41523-017-0023-928649661
  • MasudaH, BrewerTM, LiuDD, et al. Long- term treatment efficacy in primary inflammatory breast cancer by hormonal receptor- and HER2-defined subtypes. Ann Oncol. 2014;25:384–391. doi:10.1093/annonc/mdt52524351399
  • KertmenN, Babacan T, Keskin O, et al. Molecular subtypes in patients with inflammatory breast cancer; a single center experience. J BUON. 2015;20:35–39.25778293
  • PartonM, DowsettM, AshleyS, et al. High incidence of HER-2 positivity in inflammatory breast cancer. Breast. 2004;13(2):97–103. doi:10.1016/j.breast.2003.08.00415019688
  • RossJS, AliSM, WangK, et al. Comprehensive genomic profiling of inflammatory breast cancer cases reveals a high frequency of clinically relevant genomic alterations. Breast Cancer Res Treat. 2015;154(1):152–162. doi:10.1007/s10549-015-3592-z
  • MatsudaN, LimB, WangY, et al. Identification of frequent somatic mutations in inflammatory breast cancer. Breast Cancer Res Treat. 2017;163(2):263–272. doi:10.1007/s10549-017-4165-028243898
  • RanaHQ, SaccaR, DroganC, et al. Prevalence of Germline Variants in Inflammatory Breast Cancer. Cancer. 2019;125(13):2194–2202.30933323
  • MollUM, RiouG, LevineAJ. Two distinct mechanisms alter p53 in breast cancer: mutation and nuclear exclusion. Proc Natl Acad Sci U S A. 1992;89:7262. doi:10.1073/pnas.89.15.72621353891
  • RiouG, LêMG, TravagliJP, et al. Poor prognosis of p53 gene mutation and nuclear overexpression of p53 protein in inflammatory breast carcinoma. J Natl Cancer Inst. 1993;85(21):1765. doi:10.1093/jnci/85.21.17658411261
  • QiY, WangX, KongX, et al. Expression signatures and roles of microRNAs in inflammatory breast cancer. Cancer Cell Int. 2019;19:23. doi:10.1186/s12935-018-0709-630733644
  • DingQ, WangY, ZuoZ, et al. Decreased expression of microRNA-26b in locally advanced and inflammatory breast cancer. Hum Pathol. 2018;77:121–129. doi:10.1016/j.humpath.2018.04.00229689244
  • HuoL, WangY, GongY, et al. MicroRNA expression profiling identifies decreased expression of miR-205 in inflammatory breast cancer. Mod Pathol. 2016;29(4):330–346. doi:10.1038/modpathol.2016.3826916073
  • KleerCG, ZhangY, PanQ, et al. WISP3 is a novel tumor suppressor gene of inflammatory breast cancer. Oncogene. 2002;21:3172–3180. doi:10.1038/sj.onc.120546212082632
  • HagaRB, RidleyAJ. Rho GTPases: regulation and roles in cancer cell biology. Small GTPases. 2016;7:207–221. doi:10.1080/21541248.2016.123258327628050
  • Van GolenKL, WuZF, QiaoXT, et al. RhoC GTPase overexpression modulates induction of angiogenic factors in breast cells. Neoplasia. 2000;2:418–425. doi:10.1038/sj.neo.790011511191108
  • WuM, WuZF, Kumar-SinhaC, et al. RhoC induces differential expression of genes involved in invasion and metastasis in MCF10A breast cells. Breast Cancer Res Treat. 2004;84:3–12. doi:10.1023/B:BREA.0000018426.76893.2114999149
  • Van GolenKL, WuZF, QiaoXT, et al. RhoC GTPase, a novel transforming oncogene for human mammary epithelial cells that partially recapitulates the inflammatory breast cancer phenotype. Cancer Res. 2000;60:5832–5838.11059780
  • JoglekarM, ElbazantiWO, WeitzmanMD, LehmanHL, van GolenKL. Caveolin-1 mediates inflammatory breast cancer cell invasion via the Akt1 pathway and RhoC GTPase. J Cell Biochem. 2015;116:923–933. doi:10.1002/jcb.2502525559359
  • Van LaereSJ, Ueno NT, Finetti P, et al. Uncovering the molecular secrets of inflammatory breast cancer biology: an integrated analysis of three distinct Affymetrix gene expression datasets. Clin Cancer Res. 2013;19:4685–4696. doi:10.1158/1078-0432.CCR-12-254923396049
  • ManaiM, Thomassin-PianaJ, GamoudiA, et al. MARCKS protein overexpression in inflammatory breast cancer. Oncotarget. 2017;8(4):6246–6257. doi:10.18632/oncotarget.1405728009981
  • BoersmaBJ, ReimersM, YiM, et al. A stromal gene signature associated with inflammatory breast cancer. Int J Cancer. 2008;122(6):1324–1332. doi:10.1002/ijc.2323717999412
  • RosenPP. Rosen’s Breast Pathology. Philadelphia: Lippincott-Raven; 1996.
  • LevinePH, PorteraCC, HoffmanHJ, et al. Evaluation of lymphangiogenic factors, vascular endothelial growth factor D and E- cadherin in distinguishing inflammatory from locally advanced breast cancer. Clin Breast Cancer. 2012;12:232–239. doi:10.1016/j.clbc.2012.04.00522694825
  • SkobeM, HawighorstT, JacksonDG, et al. Induction of tumor lymphangiogenesis by VEGFC promotes breast cancer metastasis. Nat Med. 2001;7:192. doi:10.1038/8464311175850
  • StackerSA, CaesarC, BaldwinME, et al. VEGF-D promotes the metastatic spread of tumor cells via the lymphatics. Nat Med. 2001;7:186. doi:10.1038/8463511175849
  • KurebayashiJ, OtsukiT, KunisueH, et al. Expression of vascular endothelial growth factor (VEGF) family members in breast cancer. Jpn J Cancer Res. 1999;90:977. doi:10.1111/j.1349-7006.1999.tb00844.x10551327
  • PiergaJY, PetitT, DelozierT, et al. Neoadjuvant bevacizumab, trastuzumab, and chemotherapy for primary inflammatory HER2-positive breast cancer (BEVERLY-2): an open- label, single- arm phase 2 study. Lancet Oncol. 2012;13:375–384. doi:10.1016/S1470-2045(12)70049-922377126
  • CabiogluN, GongY, IslamR, et al. Expression of growth factor and chemokine receptors: new insights in the biology of inflammatory breast cancer. Ann Oncol. 2007;18(6):1021–1029. doi:10.1093/annonc/mdm06017351259
  • NemunaitisJJ, SmallKA, KirschmeierP, et al. A first-in-human, Phase 1, dose-escalation study of dinaciclib, a novel cyclin-dependent kinase inhibitor, administered weekly in subjects with advanced malignancies. J Transl Med. 2013;11:259. doi:10.1186/1479-5876-11-25924131779
  • MitriZ, KarakasC, WeiC, et al. A phase 1 study with dose expansion of the CDK inhibitor dinaciclib (SCH 727965) in combination with epirubicin in patients with metastatic triple negative breast cancer. Invest New Drugs. 2015;33:890–894. doi:10.1007/s10637-015-0244-425947565
  • MitaMM, JoyAA, MitaA, et al. Randomized Phase II trial of the cyclin-dependent kinase inhibitor dinaciclib (MK-7965) versus capecitabine in patients with advanced breast cancer. Clin Breast Cancer. 2014;14:169–176. doi:10.1016/j.clbc.2013.10.01624393852
  • AlexanderA, KarakasC, ChenX, et al. Cyclin E overexpression as a biomarker for combination treatment strategies in inflammatory breast cancer. Oncotarget. 2017;8(9):14897–14911. doi:10.18632/oncotarget.1468928107181
  • DebebBG, GongY, AtkinsonRL, et al. EZH2 expression correlates with locoregional recurrence after radiation in inflammatory breast cancer. J Exp Clin Cancer Res. 2014;33(1):58. doi:10.1186/s13046-014-0058-925051981
  • ShostakK, ChariotA. NF-kappaB, stem cells and breast cancer: the links get stronger. Breast Cancer Res. 2011;13:214. doi:10.1186/bcr288621867572
  • XiaY, ShenS, VermaIM. NF-kappaB, an active player in human cancers. Cancer Immunol Res. 2014;2:823–830. doi:10.1158/2326-6066.CIR-14-011225187272
  • WangW, KryczekI, DostálL, et al. Effector T cells abrogate stroma- mediated chemoresistance in ovarian cancer. Cell. 2016;165:1092–1105. doi:10.1016/j.cell.2016.04.00927133165
  • JhaveriK, TeplinskyE, SilveraD, et al. Hyperactivated mTOR and JAK2/STAT3 pathways: molecular drivers and potential therapeutic targets of inflammatory and invasive Ductal breast cancers after neoadjuvant chemotherapy. Clin Breast Cancer. 2016;16(2):113–122. doi:10.1016/j.clbc.2015.11.00626774497
  • AaronsonDS, HorvathCM. A road map for those who don’t know JAK- STAT. Science. 2002;296:1653–1655. doi:10.1126/science.107154512040185
  • BiecheI, Lerebours F, Tozlu S, et al. Molecular profiling of inflammatory breast cancer: identification of a poor- prognosis gene expression signature. Clin Cancer Res. 2004;10:6789–6795. doi:10.1158/1078-0432.CCR-04-030615501955
  • US National Library of Medicine. ClinicalTrials.gov; 2017 Available from:https://www.clinicaltrials.gov/ct2/show/NCT02041429. Accessed 107, 2020.
  • DryginD, HoCB, OmoriM, et al. Protein kinase CK2 modulates IL-6 expression in inflammatory breast cancer. Biochem Biophys Res Commun. 2011;415:163–167. doi:10.1016/j.bbrc.2011.10.04622027148
  • WolfeAR, Trenton NJ, Debeb BG, et al. Mesenchymal stem cells and macrophages interact through IL-6 to promote inflammatory breast cancer in pre- clinical models. Oncotarget. 2016;7:82482–82492. doi:10.18632/oncotarget.1269427756885
  • HammCA, MoranD, RaoK, et al. Genomic and immunological tumor profiling identifies targetable pathways and extensive CD8+/PDL1 +immune infiltration in inflammatory breast cancer tumors. Mol Cancer Ther. 2016;15(7):1746–1756. doi:10.1158/1535-7163.MCT-15-035327196778
  • AndreF, O’ReganR, OzgurogluM, et al. Everolimus for women with trastuzumab-resistant, HER2-positive, advanced breast cancer (BOLERO-3): a randomised, double-blind, placebo-controlled Phase 3 trial. Lancet Oncol. 2014;15:580–591. doi:10.1016/S1470-2045(14)70138-X24742739
  • RistimakiA, Sivula A, Lundin J, et al. Prognostic significance of elevated cyclooxygenase-2 expression in breast cancer. Cancer Res. 2002;62:632–635.11830510
  • WangX, ReyesME, ZhangD, et al. EGFR signaling promotes inflammation and cancer stem- like activity in inflammatory breast cancer. Oncotarget. 2017;8:67904–67917. doi:10.18632/oncotarget.1895828978083
  • ReddyJP, AtkinsonRL, LarsonR, et al. Mammary stem cell and macrophage markers are enriched in normal tissue adjacent to inflammatory breast cancer. Breast Cancer Res Treat. 2018;171(2):283–293. doi:10.1007/s10549-018-4835-629858753
  • CondeelisJ, PollardJW. Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell. 2006;124:263–266. doi:10.1016/j.cell.2006.01.00716439202
  • MorrowRJ, EtemadiN, YeoB, et al. Challenging a misnomer? The role of inflammatory pathways in inflammatory breast cancer. Mediators Inflamm. 2017;2017:4754827. 33. doi:10.1155/2017/4754827
  • QuailDF, JoyceJA. Microenvironmental regulation of tumor progression and metastasis. Nat Med. 2013;19:1423–1437. doi:10.1038/nm.339424202395
  • RahalOM, WolfeAR, MandalPK, et al. Blocking Interleukin (IL)4- and IL13-mediated phosphorylation of STAT6 (Tyr641) decreases M2 polarization of macrophages and protects against macrophage-mediated radioresistance of inflammatory breast cancer. Int J Radiat Oncol Biol Phys. 2018;100(4):1034–1043. doi:10.1016/j.ijrobp.2017.11.04329485045
  • BlankC, MackensenA. Contribution of the PD-L1/PD-1 pathway to T-cell exhaustion: an update on implications for chronic infections and tumor evasion. Cancer Immunol Immunother. 2007;56:739–745. doi:10.1007/s00262-006-0272-117195077
  • HerbstRS, SoriaJC, KowanetzM, et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature. 2014;515:563–567. doi:10.1038/nature1401125428504
  • BertucciF, FinettiP, BirnbaumD, et al. The PD1/PDL1 axis, a promising therapeutic target in aggressive breast cancers. Oncoimmunology. 2015;5:e1085148.27141340
  • BertucciF, FinettiP, ColpaertC, et al. PDL1 expression in inflammatory breast cancer is frequent and predicts for the pathological response to chemotherapy. Oncotarget. 2015;6:13506–13519. doi:10.18632/oncotarget.364225940795
  • PengW, LiuC, XuC, et al. PD-1 blockade enhances T-cell migration to tumors by elevating IFN-gamma inducible chemokines. Cancer Res. 2012;72:5209–5218. doi:10.1158/0008-5472.CAN-12-118722915761
  • HeJ, HuoL, MaJ, et al. Expression of programmed death ligand 1 (PD-L1) in posttreatment primary inflammatory breast cancers and clinical implications. Am J Clin Pathol. 2018;149(3):253–261. doi:10.1093/ajcp/aqx16229425258
  • Arias-PulidoH, Cimino-MathewsA, ChaherN, et al. The combined presence of CD20 + B cells and PD-L1 + tumor-infiltrating lymphocytes in inflammatory breast cancer is prognostic of improved patient outcome. Breast Cancer Res Treat. 2018;171(2):273–282. doi:10.1007/s10549-018-4834-729858752
  • MegoM, GaoH, CohenEN, et al. Circulating tumor cells (CTCs) are associated with abnormalities in peripheral blood dendritic cells in patients with inflammatory breast cancer. Oncotarget. 2016;8:35656–35658. doi:10.18632/oncotarget.10290
  • FeiM, Bhatia S, Oriss TB, et al. TNF- alpha from inflammatory dendritic cells (DCs) regulates lung IL-17A/IL-5 levels and neutrophilia versus eosinophilia during persistent fungal infection. Proc Natl Acad Sci USA. 2011;108:5360–5365. doi:10.1073/pnas.101547610821402950
  • HilkensCM, KalinskiP, de BoerM, et al. Human dendritic cells require exogenous interleukin-12-inducing factors to direct the development of naive T- helper cells toward the Th1 phenotype. Blood. 1997;90:1920–1926. doi:10.1182/blood.V90.5.19209292525
  • JanniWJ, RackB, TerstappenLW, et al. Pooled analysis of the prognostic relevance of circulating tumor cells in primary breast cancer. Clin Cancer Res. 2016;22:2583–2593. doi:10.1158/1078-0432.CCR-15-160326733614
  • PiergaJY, BidardFC, AutretA, et al. Circulating tumour cells and pathological complete response: independent prognostic factors in inflammatory breast cancer in a pooled analysis of two multicentre phase II trials (BEVERLY-1 and −2) of neoadjuvant chemotherapy combined with bevacizumab. Ann Oncol. 2017;28(1):103–109. doi:10.1093/annonc/mdw53528177480
  • MegoM, GiordanoA, De GiorgiU, et al. Circulating tumor cells in newly diagnosed inflammatory breast cancer. Breast Cancer Res. 2015;17(1):2. doi:10.1186/s13058-014-0507-625572591
  • MegoM, GaoH, CohenEN, et al. Circulating tumor cells (CTC) are associated with defects in adaptive immunity in patients with inflammatory breast cancer. J Cancer. 2016;7(9):1095–1104. doi:10.7150/jca.1309827326253
  • TabouretE, BertucciF, PiergaJY, et al. MMP2 and MMP9 serum levels are associated with favorable outcome in patients with inflammatory breast cancer treated with bevacizumab-based neoadjuvant chemotherapy in the BEVERLY-2 study. Oncotarget. 2016;7(14):18531–18540. doi:10.18632/oncotarget.761226921265
  • MohamedMM, El-GhonaimyEA, NouhMA, et al. Cytokines secreted by macrophages isolated from tumor microenvironment of inflammatory breast cancer patients possess chemotactic properties. Int J Biochem Cell Biol. 2014;46:138–147. doi:10.1016/j.biocel.2013.11.01524291763