1,142
Views
36
CrossRef citations to date
0
Altmetric
Review

Resistance and Overcoming Resistance in Breast Cancer

ORCID Icon, , ORCID Icon & ORCID Icon
Pages 211-229 | Published online: 11 Nov 2020

References

  • International Agency for Research on Cancer. Global cancer observatory. Cancer Today; 2018 Available from:https://gco.iarc.fr/. Accessed 113, 2020.
  • WaksA, WinerE. Breast cancer treatment: a review. JAMA. 2019;321(3):288–300. doi:10.1001/jama.2018.1932330667505
  • International Agency for Research on Cancer. Global cancer observatory. Latest world cancer statistics – GLOBOCAN 2012: estimated cancer incidence, mortality and prevalence Worldwide in 2012; 2013 Available from:https://www.iarc.fr/news-events/latest-world-cancer-statistics-globocan-2012-estimated-cancer-incidence-mortality-and-prevalence-worldwide-in-2012/. Accessed 113, 2020.
  • BrayF, FerlayJ, LaversanneM, et al. Cancer I ncidence in F ive C ontinents: inclusion criteria, highlights from Volume X and the global status of cancer registration. Int J Cancer. 2015;137(9):2060–2071. doi:10.1002/ijc.2967026135522
  • HarbeckN, CortesJ, GnantM, et al. Breast cancer. Nat Rev. 2019;5(66). doi:10.1038/s41572-019-0111-2
  • PratA, ParkerJS, KarginovaO, et al. Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res. 2010;12(5):R68. doi:10.1186/bcr263520813035
  • ParisotJP, HuXF, DeLuiseM, ZalcbergJR. Altered expression of the IGF-1 receptor in a tamoxifen-resistant human breast cancer cell line. Br J Cancer. 1999;79(5–6):693–700. doi:10.1038/sj.bjc.669011210070856
  • BerryD, MussH, ThorA, et al. HER-2/neu and p53 expression versus tamoxifen resistance in estrogen receptor–positive, node-positive breast cancer. J Clin Oncol. 2000;18(20):3471–3479. doi:10.1200/JCO.2000.18.20.347111032587
  • TaiW, MahatoR, ChengK. The role of HER2 in cancer therapy and targeted drug delivery. J Control Release. 2010;146(3):264–275. doi:10.1016/j.jconrel.2010.04.00920385184
  • Early Breast Cancer Trialists’ Collaborative Group. Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet. 2005;365(9472):1687–1717. doi:10.1016/S0140-6736(05)66544-0.15894097
  • SpringLM, GuptaA, ReynoldsKL, et al. Neoadjuvant endocrine therapy for estrogen receptor–positive breast cancer: a systematic review and meta-analysis. JAMA Oncol. 2016;2(11):1477–1486. doi:10.1001/jamaoncol.2016.189727367583
  • RossiV, BerchiallaP, GiannarelliD, et al. Should all patients with HR-positive HER2-negative metastatic breast cancer receive CDK 4/6 inhibitor as first-line based therapy? A network meta-analysis of data from the PALOMA 2, MONALEESA 2, MONALEESA 7, MONARCH 3, FALCON, SWOG and FACT trials. Cancers (Basel). 2019;11(11):1661. doi:10.3390/cancers11111661
  • Early Breast Cancer Trialists’ Collaborative Group (EBCTCG). Relevance of breast cancer hormone receptors and other factors to the efficacy of adjuvant tamoxifen: patient-level meta-analysis of randomised trials. Lancet. 2011;378(9793):771–784. doi:10.1016/S0140-6736(11)60993-8.21802721
  • DroogM, BeelenK, LinnS, ZwartW. Tamoxifen resistance: from bench to bedside. Eur J Pharmacol. 2013;717(1–3):47–57. doi:10.1016/j.ejphar.2012.11.07123545365
  • AbeO, AbeR, EnomotoK, et al. Tamoxifen for early breast cancer: an overview of the randomised trials. Lancet. 1998;351(9114):1451–1467. doi:10.1016/S0140-6736(97)11423-49605801
  • Early Breast Cancer Trialists’ Collaborative Group. Systemic treatment of early breast cancer by hormonal, cytotoxic, or immune therapy. 133 randomised trials involving 31,000 recurrences and 24,000 deaths among 75,000 women.. Lancet. 1992;339(8784):1–15.1345950
  • ColleoniM, GelberS, GoldhirschA, et al. Tamoxifen after adjuvant chemotherapy for premenopausal women with lymph node-positive breast cancer: International Breast Cancer Study Group Trial 13-93. J Clin Oncol off J Am Soc Clin Oncol. 2006;24(9):1332–1341. doi:10.1200/JCO.2005.03.0783
  • KumarR, ZakharovMN, KhanSH, et al. The dynamic structure of the estrogen receptor. J Amino Acids. 2011;2011:1–7. doi:10.4061/2011/812540
  • Kedia-MokashiN, MakawyAEL, SaxenaM, BalasinorNH. Chromosomal aberration in the post-implantation embryos sired by tamoxifen treated male rats. Mutat Res - Genet Toxicol Environ Mutagen. 2010;703(2):169–173. doi:10.1016/j.mrgentox.2010.08.016
  • BiancoS, GévryN. Endocrine resistance in breast cancer: from cellular signaling pathways to epigenetic mechanisms. Transcription. 2012;3(4):165–170. doi:10.4161/trns.2049622771991
  • NassN, KalinskiT. Tamoxifen resistance: from cell culture experiments towards novel biomarkers. Pathol Res Pract. 2015;211(3):189–197. doi:10.1016/j.prp.2015.01.00425666016
  • ZundelevichA, DadianiM, Kahana-EdwinS, et al. ESR1 mutations are frequent in newly diagnosed metastatic and loco-regional recurrence of endocrine-treated breast cancer and carry worse prognosis. Breast Cancer Res. 2020;22(1):16. doi:10.1186/s13058-020-1246-532014063
  • LiS, ShenD, ShaoJ, et al. Endocrine-therapy-resistant ESR1 variants revealed by genomic characterization of breast-cancer-derived xenografts. Cell Rep. 2013;4(6):1116–1130. doi:10.1016/j.celrep.2013.08.02224055055
  • McGrawJ, WallerD. Cytochrome P450 variations in different ethnic populations. Expert Opin Drug Metab Toxicol. 2012;8(3):371–382. doi:10.1517/17425255.2012.65762622288606
  • IgnatovA, IgnatovT, WeißenbornC, et al. G-protein-coupled estrogen receptor GPR30 and tamoxifen resistance in breast cancer. Breast Cancer Res Treat. 2011;128(2):457–466. doi:10.1007/s10549-011-1584-121607586
  • KangS, BaderA, VogtP. Phosphatidylinositol 3-kinase mutations identified in human cancer are oncogenic. Proc Natl Acad Sci U S A. 2005;102(3):802–807. doi:10.1073/pnas.040886410215647370
  • ZhaoW, ZhangQ, KangX, JinS, LouC. AIB1 is required for the acquisition of epithelial growth factor receptor-mediated tamoxifen resistance in breast cancer cells. Biochem Biophys Res Commun. 2009;380(3):699–704. doi:10.1016/j.bbrc.2009.01.15519285025
  • RazaviP, ChangMT, XuG, et al. The genomic landscape of endocrine-resistant advanced breast cancers. Cancer Cell. 2018;34(3):427–438.e6. doi:10.1016/j.ccell.2018.08.00830205045
  • HuangD, YangF, WangY, GuanX. Mechanisms of resistance to selective estrogen receptor down-regulator in metastatic breast cancer. Biochim Biophys Acta - Rev Cancer. 2017;1868(1):148–156. doi:10.1016/j.bbcan.2017.03.00828344099
  • LiJ, YenC, LiawD, et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science. 1997;275(5308):1943–1947. doi:10.1126/science.275.5308.19439072974
  • MillerTW, Pérez-TorresM, NarasannaA, et al. Loss of Phosphatase and tensin homologue deleted on chromosome 10 engages ErbB3 and insulin-like growth factor-I receptor signaling to promote antiestrogen resistance in breast cancer. Cancer Res. 2009;69(10):4192–4201. doi:10.1158/0008-5472.CAN-09-004219435893
  • RahaP, ThomasS, MunsterPN. Epigenetic modulation: a novel therapeutic target for overcoming hormonal therapy resistance. Epigenomics. 2011;3(4):451–470. doi:10.2217/epi.11.7222126205
  • Noriega-ReyesMY, Langley McCarronE. Estrogen receptor corregulators and their implication in breast cancer. Cancerology. 2008;3:29–40.
  • HuangY, JiangD, SuiM, WangX, FanW. Fulvestrant reverses doxorubicin resistance in multidrug-resistant breast cell lines independent of estrogen receptor expression. Oncol Rep. 2017;37:705–712. doi:10.3892/or.2016.531528000875
  • U.S Food and Drug Administration. FDA approves first PI3K inhibitor for breast cancer. Press Announcements; 2019.
  • ThorpeLM, YuzugulluH, ZhaoJJ. PI3K in cancer: divergent roles of isoforms, modes of activation, and therapeutic targeting. Nat Rev Cancer. 2015;15(1):7–24. doi:10.1038/nrc386025533673
  • AndréF, CiruelosEM, RubovszkyG, et al. Alpelisib (ALP) + fulvestrant (FUL) for advanced breast cancer (ABC): results of the Phase 3 SOLAR-1 trial. En: ESMO 2018 CONGRESS Vol 29; 2018 Available from:https://oncologypro.esmo.org/meeting-resources/esmo-2018-congress/Alpelisib-ALP-fulvestrant-FUL-for-advanced-breast-cancer-ABC-results-of-the-Phase-3-SOLAR-1-trial. Accessed 113, 2020.
  • BahramiN, ChangG, KanayaN, et al. Changes in serum estrogenic activity during neoadjuvant therapy with letrozole and exemestane. J Steroid Biochem Mol Biol. 2020;200:105641. doi:10.1016/j.jsbmb.2020.10564132151708
  • GeislerJ, HelleH, EkseD, et al. Letrozole is superior to anastrozole in suppressing breast cancer tissue and plasma estrogen levels. Clin Cancer Res. 2008;14(19):6330–6335. doi:10.1158/1078-0432.CCR-07-522118829517
  • CarliniP, MichelottiA, FerrettiG, et al. Clinical evaluation of the use of exemestane as further hormonal therapy after nonsteroidal aromatase inhibitors in postmenopausal metastatic breast cancer patients. Cancer Invest. 2007;25(2):102–105. doi:10.1080/0735790070122478917453821
  • ChinYS, BeresfordMJ, RavichandranD, MakrisA. Exemestane after non-steroidal aromatase inhibitors for post-menopausal women with advanced breast cancer. Breast. 2007;16(4):436–439. doi:10.1016/j.breast.2007.02.00217418575
  • SharplessNE, SherrCJ. Forging a signature of in vivo senescence. Nat Rev Cancer. 2015;15(7):397–408. doi:10.1038/nrc396026105537
  • SpringLM, WanderSA, ZangardiM, BardiaA. CDK 4/6 inhibitors in breast cancer: current controversies and future directions. Curr Oncol Rep. 2019;21(3):25. doi:10.1007/s11912-019-0769-330806829
  • GoetzMP, ToiM, CamponeM, et al. MONARCH 3: abemaciclib as initial therapy for advanced breast cancer. J Clin Oncol. 2017;35(32):3638–3646. doi:10.1200/JCO.2017.75.615528968163
  • SledgeGW, ToiM, NevenP, et al. MONARCH 2: abemaciclib in combination with fulvestrant in women with HR+/HER2-advanced breast cancer who had progressed while receiving endocrine therapy. J Clin Oncol. 2017;35(25):2875–2884. doi:10.1200/JCO.2017.73.758528580882
  • DicklerMN, TolaneySM, RugoHS, et al. MONARCH 1, a phase II study of abemaciclib, a CDK4 and CDK6 inhibitor, as a single agent, in patients with refractory HR+/HER2− metastatic breast cancer. Clin Cancer Res. 2017;23(17):5218–5224. doi:10.1158/1078-0432.CCR-17-075428533223
  • ChongQY, KokZH, BuiNLC, et al. A unique CDK4/6 inhibitor: current and future therapeutic strategies of abemaciclib. Pharmacol Res. 2020;156:104686. doi:10.1016/j.phrs.2020.10468632068118
  • FinnRS, CrownJP, LangI, et al. The cyclin-dependent kinase 4/6 inhibitor palbociclib in combination with letrozole versus letrozole alone as first-line treatment of oestrogen receptor-positive, HER2-negative, advanced breast cancer (PALOMA-1/TRIO-18): a randomised Phase 2 study. Lancet Oncol. 2015;16(1):25–35. doi:10.1016/S1470-2045(14)71159-325524798
  • HortobagyiGN, StemmerSM, BurrisHA, et al. Ribociclib as first-line therapy for HR-positive, advanced breast cancer. N Engl J Med. 2016;375(18):1738–1748. doi:10.1056/NEJMoa160970927717303
  • TurnerNC, SlamonDJ, RoJ, et al. Overall survival with palbociclib and fulvestrant in advanced breast cancer. N Engl J Med. 2018;379(20):1926–1936. doi:10.1056/NEJMoa181052730345905
  • KillockD. CDK4/6 inhibitors prolong OS. Nat Rev Clin Oncol. 2019;1.
  • AsgharU, WitkiewiczAK, TurnerNC, KnudsenES. The history and future of targeting cyclin-dependent kinases in cancer therapy. Nat Rev Drug Discov. 2015;14(2):130–146. doi:10.1038/nrd450425633797
  • MillerTW, HennessyBT, González-AnguloAM, et al. Hyperactivation of phosphatidylinositol-3 kinase promotes escape from hormone dependence in estrogen receptor–positive human breast cancer. J Clin Invest. 2010;120(7):2406–2413. doi:10.1172/JCI4168020530877
  • VerretB, CortesJ, BachelotT, AndreF, ArnedosM. Efficacy of PI3K inhibitors in advanced breast cancer. Ann Oncol. 2019;30(Supplement_10):x12–x20. doi:10.1093/annonc/mdz381
  • MaCX, LuoJ, NaughtonM, et al. A Phase I trial of BKM120 (Buparlisib) in combination with fulvestrant in postmenopausal women with estrogen receptor–positive metastatic breast cancer. Clin Cancer Res. 2016;22(7):1583–1591. doi:10.1158/1078-0432.CCR-15-174526563128
  • KropIE, MayerIA, GanjuV, et al. Pictilisib for oestrogen receptor-positive, aromatase inhibitor-resistant, advanced or metastatic breast cancer (FERGI): a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Oncol. 2016;17(6):811–821. doi:10.1016/S1470-2045(16)00106-627155741
  • HurvitzSA, PeddiPF. Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer. Breast Dis. 2013;24(1):79–81. doi:10.1016/j.breastdis.2013.01.007
  • DhakalA, Antony ThomasR, LevineEG, et al. Outcome of everolimus-based therapy in hormone-receptor-positive metastatic breast cancer patients after progression on palbociclib. Breast Cancer Basic Clin Res. 2020;14:1178223420944864. doi:10.1177/1178223420944864
  • LangedijkJ, Mantel-TeeuwisseAK, SlijkermanDS, SchutjensM-HDB. Drug repositioning and repurposing: terminology and definitions in literature. Drug Discov Today. 2015;20(8):1027–1034. doi:10.1016/j.drudis.2015.05.00125975957
  • D’AmelioP, IsaiaGC. The use of raloxifene in osteoporosis treatment. Expert Opin Pharmacother. 2013;14(7):949–956. doi:10.1517/14656566.2013.78200223521229
  • WatersEA, McNeelTS, StevensWM, FreedmanAN. Use of tamoxifen and raloxifene for breast cancer chemoprevention in 2010. Breast Cancer Res Treat. 2012;134(2):875–880. doi:10.1007/s10549-012-2089-222622807
  • LippmanME, CummingsSR, DischDP, et al. Effect of raloxifene on the incidence of invasive breast cancer in postmenopausal women with osteoporosis categorized by breast cancer risk. Clin Cancer Res. 2006;12(17):5242–5247. doi:10.1158/1078-0432.CCR-06-068816951244
  • ShahRR, StonierPD. Repurposing old drugs in oncology: opportunities with clinical and regulatory challenges ahead. J Clin Pharm Ther. 2019;44(1):6–22.30218625
  • DenslowA, ŚwitalskaM, JaroszJ, et al. Clopidogrel in a combined therapy with anticancer drugs—effect on tumor growth, metastasis, and treatment toxicity: studies in animal models. PLoS One. 2017;12(12):e0188740. doi:10.1371/journal.pone.018874029206871
  • WhiteC, AlshakerH, CooperC, WinklerM, PchejetskiD. The emerging role of FTY720 (Fingolimod) in cancer treatment. Oncotarget. 2016;7(17):23106. doi:10.18632/oncotarget.714527036015
  • PantziarkaP, BoucheG, MeheusL, SukhatmeV, SukhatmeVP, VikasP. The repurposing drugs in oncology (ReDO) project. Ecancermedicalscience. 2014;8. doi:10.3332/ecancer.2014.485
  • BarokM, IsolaJ, Pályi-KrekkZ, et al. Trastuzumab causes antibody-dependent cellular cytotoxicity–mediated growth inhibition of submacroscopic JIMT-1 breast cancer xenografts despite intrinsic drug resistance. Mol Cancer Ther. 2007;6(7):2065–2072. doi:10.1158/1535-7163.MCT-06-076617620435
  • ClynesRA, TowersTL, PrestaLG, RavetchJV. Inhibitory Fc receptors modulate in vivo cytotoxicity against tumor targets. Nat Med. 2000;6(4):443–446. doi:10.1038/7470410742152
  • PantziarkaP, BoucheG, MeheusL, SukhatmeV, SukhatmeVP. Repurposing drugs in oncology (ReDO) - mebendazole as an anti-cancer agent. Ecancermedicalscience. 2014;8(1). doi:10.3332/ecancer.2014.443
  • NagataY, LanK, ZhouX, et al. PTEN activation contributes to tumor inhibition by trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients. Cancer Cell. 2004;6(2):117–127. doi:10.1016/j.ccr.2004.06.02215324695
  • MoasserM. Targeting the function of the HER2 oncogene in human cancer therapeutics. Oncogene. 2007;26(46):6577–6592. doi:10.1038/sj.onc.121047817486079
  • ShiY, FanX, MengW, DengH, ZhangN, AnZ. Engagement of immune effector cells by trastuzumab induces HER2/ERBB2 downregulation in cancer cells through STAT1 activation. Breast Cancer Res. 2014;16(2):R33. doi:10.1186/bcr363724693969
  • ScaltritiM, RojoF, OcañaA, et al. Expression of p95HER2, a truncated form of the HER2 receptor, and response to anti-HER2 therapies in breast cancer. J Natl Cancer Inst. 2007;99(8):628–638. doi:10.1093/jnci/djk13417440164
  • NahtaR, YuD, HungMC, HortobagyiGN, EstevaFJ. Mechanisms of disease: understanding resistance to HER2-targeted therapy in human breast cancer. Nat Clin Pract Oncol. 2006;3(5):269–280. doi:10.1038/ncponc050916683005
  • NagyP, FriedländerE, TannerM, et al. Decreased accessibility and lack of activation of ErbB2 in JIMT-1, a herceptin-resistant, MUC4-expressing breast cancer cell line. Cancer Res. 2005;65(2):473–482.15695389
  • CampbellI, RussellS, ChoongD, et al. Mutation of the PIK3CA gene in ovarian and breast cancer. Cancer Res. 2004;64(21):7678–7681. doi:10.1158/0008-5472.CAN-04-293315520168
  • WarmerdamP, Van de WinkelJ, VlugA, WesterdaalN, CapelP. A single amino acid in the second Ig-like domain of the human Fc gamma receptor II is critical for human IgG2 binding. J Immunol. 1991;147(4):1338–1343.1831223
  • ChristiansonT, DohertyJ, LinY, et al. NH2-terminally truncated HER-2/neu protein: relationship with shedding of the extracellular domain and with prognostic factors in breast cancer. Cancer Res. 1998;58(22):5123–5129.9823322
  • U.S. Food and Drug Administration. FDA approves first PI3K inhibitor for breast cancer. FDA news release; 2019 Available from:https://www.fda.gov/news-events/press-announcements/fda-approves-first-pi3k-inhibitor-breast-cancer. Accessed 113, 2020.
  • QuandtD, FiedlerE, BoettcherD, MarschWC, SeligerB. B7-h4 expression in human melanoma: its association with patients’ survival and antitumor immune response. Clin Cancer Res. 2011;17(10):3100–3111.21378130
  • SwainSM, BaselgaJ, KimS-B, et al. Pertuzumab, trastuzumab, and docetaxel in HER2-positive metastatic breast cancer. N Engl J Med. 2015;372(8):724–734. doi:10.1056/NEJMoa141351325693012
  • IshiiK, MoriiN, YamashiroH. Pertuzumab in the treatment of HER2-positive breast cancer: an evidence-based review of its safety, efficacy, and place in therapy. Core Evid. 2019;14:51–70. doi:10.2147/ce.s21784831802990
  • ZhangX, ChenJ, WengZ, et al. A new anti-HER2 antibody that enhances the anti-tumor efficacy of trastuzumab and pertuzumab with a distinct mechanism of action. Mol Immunol. 2020;119:48–58. doi:10.1016/j.molimm.2020.01.00931978707
  • QinH, LiuL, SunS, et al. The impact of PI3K inhibitors on breast cancer cell and its tumor microenvironment. PeerJ. 2018;6:e5092. doi:10.7717/peerj.509229942710
  • TranB, BedardPL. Luminal-B breast cancer and novel therapeutic targets. Breast Cancer Res. 2011;13(6):221. doi:10.1186/bcr290422217398
  • TongCWS, WuM, ChoW, ToKKW. Recent advances in the treatment of breast cancer. Front Oncol. 2018;8:227. doi:10.3389/fonc.2018.0022729963498
  • BarokM, JoensuuH, IsolaJ. Trastuzumab emtansine: mechanisms of action and drug resistance. Breast Cancer Res. 2014;16(2):1–12. doi:10.1186/bcr3621
  • ModiS, SauraC, YamashitaT, et al. Trastuzumab deruxtecan in previously treated HER2-positive breast cancer. N Engl J Med. 2020;382(7):610–621. doi:10.1056/NEJMoa191451031825192
  • BegovacMQTc prolongation in patients treated with trastuzumab and ado-trastuzumab-emtazine; 2019 Available from:https://repozitorij.mef.unizg.hr/islandora/object/mef:2463. Accessed 113, 2020.
  • HunterFW, BarkerHR, LipertB, et al. Mechanisms of resistance to trastuzumab emtansine (T-DM1) in HER2-positive breast cancer. Br J Cancer. 2019;122(5):603–612. doi:10.1158/1535-7163.MCT-17-029631839676
  • ModiS, TsurutaniJ, TamuraK, et al. Trastuzumab deruxtecan (DS-8201a) in subjects with HER2-low expressing breast cancer: updated results of a large phase 1 study. Cancer Res. 2019;79(4Suppl):P6–17.
  • SkidmoreL, SakamuriS, KnudsenN, et al. ARX788, a site-specific anti-HER2 antibody drug conjugate, demonstrates potent and selective activity in HER2 low and T-DM1 resistant breast and gastric cancers. Mol Cancer Ther. 2020:molcanther.1004.2019. doi:10.1158/1535-7163.MCT-19-1004.
  • NewmanDJ, CraggGM. Current status of marine-derived compounds as warheads in anti-tumor drug candidates. Mar Drugs. 2017;15(4):99. doi:10.3390/md15040099
  • BarokM, Le JoncourV, MartinsA, et al. ARX788, a novel anti-HER2 antibody-drug conjugate, shows anti-tumor effects in preclinical models of trastuzumab emtansine-resistant HER2-positive breast cancer and gastric cancer. Cancer Lett. 2020;473:156–163. doi:10.1016/j.canlet.2019.12.03731904483
  • RinnerthalerG, GampenriederSP, GreilR. HER2 directed antibody-drug-conjugates beyond T-DM1 in breast cancer. Int J Mol Sci. 2019;20(5):1115. doi:10.3390/ijms20051115
  • YurkovetskiyA, GumerovD, Ter-OvanesyanE, et al. Non-clinical pharmacokinetics of XMT-1522, a HER2 targeting auristatin-based antibody drug conjugate. Cancer Res. 2017;77(13):48. doi:10.1158/1538-7445.AM2017-48
  • BergstromDA, BodyakN, ParkPU, et al. Abstract P4-14-28: XMT-1522 induces tumor regressions in pre-clinical models representing HER2-positive and HER2 low-expressing breast cancer. 2016. doi:10.1158/1538-7445.SABCS15-P4-14-28
  • TraoreT, KhattarM. Abstract lb-294: synergy of an anti-HER2 ADC TAK-522 (XMT-1522) in combination with anti-PD1 monoclonal antibody (MAB) in a syngeneic breast cancer model expressing human HER2. 2018. doi:10.1158/1538-7445.AM2018-LB-294
  • MurphyCG, ModiS. HER2 breast cancer therapies: a review. Biol Targets Ther. 2009;3:289–301. doi:10.2147/BTT.S3479
  • RabindranSK, DiscafaniCM, RosfjordEC, et al. Antitumor activity of HKI-272, an orally active, irreversible inhibitor of the HER-2 tyrosine kinase. Cancer Res. 2004;64(11):3958–3965. doi:10.1158/0008-5472.CAN-03-286815173008
  • LiM, HiranoK, IkedaY, et al. Triglyceride deposit cardiomyovasculopathy: a rare cardiovascular disorder. Orphanet J Rare Dis. 2019;14(1):1–9. doi:10.1186/s13023-019-1087-430606190
  • MoulderSL, BorgesVF, BaetzT, et al. Phase I study of ONT-380, a HER2 inhibitor, in patients with HER2+-advanced solid tumors, with an expansion cohort in HER2+ metastatic breast cancer (MBC). Clin Cancer Res. 2017;23(14):3529–3536. doi:10.1158/1078-0432.CCR-16-149628053022
  • MurthyR, BorgesVF, ConlinA, et al. Tucatinib with capecitabine and trastuzumab in advanced HER2-positive metastatic breast cancer with and without brain metastases: a non-randomised, open-label, phase 1b study. Lancet Oncol. 2018;19(7):880–888. doi:10.1016/S1470-2045(18)30256-029804905
  • MurthyRK, LoiS, OkinesA, et al. Tucatinib, trastuzumab, and capecitabine for HER2-positive metastatic breast cancer. N Engl J Med. 2020;382(7):597–609. doi:10.1056/NEJMoa191460931825569
  • BonnefoiH, GrelletyT, TredanO, et al. A phase II trial of abiraterone acetate plus prednisone in patients with triple-negative androgen receptor positive locally advanced or metastatic breast cancer (UCBG 12-1). Ann Oncol. 2016;27(5):812–818. doi:10.1093/annonc/mdw06727052658
  • SubramanianS, PrasannaR, BiswasG, et al. Nanosomal docetaxel lipid suspension-based chemotherapy in breast cancer: results from a multicenter retrospective study. Breast Cancer Targets Ther. 2020;12:77–85. doi:10.2147/BCTT.S236108
  • LoiblS, FurlanettoJ. Targeting the immune system in breast cancer: hype or hope?: TILs and newer immune-based therapies being evaluated for HER2+ and TNBC. Curr Breast Cancer Rep. 2015;7(4):203–209. doi:10.1007/s12609-015-0193-0
  • VerweijJ, ClavelM, ChevalierB. Paclitaxel (TaxolTM) and docetaxel (TaxotereTM): not simply two of a kind. Ann Oncol. 1994;5(6):495–505. doi:10.1093/oxfordjournals.annonc.a0589037918121
  • NorouziS, Gorgi ValokalaM, MosaffaF, ZirakMR, ZamaniP, BehravanJ. Crosstalk in cancer resistance and metastasis. Crit Rev Oncol Hematol. 2018;132:145–153. doi:10.1016/j.critrevonc.2018.09.01730447920
  • PonnusamyL, MahalingaiahPKS, ChangYW, SinghKP. Reversal of epigenetic aberrations associated with the acquisition of doxorubicin resistance restores drug sensitivity in breast cancer cells. Eur J Pharm Sci. 2018;123:56–69. doi:10.1016/j.ejps.2018.07.02830016648
  • TangY, WangY, KianiMF, WangB. Classification, treatment strategy, and associated drug resistance in breast cancer. Clin Breast Cancer. 2016;16(5):335–343. doi:10.1016/j.clbc.2016.05.01227268750
  • YuD, WuY, ShenH, et al. Exosomes in development, metastasis and drug resistance of breast cancer. Cancer Sci. 2015;106(8):959–964. doi:10.1111/cas.1271526052865
  • JiX, LuY, TianH, MengX, WeiM, ChoWC. Chemoresistance mechanisms of breast cancer and their countermeasures. Biomed Pharmacother. 2019;114:108800. doi:10.1016/j.biopha.2019.10880030921705
  • JingX, ZhangH, HuJ, et al. β-arrestin 2 is associated with multidrug resistance in breast cancer cells through regulating MDR1 gene expression. Int J Clin Exp Pathol. 2015;8(2):1354–1363.25973019
  • GaoX, WuY, QiaoL, FengX. SENP2 suppresses NF-κB activation and sensitizes breast cancer cells to doxorubicin. Eur J Pharmacol. 2019;854:179–186. doi:10.1016/j.ejphar.2019.03.05130940449
  • Dueñas-GonzalezA, CoronelJ, CetinaL, González-FierroA, Chavez-BlancoA, Taja-ChayebL. Hydralazine-valproate: a repositioned drug combination for the epigenetic therapy of cancer. Expert Opin Drug Metab Toxicol. 2014;10(10):1433–1444. doi:10.1517/17425255.2014.94726325154405
  • TanC, HuW, HeY, et al. Cytokine-mediated therapeutic resistance in breast cancer. Cytokine. 2018;108:151–159. doi:10.1016/j.cyto.2018.03.02029609137
  • DeMicheleA, YeeD, EssermanL. Mechanisms of resistance to neoadjuvant chemotherapy in breast cancer. N Engl J Med. 2017;377(23):2287–2289. doi:10.1056/NEJMcibr171154529211674
  • TsuruoT, NaitoM, TomidaA, et al. Molecular targeting therapy of cancer: drug resistance, apoptosis and survival signal. Cancer Sci. 2003;94(1):15–21. doi:10.1111/j.1349-7006.2003.tb01345.x12708468
  • HasimMS, NessimC, VilleneuvePJ, VanderhydenBC, DimitroulakosJ. Activating transcription factor 3 as a novel regulator of chemotherapy response in breast cancer. Transl Oncol. 2018;11(4):988–998. doi:10.1016/j.tranon.2018.06.00129940414
  • DavisT, van NiekerkG, PeresJ, PrinceS, LoosB, EngelbrechtAM. Doxorubicin resistance in breast cancer: a novel role for the human protein AHNAK. Biochem Pharmacol. 2018;148:174–183. doi:10.1016/j.bcp.2018.01.01229309757
  • CrownJ. A review of the efficacy and safety of docetaxel as monotherapy in metastatic breast cancer. Semin Oncol. 1999;26(1supl. 3):5–9.10203264
  • JaziehK, BellR, AgarwalN, AbrahamJ. Novel targeted therapies for metastatic breast cancer. Ann Transl Med. 2020;8(14):907. doi:10.21037/atm.2020.03.4332793751
  • GhaderiF, AhmadvandS, RamezaniA, MontazerM, GhaderiA. Production and characterization of monoclonal antibody against a triple negative breast cancer cell line. Biochem Biophys Res Commun. 2018;505(1):181–186. doi:10.1016/j.bbrc.2018.09.08730243716
  • MaruthanilaVL, ElancheranR, KunnumakkaraAB, KabilanS, KotokyJ. Recent development of targeted approaches for the treatment of breast cancer. Breast Cancer. 2017;24(2):191–219. doi:10.1007/s12282-016-0732-127796923
  • EstevaFJ, Hubbard-LuceyVM, TangJ, PusztaiL. Immunotherapy and targeted therapy combinations in metastatic breast cancer. Lancet Oncol. 2019;20(3):e175–e186. doi:10.1016/S1470-2045(19)30026-930842061
  • Le DuF, PerrinC, BrunotA, et al. Therapeutic innovations in breast cancer. Presse Med. 2019;48(10):1131–1137. doi:10.1016/j.lpm.2019.04.00531151842
  • MiklavčičD, MaliB, KosB, HellerR, SeršaG. Electrochemotherapy: from the drawing board into medical practice. Biomed Eng Online. 2014;13(1):1–20. doi:10.1186/1475-925X-13-2924410918
  • MittalL, AryalUK, CamarilloIG, RamanV, SundararajanR. Effective electrochemotherapy with curcumin in MDA-MB-231-human, triple negative breast cancer cells: a global proteomics study. Bioelectrochemistry. 2020;131:107350. doi:10.1016/j.bioelechem.2019.10735031518962
  • MittalL, RamanV, CamarilloIG, GarnerAL, SundararajanR. Viability and cell cycle studies of metastatic triple negative breast cancer cells using low voltage electrical pulses and herbal curcumin. Biomed Phys Eng Express. 2019;5(2):25040. doi:10.1088/2057-1976/aaf2c3
  • MittalL, CamarilloIG, VaradarajanGS, SrinivasanH, AryalUK, SundararajanR. High-throughput, label-free quantitative proteomic studies of the anticancer effects of electrical pulses with turmeric silver nanoparticles: an in vitro model study. Sci Rep. 2020;10(1):1–18. doi:10.1038/s41598-020-64128-831913322
  • AhmadA, SheikhS, TaranR, et al. Therapeutic efficacy of a novel nanosomal docetaxel lipid suspension compared with taxotere in locally advanced or metastatic breast cancer patients. Clin Breast Cancer. 2014;14(3):177–181. doi:10.1016/j.clbc.2013.09.01124287370
  • MosesC, Garcia-BlojB, HarveyAR, BlancafortP. Hallmarks of cancer: the CRISPR generation. Eur J Cancer. 2018;93:10–18. doi:10.1016/j.ejca.2018.01.00229433054
  • WangH, SunW. CRISPR-mediated targeting of HER2 inhibits cell proliferation through a dominant negative mutation. Cancer Lett. 2017;385:137–143. doi:10.1016/j.canlet.2016.10.03327815036
  • LiuB, SaberA, HaismaHJ. CRISPR/Cas9: a powerful tool for identification of new targets for cancer treatment. Drug Discov Today. 2019;24(4):955–970. doi:10.1016/j.drudis.2019.02.01130849442
  • YiL, LiJ. CRISPR-Cas9 therapeutics in cancer: promising strategies and present challenges. Biochim Biophys Acta Rev Cancer. 2016;1866(2):197–207. doi:10.1016/j.bbcan.2016.09.002
  • MugheesM, KumarK, WajidS. Exosome vesicle as a nano-therapeutic carrier for breast cancer. J Drug Target. 2020;8:1–28. doi:10.1080/1061186X.2020.1808001
  • YongT, ZhangX, BieN, et al. Tumor exosome-based nanoparticles are efficient drug carriers for chemotherapy. Nat Commun. 2019;10(1). doi:10.1038/s41467-019-11718-4
  • NassarFJ, NasrR, TalhoukR. MicroRNAs as biomarkers for early breast cancer diagnosis, prognosis and therapy prediction. Pharmacol Ther. 2017;172:34–49. doi:10.1016/j.pharmthera.2016.11.01227916656
  • ÇalışkanM, GülerH, Bozok ÇetintaşV. Current updates on microRNAs as regulators of chemoresistance. Biomed Pharmacother. 2017;95:1000–1012. doi:10.1016/j.biopha.2017.08.08428922711
  • TomarD, YadavaAS, KumarD, BhadauriyaG, KunduGC. Non-coding RNAs as potential therapeutic targets in breast cancer. Biochim Biophys Acta Gene Regul Mech. 2019;863(4):194. doi:10.1016/j.bbagrm.2019.04.005
  • HoussenME, GhazyHF, FaragK, et al. Serum atrial natriuretic peptide: a suspected biomarker of breast cancer. Contemp Oncol. 2017;21(1):54. doi:10.5114/wo.2017.66657
  • AleckK, HallmanK, QuigleyM, et al. Effects of atrial natriuretic peptide on p53 and estrogen receptor in breast cancer cells. BioResearch. 2017;6(1):141–150. doi:10.1089/biores.2017.0009
  • Van NuffelAMT, SukhatmeV, PantziarkaP, MeheusL, SukhatmeVP, BoucheG. Repurposing drugs in oncology (ReDO) - clarithromycin as an anti-cancer agent. Ecancermedicalscience. 2015;9:1–26. doi:10.3332/ecancer.2015.513
  • GriffinF, MarignolL. Therapeutic potential of melatonin for breast cancer radiation therapy patients. Int J Radiat Biol. 2018;94(5):472–477. doi:10.1080/09553002.2018.144622729521142
  • AmaralMEA, NeryLR, LeiteCE, de AzevedoWF, CamposMM. Pre-clinical effects of metformin and aspirin on the cell lines of different breast cancer subtypes. Invest New Drugs. 2018;36(5):782–796. doi:10.1007/s10637-018-0568-y29392539
  • SharmaN, ThomasS, GoldenEB, et al. Inhibition of autophagy and induction of breast cancer cell death by mefloquine, an antimalarial agent. Cancer Lett. 2012;326(2):143–154. doi:10.1016/j.canlet.2012.07.02922863539
  • LambR, OzsvariB, LisantiCL, et al. Antibiotics that target mitochondria effectively eradicate cancer stem cells, across multiple tumor types: treating cancer like an infectious disease. Oncotarget. 2015;6(7):4569. doi:10.18632/oncotarget.317425625193
  • IshidaJ, KonishiM, EbnerN, SpringerJ. Repurposing of approved cardiovascular drugs. J Transl Med. 2016;14(1):269. doi:10.1186/s12967-016-1031-527646033
  • GraçaI, SousaEJ, Costa-PinheiroP, et al. Anti-neoplastic properties of hydralazine in prostate cancer. Oncotarget. 2014;5(15):5950–5964. doi:10.18632/oncotarget.190924797896
  • LiuB, HuangX, HuY, et al. Ethacrynic acid improves the antitumor effects of irreversible epidermal growth factor receptor tyrosine kinase inhibitors in breast cancer. Oncotarget. 2016;7(36):58038. doi:10.18632/oncotarget.1084627487128
  • NiuG, LiaoZ, CaiL, WeiR, SunL. The combined effects of celecoxib and minocycline hydrochloride on inhibiting the osseous metastasis of breast cancer in nude mice. Cancer Biother Radiopharm. 2008;23(4):469–476. doi:10.1089/cbr.2008.047518771351
  • HuJ, LjubimovaJY, InoueS, et al. Phosphodiesterase type 5 inhibitors increase Herceptin transport and treatment efficacy in mouse metastatic brain tumor models. PLoS One. 2010;5(4):e10108. doi:10.1371/journal.pone.001010820419092
  • PantziarkaP, BryanBA, CrispinoS, DickersonEB. Propranolol and breast cancer—a work in progress. Ecancermedicalscience. 2018;12:1–6. doi:10.3332/ecancer.2018.ed82
  • Chamaraux-TranTN, MathelinC, AprahamianM, et al. Antitumor effects of lidocaine on human breast cancer cells: an in vitro and in vivo experimental trial. Anticancer Res. 2018;38(1):95–105. doi:10.21873/anticanres.1219629277761
  • ParkS-H, ChungYM, MaJ, YangQ, BerekJS, HuMCT. Pharmacological activation of FOXO3 suppresses triple-negative breast cancer in vitro and in vivo. Oncotarget. 2016;7(27):42110. doi:10.18632/oncotarget.988127283899
  • ChenC-T, ChenY-C, YamaguchiH, HungM-C. Carglumic acid promotes apoptosis and suppresses cancer cell proliferation in vitro and in vivo. Am J Cancer Res. 2015;5(12):3560.26885446
  • TuryS, AssayagF, BoninF, et al. The iron chelator deferasirox synergises with chemotherapy to treat triple‐negative breast cancers. J Pathol. 2018;246(1):103–114. doi:10.1002/path.510429876931
  • GohW, Sleptsova-FreidrichI, PetrovicN. Use of proton pump inhibitors as adjunct treatment for triple-negative breast cancers. An introductory study. J Pharm Pharm Sci. 2014;17(3):439–446. doi:10.18433/j3460825224353
  • GreenshieldsAL, FernandoW, HoskinDW. The anti-malarial drug artesunate causes cell cycle arrest and apoptosis of triple-negative MDA-MB-468 and HER2-enriched SK-BR-3 breast cancer cells. Exp Mol Pathol. 2019;107:10–22. doi:10.1016/j.yexmp.2019.01.00630660598
  • TalaricoG, OrecchioniS, DallaglioK, et al. Aspirin and atenolol enhance metformin activity against breast cancer by targeting both neoplastic and microenvironment cells. Sci Rep. 2016;6:18673. doi:10.1038/srep1867326728433
  • ZhangL, WangX, ChenP. MiR-204 down regulates SIRT1 and reverts SIRT1-induced epithelial-mesenchymal transition, anoikis resistance and invasion in gastric cancer cells. BMC Cancer. 2013;13:1–9. doi:10.1186/1471-2407-13-29023282137
  • ZengH, WangL, WangJ, et al. microRNA-129-5p suppresses Adriamycin resistance in breast cancer by targeting SOX2. Arch Biochem Biophys. 2018;651:52–60. doi:10.1016/j.abb.2018.05.01829802821
  • CochraneD, SpoelstraN, HoweE, NordeenS, RicherJ. MicroRNA-200c mitigates invasiveness and restores sensitivity to microtubule-targeting chemotherapeutic agents. Mol Cancer Ther. 2009;8(5):1055–1066. doi:10.1158/1535-7163.MCT-08-104619435871
  • BianX, LiangZ, FengA, SalgadoE, ShimH. HDAC inhibitor suppresses proliferation and invasion of breast cancer cells through regulation of miR-200c targeting CRKL. Biochem Pharmacol. 2018;147:30–37. doi:10.1016/j.bcp.2017.11.00829155146
  • HanB, HuangJ, HanY, et al. The microRNA miR-181c enhances chemosensitivity and reduces chemoresistance in breast cancer cells via down-regulating osteopontin. Int J Biol Macromol. 2019;125:544–556. doi:10.1016/j.ijbiomac.2018.12.07530537505
  • GaoL, GuoQ, LiX, et al. MiR-873/PD-L1 axis regulates the stemness of breast cancer cells. EBioMedicine. 2019;41:395–407. doi:10.1016/j.ebiom.2019.02.03430803931
  • SetijonoSR, ParkM, KimO, KimY, Won ChoK, Jung SongS. miR-218 and miR-129 regulate breast cancer progression by targeting Lamins. Biochem Biophys Res Commun. 2018;496(3):826–833. doi:10.1016/j.bbrc.2018.01.14629378184
  • MuluhngwiP, KlingeCM. Identification of miRNAs as biomarkers for acquired endocrine resistance in breast cancer. Mol Cell Endocrinol. 2017;456:76–86. doi:10.1016/j.mce.2017.02.00428163101
  • Kagepura ThammaiahC, JayaramS. Role of let-7 family microRNA in breast cancer. Non-Coding RNA Res. 2016;1(1):77–82. doi:10.1016/j.ncrna.2016.10.003
  • LiB, LuY, YuL, et al. miR-221/222 promote cancer stem-like cell properties and tumor growth of breast cancer via targeting PTEN and sustained Akt/NF-κB/COX-2 activation. Chem Biol Interact. 2017;277:33–42. doi:10.1016/j.cbi.2017.08.01428844858
  • EissaS, MatboliM, SharawyA, El-SharkawiF. Prognostic and biological significance of microRNA-221 in breast cancer. Gene. 2015;574(1):163–167. doi:10.1016/j.gene.2015.08.00426253160
  • GengW, SongH, ZhaoQ, et al. MiR-520h stimulates drug resistance to paclitaxel by targeting the OTUD3-PTEN axis in breast cancer. Biomed Res Int. 2020;2020:1–11. doi:10.1155/2020/9512793