252
Views
3
CrossRef citations to date
0
Altmetric
Original Research

FOXQ1 is Differentially Expressed Across Breast Cancer Subtypes with Low Expression Associated with Poor Overall Survival

, , , , , , & ORCID Icon show all
Pages 171-188 | Published online: 01 Mar 2021

References

  • FengY, SpeziaM, HuangS, et al. Breast cancer development and progression: risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis. Genes Dis. 2018;5(2):77–106. doi:10.1016/J.GENDIS.2018.05.00130258937
  • BadveS, DabbsDJ, SchnittSJ, et al. Basal-like and triple-negative breast cancers: a critical review with an emphasis on the implications for pathologists and oncologists. Nat Rev. 2011;157–167. doi:10.1038/modpathol.2010.200.
  • PolyakK. Heterogeneity in breast cancer. J Clin Invest. 2011;121(10):3786–3788. doi:10.1172/JCI6053421965334
  • BlowsFM, DriverKE, SchmidtMK, et al. Subtyping of breast cancer by immunohistochemistry to investigate a relationship between subtype and short and long term survival: a collaborative analysis of data for 10,159 cases from 12 studies. PLoS Med. 2010;7(5):e1000279. doi:10.1371/journal.pmed.100027920520800
  • PratA, AdamoB, CheangMCU, AndersCK, CareyLA, PerouCM. Molecular characterization of basal-like and non-basal-like triple-negative breast cancer. Oncologist. 2013;18(2):123–133. doi:10.1634/theoncologist.2012-039723404817
  • LiY, TangX-Q, BaiZ, DaiX. Exploring the intrinsic differences among breast tumor subtypes defined using immunohistochemistry markers based on the decision tree. Sci Rep. 2016;6(1):35773. doi:10.1038/srep3577327786176
  • BuffaFM, CampsC, WinchesterL, et al. microRNA-associated progression pathways and potential therapeutic targets identified by integrated mRNA and microRNA expression profiling in breast cancer. Cancer Res. 2011;71(17):5635–5645. doi:10.1158/0008-5472.CAN-11-048921737487
  • BlenkironC, GoldsteinLD, ThorneNP, et al. MicroRNA expression profiling of human breast cancer identifies new markers of tumor subtype. Genome Biol. 2007;8(10):R214. doi:10.1186/gb-2007-8-10-r21417922911
  • WalkerRA. Immunohistochemical markers as predictive tools for breast cancer. J Clin Pathol. 2008;61(6):689–696. doi:10.1136/JCP.2006.04183018037665
  • PerezEA. Breast cancer management: opportunities and barriers to an individualized approach. Oncologist. 2011;16(S1):20–22. doi:10.1634/theoncologist.2011-s1-2021278437
  • PerouCM, SørileT, EisenMB, et al. Molecular portraits of human breast tumours. Nature. 2000;406(6797):747–752. doi:10.1038/3502109310963602
  • SørlieT, PerouCM, TibshiraniR, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A. 2001;98(19):10869–10874. doi:10.1073/pnas.19136709811553815
  • HannenhalliS, KaestnerKH. The evolution of Fox genes and their role in development and disease. Nat Rev. 2009;10(4):233–240. doi:10.1038/nrg2523
  • LamEW, BrosensJJ, GomesAR, KooCY. Forkhead box proteins: tuning forks for transcriptional harmony. Nat Rev Cancer. 2013;13(7):482–495. doi:10.1038/nrc353923792361
  • ElianFA, YanE, WalterMA, et al. FOXC1, the new player in the cancer sandbox. Oncotarget. 2018;9(8):8165–8178. doi:10.18632/oncotarget.2274229487724
  • BachD-H, LongN, LuuTTT, et al. The dominant role of forkhead box proteins in cancer. Int J Mol Sci. 2018;19(10):3279. doi:10.3390/ijms19103279
  • KalinTV, WangIC, AckersonTJ, et al. Increased levels of the FoxM1 transcription factor accelerate development and progression of prostate carcinomas in both TRAMP and LADY transgenic mice. Cancer Res. 2006;66(3):1712–1720. doi:10.1158/0008-5472.CAN-05-313816452231
  • PaikJH, KolliparaR, ChuG, et al. FoxOs are lineage-restricted redundant tumor suppressors and regulate endothelial cell homeostasis. Cell. 2007;128(2):309–323. doi:10.1016/j.cell.2006.12.02917254969
  • WangQ-S, KongP-Z, LiX-Q, YangF, FengY-M. FOXF2 deficiency promotes epithelial-mesenchymal transition and metastasis of basal-like breast cancer. Breast Cancer Res. 2015;17(1):30. doi:10.1186/s13058-015-0531-125848863
  • SongX, Fiati KenstonSS, ZhaoJ, YangD, GuY. Roles of FoxM1 in cell regulation and breast cancer targeting therapy. Med Oncol. 2017;34(3). doi:10.1007/s12032-017-0888-3
  • HurtadoA, HolmesKA, Ross-InnesCS, SchmidtD, CarrollJS. FOXA1 is a key determinant of estrogen receptor function and endocrine response. Nat Genet. 2011;43(1):27–33. doi:10.1038/ng.73021151129
  • LiY, ZhangY, YaoZ, LiS, YinZ, XuM. Forkhead box Q1: a key player in the pathogenesis of tumors (Review). Int J Oncol. 2016;49(1):51–58. doi:10.3892/ijo.2016.351727176124
  • KatohM, KatohM. Human FOX gene family (Review). Int J Oncol. 2004;25(5):1495–1500.15492844
  • HoggattAM, KriegelAM, SmithAF, HerringBP. Hepatocyte nuclear factor-3 homologue 1 (HFH-1) represses transcription of smooth muscle-specific genes. J Biol Chem. 2000;275(40):31162–31170. doi:10.1074/jbc.M00559520010896677
  • JonssonH, PengSL. Forkhead transcription factors in immunology. Cell Mol Life Sci. 2005;62(4):397–409. doi:10.1007/s00018-004-4365-815719167
  • AbbaM, PatilN, RasheedK, et al. Unraveling the role of FOXQ1 in colorectal cancer metastasis. Mol Cancer Res. 2013;11(9):1017–1028. doi:10.1158/1541-7786.MCR-13-002423723077
  • GaoM, ShihIM, WangTL. The role of forkhead box Q1 transcription factor in ovarian epithelial carcinomas. Int J Mol Sci. 2012;13:13881–13893. doi:10.3390/ijms13111388123203039
  • ZhangH, MengF, LiuG, et al. Forkhead transcription factor Foxq1 promotes epithelial–mesenchymal transition and breast cancer metastasis. Cancer Res. 2011;71(4):1292–1301. doi:10.1158/0008-5472.CAN-10-282521285253
  • KanedaH, AraoT, TanakaK, et al. FOXQ1 is overexpressed in colorectal cancer and enhances tumorigenicity and tumor growth. Cancer Res. 2010;70(5):2053–2063. doi:10.1158/0008-5472.CAN-09-216120145154
  • KimS-H, KaschulaCH, PriedigkeitN, LeeAV, SinghSV. Forkhead box Q1 is a novel target of breast cancer stem cell inhibition by diallyl trisulfide. J Biol Chem. 2016;291(26):13495–13508. doi:10.1074/jbc.M116.71521927129776
  • ZhanH, XuJ, WangL, WuD, ZhangG, HuS. FoxQ1 is a novel molecular target for pancreatic cancer and is associated with poor prognosis. Curr Mol Med. 2015;15(5):469–477. doi:10.2174/156652401566615063012524726122655
  • HanX, GuoX, ZhangW, CongQ. MicroRNA-937 inhibits the malignant phenotypes of breast cancer by directly targeting and downregulating forkhead box Q1. Onco Targets Ther. 2019;12:4813–4824. doi:10.2147/OTT.S20759331417280
  • WuX, GardashovaG, LanL, et al. Targeting the interaction between RNA-binding protein HuR and FOXQ1 suppresses breast cancer invasion and metastasis. Commun Biol. 2020;3(1):193. doi:10.1038/s42003-020-0933-132332873
  • AnayaJ. OncoLnc: linking TCGA survival data to mRNAs, miRNAs, and lncRNAs. PeerJ Comput Sci. 2016;2(6):e67. doi:10.7717/peerj-cs.67
  • TangZ, LiC, KangB, GaoG, LiC, ZhangZ. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 2017;45:W98–W102. doi:10.1093/nar/gkx24728407145
  • LiuJ, LichtenbergT, HoadleyKA, et al. An integrated TCGA pan-cancer clinical data resource to drive high-quality survival outcome analytics. Cell. 2018;173(2):400–416.e11. doi:10.1016/j.cell.2018.02.05229625055
  • ChandrashekarDS, BashelB, BalasubramanyaSAH, et al. UALCAN: a portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia (United States). 2017;19(8):649–658. doi:10.1016/j.neo.2017.05.002
  • ZhuJ, SanbornJZ, BenzS, et al. The UCSC cancer genomics browser. Nat Methods. 2009;6(4):239–240. doi:10.1038/nmeth0409-23919333237
  • BergerAC, KorkutA, KanchiRS, et al. A comprehensive pan-cancer molecular study of gynecologic and breast cancers. Cancer Cell. 2018;33(4):690–705.e9. doi:10.1016/j.ccell.2018.03.01429622464
  • RasnitsynA, DoucetteL, SeifiM, FootzT, RaymondV, WalterMA. FOXC1 modulates MYOC secretion through regulation of the exocytic proteins RAB3GAP1, RAB3GAP2 and SNAP25. PLoS One. 2017;12(6):e0178518. doi:10.1371/journal.pone.017851828575017
  • GaetanoCG, SamadiN, TomsigJL, MacdonaldTL, LynchKR, BrindleyDN. Inhibition of autotaxin production or activity blocks lysophosphatidylcholine-induced migration of human breast cancer and melanoma cells. Mol Carcinog. 2009;48(9):801–809. doi:10.1002/mc.2052419204929
  • SeifiM, FootzT, TaylorSAM, ElhadyGM, AbdallaEM, WalterMA. Novel PITX2 gene mutations in patients with Axenfeld-Rieger syndrome. Acta Ophthalmol. 2016;94(7):e571–e579. doi:10.1111/aos.1303027009473
  • PedregosaF, VaroquauxG, GramfortA, et al. Scikit-learn: machine learning in python. J Mach Learn Res. 2011;12:2825–2830.
  • WittenDM, TibshiraniRA. Framework for feature selection in clustering. J Am Stat Assoc. 2010;105(490):713–726. doi:10.1198/jasa.2010.tm0941520811510
  • BarretinaJ, CaponigroG, StranskyN, et al. The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature. 2012;483(7391):603–607. doi:10.1038/nature1100322460905
  • DaiX, ChengH, BaiZ, LiJ. Breast cancer cell line classification and its relevance with breast tumor subtyping. J Cancer. 2017;8(16):3131–3141. doi:10.7150/jca.1845729158785
  • NeveRM, ChinK, FridlyandJ, et al. A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell. 2006;10(6):515–527. doi:10.1016/j.ccr.2006.10.00817157791
  • Van’t VeerLJ, DaiH, Van de VijverMJ, et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature. 2002;415(6871):530–536. doi:10.1038/415530a11823860
  • LiB, DeweyCN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 2011;12(1):323. doi:10.1186/1471-2105-12-323
  • HoadleyKA, YauC, HinoueT, et al. Cell-of-origin patterns dominate the molecular classification of 10,000 tumors from 33 types of cancer. Cell. 2018;173(2):291–304.e6. doi:10.1016/j.cell.2018.03.02229625048
  • ShaoX, LvN, LiaoJ, et al. Copy number variation is highly correlated with differential gene expression: a pan-cancer study. BMC Med Genet. 2019;20(1):175. doi:10.1186/s12881-019-0909-531706287
  • WangS, LiGX, TanCC, et al. FOXF2 reprograms breast cancer cells into bone metastasis seeds. Nat Commun. 2019;10(1). doi:10.1038/S41467-019-10379-7
  • RossJB, HuhD, NobleLB, TavazoieSF. Identification of molecular determinants of primary and metastatic tumour re-initiation in breast cancer. Nat Cell Biol. 2015;17(5):651–664. doi:10.1038/ncb314825866923
  • MengF, SpeyerCL, ZhangB, et al. PDGFRα and β play critical roles in mediating Foxq1-driven breast cancer stemness and chemoresistance. Cancer Res. 2015;75(3):584–593. doi:10.1158/0008-5472.CAN-13-302925502837
  • CuiX, ZhangJ, LvJ, et al. Prognostic value of FOXQ1 in patients with malignant solid tumors: a meta-analysis. Onco Targets Ther. 2017;10:1777–1781. doi:10.2147/OTT.S13090528367060
  • WengW, OkugawaY, TodenS, ToiyamaY, KusunokiM, GoelA. FOXM1 and FOXQ1 are promising prognostic biomarkers and novel targets of tumor-suppressive miR-342 in human colorectal cancer. Clin Cancer Res. 2016;22(19):4947–4957. doi:10.1158/1078-0432.CCR-16-036027162244
  • LiangSH, YanXZ, WangBL, et al. Increased expression of FOXQ1 is a prognostic marker for patients with gastric cancer. Tumor Biol. 2013;34(5):2605–2609. doi:10.1007/s13277-013-0808-x
  • QiaoY, JiangX, LeeST, KaruturiRKM, HooiSC, YuQ. FOXQ1 regulates epithelial-mesenchymal transition in human cancers. Cancer Res. 2011;71(8):3076–3086. doi:10.1158/0008-5472.CAN-10-278721346143
  • MartínM, González-RiveraM, MoralesS, et al. Abstract P6-08-10: prospective study of the impact of the ProsignaTM assay on adjuvant clinical decision-making in women with estrogen receptor-positive, HER2-negative, node-negative breast cancer: a GEICAM study. Cancer Res. 2015. doi:10.1158/1538-7445.sabcs14-p6-08-10
  • PratA, CheangMCU, MartínM, et al. Prognostic significance of progesterone receptor-positive tumor cells within immunohistochemically defined luminal a breast cancer. J Clin Oncol. 2013;31(2):203–209. doi:10.1200/JCO.2012.43.413423233704
  • ChiaSK, BramwellVH, TuD, et al. A 50-gene intrinsic subtype classifier for prognosis and prediction of benefit from adjuvant tamoxifen. Clin Cancer Res. 2012;18(16):4465–4472. doi:10.1158/1078-0432.CCR-12-028622711706
  • CreightonCJ. The molecular profile of luminal B breast cancer. Biol Targets Ther. 2012;6:289–297. doi:10.2147/BTT.S29923
  • EllisMJ, TaoY, LuoJ, et al. Outcome prediction for estrogen receptor-positive breast cancer based on postneoadjuvant endocrine therapy tumor characteristics. J Natl Cancer Inst. 2008;100(19):1380–1388. doi:10.1093/jnci/djn30918812550
  • HirukawaA, SmithHW, ZuoD, et al. Targeting EZH2 reactivates a breast cancer subtype-specific anti-metastatic transcriptional program. Nat Commun. 2018;9(1):1–15. doi:10.1038/s41467-018-04864-829317637
  • MendesD, AlvesC, AfonsoN, et al. The benefit of HER2-targeted therapies on overall survival of patients with metastatic HER2-positive breast cancer - a systematic review. Breast Cancer Res. 2015;17(1):1–14. doi:10.1186/s13058-015-0648-225567532
  • DaiX, LiT, BaiZ, et al. Breast cancer intrinsic subtype classification, clinical use and future trends. Am J Cancer Res. 2015;5(10):2929–2943.26693050
  • KunduST, ByersLA, PengDH, et al. The miR-200 family and the miR-183~96~182 cluster target Foxf2 to inhibit invasion and metastasis in lung cancers. Oncogene. 2016;35(2):173–186. doi:10.1038/onc.2015.7125798833
  • LoP-K, LeeJS, LiangX, SukumarS. The dual role of FOXF2 in regulation of DNA replication and the epithelial-mesenchymal transition in breast cancer progression. Cell Signal. 2016;28(10):1502–1519. doi:10.1016/j.cellsig.2016.06.02127377963
  • SahuB, LaaksoM, OvaskaK, et al. Dual role of FoxA1 in androgen receptor binding to chromatin, androgen signalling and prostate cancer. EMBO J. 2011;30(19):3962–3976. doi:10.1038/emboj.2011.32821915096
  • BadveS, TurbinD, ThoratMA, et al. FOXA1 expression in breast cancer - Correlation with luminal subtype A and survival. Clin Cancer Res. 2007;13(15):4415–4421. doi:10.1158/1078-0432.CCR-07-012217671124
  • AlbergariaA, ParedesJ, SousaB, et al. Expression of FOXA1 and GATA-3 in breast cancer: the prognostic significance in hormone receptor-negative tumours. Breast Cancer Res. 2009;11(3). doi:10.1186/bcr2327
  • BernardoGM, BebekG, GintherCL, et al. FOXA1 represses the molecular phenotype of basal breast cancer cells. Oncogene. 2013;32(5):554–563. doi:10.1038/onc.2012.6222391567
  • van de VijverMJ, HeYD, van ’T VeerLJ, et al. A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med. 2002;347(25):1999–2009. doi:10.1056/NEJMoa02196712490681
  • ParkHS, JangMH, KimEJ, et al. High EGFR gene copy number predicts poor outcome in triple-negative breast cancer. Mod Pathol. 2014;27(9):1212–1222. doi:10.1038/modpathol.2013.25124406864
  • HymanE, KauraniemiP, HautaniemiS, et al. Impact of DNA amplification on gene expression patterns in breast cancer. Cancer Res. 2002;62(21):6240–6245.12414653
  • Al-HajjM, WichaMS, Benito-HernandezA, MorrisonSJ, ClarkeMF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A. 2003;100(7):3983–3988. doi:10.1073/pnas.053029110012629218
  • DontuG, Al-HajjM, AbdallahWM, ClarkeMF, WichaMS. Stem cells in normal breast development and breast cancer. Cell Prolif. 2003;36(1):59–72. doi:10.1046/j.1365-2184.36.s.1.6.x14521516
  • HardyK, WuF, TuW, et al. Identification of chromatin accessibility domains in human breast cancer stem cells. Nucleus. 2016;7(1):50–67. doi:10.1080/19491034.2016.115039226962893
  • BerryFB, SkarieJM, MirzayansF, et al. FOXC1 is required for cell viability and resistance to oxidative stress in the eye through the transcriptional regulation of FOXO1A. Hum Mol Genet. 2008;17(4):490–505. doi:10.1093/hmg/ddm32617993506
  • BradnerJE, HniszD, YoungRA. Transcriptional Addiction in Cancer. Cell. 2017;168(4):629–643. doi:10.1016/j.cell.2016.12.01328187285
  • LambertSA, JolmaA, CampitelliLF, et al. The human transcription factors. Cell. 2018;172(4):650–665. doi:10.1016/j.cell.2018.01.02929425488
  • KangL-J, YuZ-H, CaiJ, et al. Reciprocal transrepression between FOXF2 and FOXQ1 controls basal-like breast cancer aggressiveness. FASEB J. 2019;33:6564–6573. doi:10.1096/fj.201801916R30807702
  • RayPS, WangJ, QuY, et al. FOXC1 is a potential prognostic biomarker with functional significance in basal-like breast cancer. Cancer Res. 2010;70(10):3870–3877. doi:10.1158/0008-5472.CAN-09-412020406990
  • KongP-Z, YangF, LiL, LiX-Q, FengY-M. Decreased FOXF2 mRNA expression indicates early-onset metastasis and poor prognosis for breast cancer patients with histological grade II tumor. PLoS One. 2013;8(4):e61591. doi:10.1371/journal.pone.006159123620774
  • DoucetteLP, RasnitsynA, SeifiM, WalterMA. The interactions of genes, age, and environment in glaucoma pathogenesis. Surv Ophthalmol. 2015;60(4):310–326. doi:10.1016/j.survophthal.2015.01.00425907525
  • OrmestadM, AstorgaJ, LandgrenH, et al. Foxf1 and Foxf2 control murine gut development by limiting mesenchymal Wnt signaling and promoting extracellular matrix production. Development. 2006;133(5):833–843. doi:10.1242/dev.0225216439479
  • BademciG, AbadC, IncesuluA, et al. FOXF2 is required for cochlear development in humans and mice. Hum Mol Genet. 2018. doi:10.1093/hmg/ddy431
  • ChandaB, Asai-CoakwellM, YeM, et al. A novel mechanistic spectrum underlies glaucoma-associated chromosome 6p25 copy number variation. Hum Mol Genet. 2008;17(22):3446–3458. doi:10.1093/hmg/ddn23818694899
  • MearsAJ, JordanT, MirzayansF, et al. Mutations of the forkhead/winged-helix gene, FKHL7, in patients with axenfeld-rieger anomaly. Am J Hum Genet. 1998;63(5):1316–1328. doi:10.1086/3021099792859
  • MirzayansF, MearsAJ, GuoSW, PearceWG, WalterMA. Identification of the human chromosomal region containing the iridogoniodysgenesis anomaly locus by genomic-mismatch scanning. Am J Hum Genet. 1997;61(1):111–119. doi:10.1086/5138949245991
  • MearsAJ, MirzayansF, GouldDB, PearceWG, WalterMA. Autosomal dominant iridogoniodysgenesis anomaly maps to 6p25. Am J Hum Genet. 1996;59(6):1321–1327.8940278
  • WalterMA, MirzayansF, MearsAJ, HickeyK, PearceWG. Autosomal-dominant iridogoniodysgenesis and Axenfeld-Rieger syndrome are genetically distinct. Ophthalmology. 1996;103(11):1907–1915. doi:10.1016/S0161-6420(96)30408-98942889
  • ReisLM, TylerRC, Volkmann KlossBA, et al. PITX2 and FOXC1 spectrum of mutations in ocular syndromes. Eur J Hum Genet. 2012;20(12):1224–1233. doi:10.1038/ejhg.2012.8022569110
  • AnderlidBM, SchoumansJ, HallqvistÅ, et al. Cryptic subtelomeric 6p deletion in a girl with congenital malformations and severe language impairment. Eur J Hum Genet. 2003;11(1):89–92. doi:10.1038/sj.ejhg.520090712529712
  • KoboldtDC, FultonRS, McLellanMD, et al. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490(7418):61–70. doi:10.1038/nature1141223000897
  • CeramiE, GaoJ, DogrusozU, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2(5):401–404. doi:10.1158/2159-8290.CD-12-009522588877
  • GaoJ, AksoyBA, DogrusozU, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6(269):1. doi:10.1126/scisignal.2004088