494
Views
2
CrossRef citations to date
0
Altmetric
Review

Genetic Influences in Breast Cancer Drug Resistance

, , , ORCID Icon & ORCID Icon
Pages 59-85 | Published online: 09 Feb 2021

References

  • SiegelRL, MillerKD, JemalA. Cancer statistics, 2019. CA Cancer J Clin. 2019;69(1):7–34. doi:10.3322/caac.2155130620402
  • DeSantisCE, MaJ, GaudetMM, et al. Breast cancer statistics, 2019. CA Cancer J Clin. 2019;69(6):438–451. doi:10.3322/caac.2158331577379
  • Cancer Tomorrow. Available from: https://gco.iarc.fr/tomorrow/graphic-isotype?type=0&type_sex=0&mode=population&sex=2&populations=900&cancers=20&age_group=value&apc_male=0&apc_female=0&single_unit=500000&print=0. Accessed 613, 2020.
  • McDonaldES, ClarkAS, TchouJ, ZhangP, FreedmanGM. Clinical diagnosis and management of breast cancer. J Nucl Med. 2016;57(Supplement_1):9S–16S. doi:10.2967/jnumed.115.15783426834110
  • JunttilaTT, AkitaRW, ParsonsK, et al. Ligand-independent HER2/HER3/PI3K complex is disrupted by trastuzumab and is effectively inhibited by the PI3K inhibitor GDC-0941. Cancer Cell. 2009;15(5):429–440. doi:10.1016/j.ccr.2009.03.02019411071
  • ArnouldL, GellyM, Penault-LlorcaF, et al. Trastuzumab-based treatment of HER2-positive breast cancer: an antibody-dependent cellular cytotoxicity mechanism?Br J Cancer. 2006;94(2):259–267. doi:10.1038/sj.bjc.660293016404427
  • PerezEA, RomondEH, SumanVJ, et al. Trastuzumab plus adjuvant chemotherapy for human epidermal growth factor receptor 2-positive breast cancer: planned joint analysis of overall survival from NSABP B-31 and NCCTG N9831. J Clin Oncol. 2014;32(33):3744–3752. doi:10.1200/JCO.2014.55.573025332249
  • GianniL, PienkowskiT, ImY-H, et al. Efficacy and safety of neoadjuvant pertuzumab and trastuzumab in women with locally advanced, inflammatory, or early HER2-positive breast cancer (NeoSphere): a randomised multicentre, open-label, Phase 2 trial. Lancet Oncol. 2012;13(1):25–32. doi:10.1016/S1470-2045(11)70336-922153890
  • SchneeweissA, ChiaS, HickishT, et al. Pertuzumab plus trastuzumab in combination with standard neoadjuvant anthracycline-containing and anthracycline-free chemotherapy regimens in patients with HER2-positive early breast cancer: a randomized phase II cardiac safety study (TRYPHAENA). Ann Oncol. 2013;24(9):2278–2284. doi:10.1093/annonc/mdt18223704196
  • WellsBG, DiPiroJT, SchwinghammerTL, DiPiroCV. Pharmacotherapy Handbook. 9th ed. 2014.
  • ShaguftaAI, AhmadI. Tamoxifen a pioneering drug: an update on the therapeutic potential of tamoxifen derivatives. Eur J Med Chem. 2018;143:515–531. doi:10.1016/j.ejmech.2017.11.05629207335
  • DrǎgǎnescuM, CarmocanC. Hormone therapy in breast cancer. Chir. 2017;112(4):413–417. doi:10.21614/chirurgia.112.4.413
  • BursteinHJ, TeminS, AndersonH, et al. Adjuvant endocrine therapy for women with hormone receptor-positive breast cancer: American Society of Clinical Oncology clinical practice guideline focused update. J Clin Oncol. 2014;32(21):2255–2269. doi:10.1200/JCO.2013.54.225824868023
  • SenkusE, KyriakidesS, OhnoS, et al. Primary breast cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2015;26:v8–v30. doi:10.1093/annonc/mdv29826314782
  • GeislerJ, HaynesB, AnkerG, DowsettM, LønningPE. Influence of letrozole and anastrozole on total body aromatization and plasma estrogen levels in postmenopausal breast cancer patients evaluated in a randomized, cross-over study. J Clin Oncol. 2002;20(3):751‐757. doi:10.1200/JCO.2002.20.3.751
  • GeislerJ, KingN, AnkerG. In vivo inhibition of aromatization by exemestane, a novel irreversible aromatase inhibitor, in postmenopausal breast cancer patients. Clin Cancer Res. 1998;4(9):2089–2093.9748124
  • DowsettM, CuzickJ, IngleJ, et al. Meta-analysis of breast cancer outcomes in adjuvant trials of aromatase inhibitors versus tamoxifen. J Clin Oncol. 2010;28(3):509–518. doi:10.1200/JCO.2009.23.127419949017
  • CotéD, EustaceA, ToomeyS, et al. Germline single nucleotide polymorphisms in ERBB3 and BARD1 genes result in a worse relapse free survival response for HER2-positive breast cancer patients treated with adjuvant based docetaxel, carboplatin and trastuzumab (TCH). PLoS One. 2018;13(8):1–17. doi:10.1371/journal.pone.0200996
  • PolgarO, BatesSE. ABC transporters in the balance: is there a role in multidrug resistance?. Biochem Soc Trans. 2005;33(1):241–245. doi:10.1042/BST033024115667317
  • LongacreM, SnyderN, SarkarS. Drug resistance in cancer: an overview. Cancer. 2014;1769–1792. doi:10.3390/cancers6031769
  • GandhiN, DasG. Metabolic reprogramming in breast cancer and its therapeutic implications. Cells. 2019;8(89):1–33. doi:10.3390/cells8020089
  • MuleyH, FadóR, Rodríguez-rodríguezR, CasalsN. Drug uptake-based chemoresistance in breast cancer treatment. Biochem Pharmacol. 2020;177(January):113959. doi:10.1016/j.bcp.2020.11395932272110
  • RaghavD, SharmaV. An in silico evaluation of deleterious nonsynonymous single nucleotide polymorphisms in the ErbB3 oncogene. Biores Open Access. 2013;2(3):206–211. doi:10.1089/biores.2013.000723741632
  • ThussbasC, NahrigJ, StreitS, et al. FGFR4 Arg388 allele is associated with resistance to adjuvant therapy in primary breast cancer. J Clin Oncol. 2006;24(23):3747–3755. doi:10.1200/JCO.2005.04.858716822847
  • VulstekeC, PfeilAM, SchwenkglenksM, et al. Impact of genetic variability and treatment-related factors on outcome in early breast cancer patients receiving (neo-) adjuvant chemotherapy with 5-fluorouracil, epirubicin and cyclophosphamide, and docetaxel. Breast Cancer Res Treat. 2014;147(3):557–570. doi:10.1007/s10549-014-3105-525168315
  • YaoS, BarlowWE, AlbainKS, et al. Gene polymorphisms in cyclophosphamide metabolism pathway, treatment-related toxicity, and disease-free survival in SWOG 8897 clinical trial for breast cancer. Clin Cancer Res. 2010;16(24):6169–6176. doi:10.1158/1078-0432.CCR-10-028121169260
  • FalchookGS, MoulderS, NaingA, et al. A phase I trial of combination trastuzumab, lapatinib, and bevacizumab in patients with advanced cancer. Invest New Drugs. 2015;33(1):177–186. doi:10.1007/s10637-014-0173-725323060
  • HahnenE, LedererB, HaukeJ, et al. Germline mutation status, pathological complete response, and disease-free survival in triple-negative breast cancer: secondary analysis of the GeparSixto randomized clinical trial. JAMA Oncol. 2017;3(10):1378–1385. doi:10.1001/jamaoncol.2017.100728715532
  • AllegriniG, ColtelliL, OrlandiP, et al. Pharmacogenetic interaction analysis of VEGFR-2 and IL-8 polymorphisms in advanced breast cancer patients treated with paclitaxel and bevacizumab. Pharmacogenomics. 2014;15(16):1985–1999. doi:10.2217/pgs.14.14025521357
  • BabyshkinaN, ZavyalovaM, TarabanovskayaN, et al. Predictive value of vascular endothelial growth factor receptor type 2 in triple-negative breast cancer patients treated with neoadjuvant chemotherapy. Mol Cell Biochem. 2018;444(1–2):197–206. doi:10.1007/s11010-017-3244-129230610
  • BayarmaaB, WuZ, PengJ, et al. Association of LncRNA MEG3 polymorphisms with efficacy of neoadjuvant chemotherapy in breast cancer. BMC Cancer. 2019;19(1):877. doi:10.1186/s12885-019-6077-331488093
  • LeeSY, ImSA, ParkYH, et al. Genetic polymorphisms of SLC28A3, SLC29A1 and RRM1 predict clinical outcome in patients with metastatic breast cancer receiving gemcitabine plus paclitaxel chemotherapy. Eur J Cancer. 2014;50(4):698–705. doi:10.1016/j.ejca.2013.11.02824361227
  • DempseyJM, KidwellKM, GerschCL, et al. Effects of SLCO1B1 polymorphisms on plasma estrogen concentrations in women with breast cancer receiving aromatase inhibitors exemestane and letrozole. Pharmacogenomics. 2019;20(8):571–580. doi:10.2217/pgs-2019-002031190621
  • AhernTP, ChristensenM, Cronin-fentonDP, et al. Functional polymorphisms in UDP-glucuronosyl transferases and recurrence in tamoxifen-treated breast cancer survivors. Cancer Epidemiol Biomarkers Prev. 2011;20(9):1937–1943. doi:10.1158/1055-9965.EPI-11-041921750172
  • ChrisantharR, KnappskogS, LøkkevikE, et al. Predictive and prognostic impact of TP53 mutations and MDM2 promoter genotype in primary breast cancer patients treated with epirubicin or paclitaxel. PLoS One. 2011;6(4):e19249. doi:10.1371/journal.pone.001924921556366
  • TamuraK, ShimizuC, HojoT, et al. FcγR2A and 3A polymorphisms predict clinical outcome of trastuzumab in both neoadjuvant and metastatic settings in patients with HER2-positive breast cancer. Ann Oncol. 2011;22(6):1302–1307. doi:10.1093/annonc/mdq58521109570
  • MarméF, WerftW, WalterA, et al. CD24 ala57Val polymorphism predicts pathologic complete response to sequential anthracycline- and taxane-based neoadjuvant chemotherapy for primary breast cancer. Breast Cancer Res Treat. 2012;132(3):819–831. doi:10.1007/s10549-011-1759-921960110
  • BeelenK, OpdamM, SeversonTM, et al. CYP2C19*2 predicts substantial tamoxifen benefit in postmenopausal breast cancer patients randomized between adjuvant tamoxifen and no systemic treatment. Breast Cancer Res Treat. 2013;139(3):649–655. doi:10.1007/s10549-013-2568-023736997
  • ReganMM, Leyland-JonesB, BouzykM, et al. CYP2D6 genotype and tamoxifen response in postmenopausal women with endocrine-responsive breast cancer: the breast international group 1–98 trial. J Natl Cancer Inst. 2012;104(6):441–451. doi:10.1093/jnci/djs12522395644
  • DezentjéVO, Van SchaikRHN, Vletter-BogaartzJM, et al. CYP2D6 genotype in relation to tamoxifen efficacy in a Dutch cohort of the tamoxifen exemestane adjuvant multinational (TEAM) trial. Breast Cancer Res Treat. 2013;140(2):363–373. doi:10.1007/s10549-013-2619-623842856
  • NevenP, JongenL, LintermansA, et al. Tamoxifen metabolism and efficacy in breast cancer: a prospective multicenter trial. Clin Cancer Res. 2018;24(10):2312–2318. doi:10.1158/1078-0432.CCR-17-302829459457
  • Sanchez-SpitmanA, DezentjéV, DezentjéD, et al. Tamoxifen pharmacogenetics and metabolism: results from the prospective CYPTAM study. J Clin Oncol. 2019;37(8):636–646. doi:10.1200/JCO.1830676859
  • Madrid-ParedesA, Cañadas-GarreM, Sánchez-PozoA, Expósito-RuizM, Calleja-HernándezMÁ. ABCB1 gene polymorphisms and response to chemotherapy in breast cancer patients: a meta-analysis. Surg Oncol. 2017;26(4):473–482. doi:10.1016/j.suronc.2017.09.00429113667
  • ChaturvediP, TulsyanS, AgarwalG, et al. Influence of ABCB1 genetic variants in breast cancer treatment outcomes. Cancer Epidemiol. 2013;37(5):754–761. doi:10.1016/j.canep.2013.04.01223707158
  • KimJE, ChoiJ, ParkJY, et al. Associations between genetic polymorphisms of membrane transporter genes and prognosis after chemotherapy: meta-analysis and finding from Seoul breast cancer study (SEBCS). Pharmacogenomics J. 2018;18(5):633–645. doi:10.1038/s41397-018-0016-629618765
  • ArtigalásO, VanniT, HutzMH, Ashton-ProllaP, SchwartzIV. Influence of CYP19A1 polymorphisms on the treatment of breast cancer with aromatase inhibitors: a systematic review and meta-analysis. BMC Med. 2015;13(1):1–10. doi:10.1186/s12916-015-0373-925563062
  • HurvitzSA, BettingDJ, SternHM. Analysis of Fcγ receptor IIIa and IIa polymorphisms: lack of correlation with outcome in trastuzumab-treated breast cancer patients. Clin Cancer Res. 2012;18(12):3478–3486. doi:10.1158/1078-0432.CCR-11-229422504044
  • HwangGS, BhatR, CrutchleyRD, TrivediMV. Impact of CYP2D6 polymorphisms on endoxifen concentrations and breast cancer outcomes. Pharmacogenomics J. 2018;18(2):201–208. doi:10.1038/tpj.2017.3628762370
  • JungJA, LimHS. Association between CYP2D6 genotypes and the clinical outcomes of adjuvant tamoxifen for breast cancer: a meta-analysis. Pharmacogenomics. 2014;15(1):49–60. doi:10.2217/pgs.13.22124329190
  • GorPP, SuHI, GrayRJ, et al. Cyclophosphamide-metabolizing enzyme polymorphisms and survival outcomes after adjuvant chemotherapy for node-positive breast cancer: a retrospective cohort study. Breast Cancer Res. 2010;12(3):1–10. doi:10.1186/bcr2570
  • KongX, LiZ, LiX. GSTP1, GSTM1, and GSTT1 polymorphisms as predictors of response to chemotherapy in patients with breast cancer: a meta-analysis. Cancer Chemother Pharmacol. 2016;78(6):1163–1173. doi:10.1007/s00280-016-3173-927785604
  • BartelF, MeyeA, W¨urlPW, et al. Amplification of the MDM2 gene, but not expression of splice variants of MDM2 MRNA, is associated with prognosis in soft tissue sarcoma. Int J Cancer. 2001;95(3):168–175. doi:10.1002/1097-0215(20010520)95:3<168::AID-IJC1029>3.0.CO;2-A11307150
  • LeiJ, RudolphA, MoysichKB, et al. Assessment of variation in immunosuppressive pathway genes reveals TGFBR2 to be associated with prognosis of estrogen receptor-negative breast cancer after chemotherapy. Breast Cancer Res. 2015;17(1). doi:10.1186/s13058-015-0522-2
  • BaiL, HeJ, HeG, HeJ, XuF, XuG. Association of CYP2C19 polymorphisms with survival of breast cancer patients using tamoxifen: results of a meta-analysis. Asian Pac J Cancer Prev. 2014;15(19):8331–8335. doi:10.7314/APJCP.2014.15.19.833125339025
  • NortonN, OlsonRM, PegramM, et al. Association studies of Fcγ receptor polymorphisms with outcome in HER2+ breast cancer patients treated with trastuzumab in NCCTG (alliance) trial N9831. Cancer Immunol Res. 2014;2(10):962–969. doi:10.1158/2326-6066.CIR-14-005924989892
  • GavinPG, SongN, Rim KimS, et al. Association of polymorphisms in FCGR2A and FCGR3A with degree of trastuzumab benefit in the adjuvant treatment of ERBB2/HER2-positive breast cancer analysis of the NSABP B-31 trial. JAMA Oncol. 2017;3(3):335–341. doi:10.1001/jamaoncol.2016.488427812689
  • RocaL, DiérasV, RochéH, et al. Correlation of HER2, FCGR2A, and FCGR3A gene polymorphisms with trastuzumab related cardiac toxicity and efficacy in a subgroup of patients from UNICANCER-PACS04 trial. Breast Cancer Res Treat. 2013;139(3):789–800. doi:10.1007/s10549-013-2587-x23780683
  • MarméF, WerftW, BennerA, et al. FGFR4 Arg388 genotype is associated with pathological complete response to neoadjuvant chemotherapy for primary breast cancer. Ann Oncol. 2010;21(February):1636–1642. doi:10.1093/annonc/mdq01720147743
  • RomeroA, MartínM, OlivaB, et al. Glutathione S-transferase P1 c.313A > G polymorphism could be useful in the prediction of doxorubicin response in breast cancer patients. Ann Oncol. 2012;23(7):1750–1756. doi:10.1093/annonc/mdr48322052985
  • ZhangBL, SunT, ZhangBN, et al. Polymorphisms of GSTP1 is associated with differences of chemotherapy response and toxicity in breast cancer. Chin Med J (Engl). 2011;124(2):199–204. doi:10.3760/cma.j.issn.0366-6999.2011.02.00821362365
  • MackenzieP, OwensI, BurchellB, et al. The UDP glycosyltransferase gene superfamily: recommended nomenclature update based on evolutionary divergence. Pharmacogenetics. 1997;7(4):255–269. doi:10.1097/00008571-199708000-000019295054
  • FojoA, LeboR, ShimizuN, et al. Localization of multidrug resistance-associated DNA sequences to human chromosome 7. Somat Cell Mol Genet. 1986;12(4):415–420. doi:10.1007/BF015707373016920
  • ChangH, RhaSY, JeungHC, et al. Association of the ABCB1 gene polymorphisms 2677G>T/A and 3435C>T with clinical outcomes of paclitaxel monotherapy in metastatic breast cancer patients. Ann Oncol. 2009;20(2):272–277. doi:10.1093/annonc/mdn62418836089
  • JiM, TangJ, ZhaoJ, XuB, QinJ, LuJ. Polymorphisms in genes involved in drug detoxification and clinical outcomes of anthracycline-based neoadjuvant chemotherapy in Chinese Han breast cancer patients. Cancer Biol Ther. 2012;13(5):264–271. doi:10.4161/cbt.1892022310978
  • WuH, KangH, LiuY, et al. Roles of ABCB1 gene polymorphisms and haplotype in susceptibility to breast carcinoma risk and clinical outcomes. J Cancer Res Clin Oncol. 2012;138(9):1449–1462. doi:10.1007/s00432-012-1209-z22526155
  • SuszynskaM, KluzniakW, WokolorczykD, et al. Bard1 is a low/moderate breast cancer risk gene: evidence based on an association study of the Central European p.q564x recurrent mutation. Cancers (Basel). 2019;11(6):740. doi:10.3390/cancers11060740
  • HashizumeR, FukudaM, MaedaI, et al. The RING heterodimer BRCA1-BARD1 is a ubiquitin ligase inactivated by a breast cancer-derived mutation. J Biol Chem. 2001;276(18):14537–14540. doi:10.1074/jbc.C00088120011278247
  • MezaJE, BrzovicPS, KingM-C, KlevitRE, Mapping the functional domains of BRCA1: interaction of the RING finger domains of BRCA1 and BARD1. J Biol Chem. 1999;274(9):5659–5665. doi:10.1074/jbc.274.9.565910026184
  • NohJM, ChoiDH, BaekH, et al. Associations between BRCA mutations in high-risk breast cancer patients and familial cancers other than breast or ovary. J Breast Cancer. 2012;15(3):283–287. doi:10.4048/jbc.2012.15.3.28323091540
  • HuenMSY, SySMH, ChenJ. BRCA1 and its toolbox for the maintenance of genome integrity. Nat Rev Mol Cell Biol. 2010;11(2):138–148. doi:10.1038/nrm283120029420
  • DengC-X, BrodieSG. Roles of BRCA1 and its interacting proteins. Bioessays. 2000;22(8):728–737. doi:10.1002/1521-1878(200008)22:8<728::AID-BIES6>3.0.CO;2-B10918303
  • Shattuck-EidensD, McClureM, SimardJ, et al. A collaborative survey of 80 mutations in the BRCA1 breast and ovarian cancer susceptibility gene. Implications for presymptomatic testing and screening. JAMA. 1995;273(7):535–541.7837387
  • RoyR, ChunJ, PowellSN. BRCA1 and BRCA2: different roles in a common pathway of genome protection. Nat Rev Cancer. 2012;12(1):68–78. doi:10.1038/nrc3181
  • GudmundsdottirK, AshworthA. The roles of BRCA1 and BRCA2 and associated proteins in the maintenance of genomic stability. Oncogene. 2006;25(43):5864–5874. doi:10.1038/sj.onc.120987416998501
  • MikiY, SwensenJ, Shattuck-EidensD, et al. A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science (80-). 1994;266(5182):66–71.
  • PetrucelliN, DalyMB, FeldmanGL. Hereditary breast and ovarian cancer due to mutations in BRCA1 and BRCA2. Genet Med. 2010;12(5):245–259. doi:10.1097/GIM.0b013e3181d38f2f20216074
  • GodetI, GilkesDM. BRCA1 and BRCA2 mutations and treatment strategies for breast cancer. Integr Cancer Sci Ther. 2017;4(1):1–7.
  • WoosterR, NeuhausenS, MangionJ, et al. Localization of a breast cancer susceptibility gene, BRCA2, to chromosome 13q12-13. Proc Natl Acad Sci USA. 1984;265(5181):2088–2090.
  • JiangT, ShiW, WaliVB, et al. Predictors of chemosensitivity in triple negative breast cancer: an integrated genomic analysis. PLoS Med. 2016;13(12):1–23. doi:10.1371/journal.pmed.1002193
  • GorodetskaI, KozeretskaI, DubrovskaA. BRCA genes: the role in genome stability, cancer stemness and therapy resistance. J Cancer. 2019;10(9):2109–2127. doi:10.7150/jca.3041031205572
  • LivraghiL, GarberJE. PARP inhibitors in the management of breast cancer: current data and future prospects. BMC Med. 2015;13(1). doi:10.1186/s12916-015-0425-1
  • BarberLJ, SandhuS, ChenL, et al. Secondary mutations in BRCA2 associated with clinical resistance to a PARP inhibitor. J Pathol. 2013;229(3):422–429. doi:10.1002/path.414023165508
  • MylavarapuS, DasA, RoyM. Role of BRCA mutations in the modulation of response to platinum therapy. Front Oncol. 2018;8(FEB). doi:10.3389/fonc.2018.00016
  • CD24 gene - genetics home reference - NIH. Available from: https://ghr.nlm.nih.gov/gene/CD24#location. Accessed 67, 2020.
  • SchabathH, RunzS, JoumaaS, AltevogtP. CD24 affects CXCR4 function in pre-B lymphocytes and breast carcinoma cells. J Cell Sci. 2006;119(2):314–325. doi:10.1242/jcs.0274116390867
  • KwonMJ, HanJ, SeoJH, et al. CD24 overexpression is associated with poor prognosis in luminal a and triple-negative breast cancer. PLoS One. 2015;10(10):1–21. doi:10.1371/journal.pone.0139112
  • SmithSC, OxfordG, WuZ, et al. The metastasis-associated gene CD24 is regulated by Ral GTPase and is a mediator of cell proliferation and survival in human cancer. Cancer Res. 2006;66(4):1917–1922. doi:10.1158/0008-5472.CAN-05-385516488989
  • BaumannP, CremersN, KroeseF, et al. CD24 expression causes the acquisition of multiple cellular properties associated with tumor growth and metastasis. Cancer Res. 2005;65(23):10783–10793. doi:10.1158/0008-5472.CAN-05-061916322224
  • ZhouX. CD24 polymorphisms cannot predict pathologic complete response to anthracycline- and taxane-based neoadjuvant chemotherapy in breast cancer. Clin Breast Cancer. 2014;14(2):e33–e40. doi:10.1016/j.clbc.2013.11.00124393851
  • CYBA gene - genetics home reference - NIH. Available from: https://ghr.nlm.nih.gov/gene/CYBA. Accessed 822, 2020.
  • WojnowskiL, KulleB, SchirmerM, et al. NAD(P)H oxidase and multidrug resistance protein genetic polymorphisms are associated with doxorubicin-induced cardiotoxicity. Circulation. 2005;112(24):3754–3762. doi:10.1161/CIRCULATIONAHA.105.57685016330681
  • GuzikTJ, WestNEJ, BlackE, et al. Functional impact of genetic polymorphisms in NAD(P)H oxidase p22phox subunit on vascular superoxide production in atherosclerosis. Heart. 2000;83(SUPPL.1):1744–1747.
  • WycheKE, WangSS, GriendlingKK, et al. C242T CYBA polymorphism of the NADPH oxidase is associated with reduced respiratory burst in human neutrophils. Hypertension. 2004;43(6):1246–1251. doi:10.1161/01.HYP.0000126579.50711.6215078863
  • Shimo-NakanishiY, HasebeT, SuzukiA, et al. Functional effects of NAD(P)H oxidase p22phox C242T mutation in human leukocytes and association with thrombotic cerebral infarction. Atherosclerosis. 2004;175(1):109–115. doi:10.1016/j.atherosclerosis.2004.01.04315186954
  • HoffmannM, SchirmerMA, TzvetkovMV, et al. A functional polymorphism in the NAD(P)H oxidase subunit CYBA is related to gene expression, enzyme activity, and outcome in non-Hodgkin lymphoma. Cancer Res. 2010;70(6):2328–2338. doi:10.1158/0008-5472.CAN-09-238820215507
  • SchirmerM, HoffmannM, KayaE, TzvetkovM, BrockmöllerJ. Genetic polymorphisms of NAD(P)H oxidase: variation in subunit expression and enzyme activity. Pharmacogenomics J. 2008;8(4):297–304. doi:10.1038/sj.tpj.650046717684477
  • KimH, EllisSW, LennurdMS, TuckerGT. Variable contribution of cytochromes I ’ 450 2D6, 2C9 and 3A4 to the 4-hydroxylation of tamoxifen by human liver microsomes. Biochem Pharmacol. 1997;53(2):171–178. doi:10.1016/S0006-2952(96)00650-89037249
  • LiuL, BaiYX, ZhouJH, et al. A polymorphism at the 3ʹ-UTR region of the aromatase gene is associated with the efficacy of the aromatase inhibitor, anastrozole, in metastatic breast carcinoma. Int J Mol Sci. 2013;14(9):18973–18988. doi:10.3390/ijms14091897324065098
  • MironL, NegurǎL, PeptanariuD, MarincaM. Research on aromatase gene (CYP19A1) polymorphisms as a predictor of endocrine therapy effectiveness in breast cancer. Rev Med Chir Soc Med Nat Iasi. 2012;116(4):997–1004.23700878
  • HenryNL, ChanHP, DantzerJ, et al. Aromatase inhibitor-induced modulation of breast density: clinical and genetic effects. Br J Cancer. 2013;109(9):2331–2339. doi:10.1038/bjc.2013.58724084768
  • JohnstonSRD, HaynesBP, SmithIE, SacksNPM, EbbsSR, DowsettM. Acquired tamoxifen resistance in human breast cancer and reduced intra-tumoral drug concentration. Lancet. 1993;342(8886–8887):1521–1522. doi:10.1016/S0140-6736(05)80088-17902904
  • BruhnsP, IannascoliB, EnglandP, et al. Specificity and affinity of human Fc γ receptors and their polymorphic variants for human IgG subclasses specificity and affinity of human Fc ␥receptors and their polymorphic variants for human IgG subclasses. Blood. 2014:3716–3725. doi:10.1182/blood-2008-09-179754.
  • WuJ, EdbergJC, RedechaPB, et al. A novel polymorphism of FcγRIIIa (CD16) alters receptor function and predisposes to autoimmune disease. J Clin Invest. 1997;100(5):1059–1070. doi:10.1172/JCI1196169276722
  • ShieldsRL, NamenukAK, HongK, et al. High resolution mapping of the binding site on human IgG1 for FcγRI, FcγRII, FcγRIII, and FcRn and design of IgG1 variants with improved binding to the FcγR. J Biol Chem. 2001;276(9):6591–6604. doi:10.1074/jbc.M00948320011096108
  • KoeneBHR, KleijerM, AlgraJ, et al. Fc g RIIIa-158V/F polymorphism influences the binding of IgG by natural killer cell Fc g RIIIa, independently of the Fc g RIIIa-48L/R/H phenotype. Blood. 1997;90(3):3–8. doi:10.1182/blood.V90.3.1109
  • BurkeD, WilkesD, BlundellTL, MalcolmS. Fibroblast growth factor receptors: lessons from the genes. Trends Biochem Sci. 1998;23(2):59–62. doi:10.1016/S0968-0004(97)01170-59538690
  • PowersCJ, McLeskeySW, WellsteinA. Fibroblast growth factors, their receptors and signaling. Endocr Relat Cancer. 2000;7(3):165–197. doi:10.1677/erc.0.007016511021964
  • BangeJ, PrechtlD, CheburkinY, et al. Cancer progression and tumor cell motility are associated with the FGFR4 Arg388 allele. Cancer Res. 2002;62(3):840–847.11830541
  • LiX, WuB, ChenL, JuY, LiC, MengS. Urokinase-type plasminogen activator receptor inhibits apoptosis in triple-negative breast cancer through miR-17/20a suppression of death receptors 4 and 5. Oncotarget. 2017;8(51):88645–88657. doi:10.18632/oncotarget.2043529179464
  • ElsterN, CollinsDM, ToomeyS, CrownJ, EustaceAJ, HennessyBT. HER2-family signalling mechanisms, clinical implications and targeting in breast cancer. Breast Cancer Res Treat. 2015;149(1):5–15. doi:10.1007/s10549-014-3250-x25542271
  • DipiroJ, TalbertR, YeeG, MatzkeG, WellsB. Pharmacotherapy: A Pathophysiologic Approach. 8th ed. McGraw-Hill; 2011.
  • KallelI, KharratN, Al-fadhlyS. HER2 polymorphisms and breast cancer. Genet Test Mol Biomarkers. 2010;14(1):29–35. doi:10.1089/gtmb.2009.006919929405
  • KöstlerWJ, SchwabB, SingerCF, et al. Monitoring of serum Her-2/neu predicts response and progression-free survival to trastuzumab-based treatment in patients with metastatic breast cancer. Clin Cancer Res. 2004;10(5):1618–1624. doi:10.1158/1078-0432.CCR-0385-315014012
  • HanX, DiaoL, XuY, et al. Association between the HER2 Ile655Val polymorphism and response to trastuzumab in women with operable primary breast cancer. Ann Oncol. 2014;25(6):1158–1164. doi:10.1093/annonc/mdu11124608202
  • FleishmanSJ, SchlessingerJ, Ben-TalN. A putative molecular-activation switch in the transmembrane domain of erbB2. Proc Natl Acad Sci U S A. 2002;99(25):15937–15940. doi:10.1073/pnas.25264079912461170
  • BeauclairS, FormentoP, FischelJL, et al. Role of the HER2 [Ile655Val] genetic polymorphism in tumorogenesis and in the risk of trastuzumab-related cardiotoxicity. Ann Oncol. 2007;18(8):1335–1341. doi:10.1093/annonc/mdm18117693647
  • TrinchieriG. Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol. 2003;3(2):133–146. doi:10.1038/nri100112563297
  • Del VecchioM, BajettaE, CanovaS, et al. Interleukin-12: biological properties and clinical application. Clin Cancer Res. 2007;13(16):4677–4685. doi:10.1158/1078-0432.CCR-07-077617699845
  • HeXZ, WangL, ZhangYY. An effective vaccine against colon cancer in mice: use of recombinant adenovirus interleukin-12 transduced dendritic cells. World J Gastroenterol. 2008;14(4):532–540. doi:10.3748/wjg.14.53218203284
  • NanniP, NicolettiG, De GiovanniC, et al. Combined Allogeneic Tumor Cell Vaccination and Systemic Interleukin 12 Prevents Mammary Carcinogenesis in HER-2/Neu Transgenic Mice. Vol. 194Rockefeller University Press; 2001.
  • MoritaY, YamamuraM, NishidaK, et al. Expression of Interleukin-12 in Synovial Tissue from Patients with Rheumatoid Arthritis. Vol. 411998.
  • MorahanG, HuangD, YmerSI, et al. Linkage disequilibrium of a type 1 diabetes susceptibility locus with a regulatory IL12B allele. Nat Genet. 2001;27(2):219–221. doi:10.1038/84872
  • YuX, WangC, LuoJ, ZhaoX, WangL, LiX. Combination with methotrexate and cyclophosphamide attenuated maturation of dendritic cells: inducing treg skewing and Th17 suppression in vivo. Clin Dev Immunol. 2013;2013:1–12. doi:10.1155/2013/238035
  • KlinkeDJ. The ratio of P40 monomer to dimer is an important determinant of IL-12 bioactivity. J Theor Biol. 2006;240(2):323–335. doi:10.1016/j.jtbi.2005.09.02216448670
  • ZhengY, WangM, TianT, et al. Role of Interleukin-12 Gene Polymorphisms in the Onset Risk of Cancer: A Meta-Analysis. Vol. 82017.
  • DengY, YangY, YaoB, et al. RETRACTED: paracrine signaling by VEGF-C promotes non-small cell lung cancer cell metastasis via recruitment of tumor-associated macrophages. Exp Cell Res. 2018;364(2):208–216. doi:10.1016/j.yexcr.2018.02.00529427623
  • DaiX, MeiY, ChenX, CaiD. ANLN and KDR are jointly prognostic of breast cancer survival and can be modulated for triple negative breast cancer control. Front Genet. 2019;10:790. doi:10.3389/fgene.2019.0079031636652
  • WangY, ZhengY, ZhangW, et al. Polymorphisms of KDR gene are associated with coronary heart disease. J Am Coll Cardiol. 2007;50(8):760–767. doi:10.1016/j.jacc.2007.04.07417707181
  • DalesJP, GarciaS, CarpentierS, et al. Prediction of metastasis risk (11 year follow-up) using VEGF-R1, VEGF-R2, Tie-2/Tek and CD105 expression in breast cancer (n = 905). Br J Cancer. 2004;90(6):1216–1221. doi:10.1038/sj.bjc.660145215026804
  • GhoshS, SullivanCAW, ZerkowskiMP, et al. High levels of vascular endothelial growth factor and its receptors (VEGFR-1, VEGFR-2, neuropilin-1) are associated with worse outcome in breast cancer. Hum Pathol. 2008;39(12):1835–1843. doi:10.1016/j.humpath.2008.06.00418715621
  • DhakalHP, NaumeB, SynnestvedtM, et al. Expression of vascular endothelial growth factor and vascular endothelial growth factor receptors 1 and 2 in invasive breast carcinoma: prognostic significance and relationship with markers for aggressiveness. Histopathology. 2012;61(3):350–364. doi:10.1111/j.1365-2559.2012.04223.x22690749
  • JanssonS, BendahlPO, GrabauDA, et al. The three receptor tyrosine kinases c-KIT, VEGFR2 and PDGFRα, closely spaced at 4q12, show increased protein expression in triple-negative breast cancer. PLoS One. 2014;9(7):e102176. doi:10.1371/journal.pone.010217625025175
  • YanJD, LiuY, ZhangZY, et al. Expression and prognostic significance of VEGFR-2 in breast cancer. Pathol Res Pract. 2015;211(7):539–543. doi:10.1016/j.prp.2015.04.00325976977
  • ShibuyaM. Vascular endothelial growth factor and its receptor system: physiological functions in angiogenesis and pathological roles in various diseases. J Biochem. 2013;153(1):13–19. doi:10.1093/jb/mvs13623172303
  • ClaessonL, WelshM. VEGFA and tumour angiogenesis. J Intern Med. 2013;273(2):114–127. doi:10.1111/joim.1201923216836
  • MomandJ, ZambettiGP, OlsonDC, GeorgeD, Levine’AJ. The MDM-2 oncogene product forms a complex with the 53 protein and inhibits p53-mediated transactivation. Cell. 1992;69(7):1237–1245. doi:10.1016/0092-8674(92)90644-R1535557
  • LiM, BrooksCL, Wu-BaerF, ChenD, BaerR, Mono-versus polyubiquitination: differential control of p53 fate by MDM2. Science (80-). 2003;302(5652):1972–1975. doi:10.1126/science.1091362
  • ParkHS, ParkJM, ParkS, ChoJ, KimS Il, ParkBW. Subcellular localization of MDM2 expression and prognosis of breast cancer. Int J Clin Oncol. 2014;19(5):842–851. doi:10.1007/s10147-013-0639-124292333
  • HouH, SunD, ZhangX. The role of MDM2 amplification and overexpression in therapeutic resistance of malignant tumors. Cancer Cell Int. 2019;19:216. doi:10.1186/s12935-019-0937-431440117
  • KondoS, BarnettGH, HaraH, MorimuraT, TakeuchiJ. MDM2 protein confers the resistance of a human glioblastoma cell line to cisplatin-induced apoptosis. Oncogene. 1995;10(10):2001–2006.7761100
  • YuZ-H, QuZ-L, ZhouS, XiongJ. MDM2 overexpression predicts trastuzumab resistance in HER-2 positive breast cancer tissues. Cell Res. 2015;22:1813–1818.
  • BondGL, HuW, BondEE, et al. A single nucleotide polymorphism in the MDM2 promoter attenuates the p53 tumor suppressor pathway and accelerates tumor formation in humans. Cell. 2004;119(5):591–602. doi:10.1016/j.cell.2004.11.02215550242
  • HuZ, JinG, WangL, ChenF, WangX, ShenH. MDM2 promoter polymorphism SNP309 contributes to tumor susceptibility: evidence from 21 case-control studies. Cancer Epidemiol Biomarkers Prev. 2007;16(12):2717–2723. doi:10.1158/1055-9965.EPI-07-063418086778
  • YapDBS, HsiehJK, LuX. Mdm2 inhibits the apoptotic function of p53 mainly by targeting it for degradation. J Biol Chem. 2000;275(47):37296–37302. doi:10.1074/jbc.M00435920010980197
  • ChèneP. Inhibiting the p53-MDM2 interaction: an important target for cancer therapy. Nat Rev Cancer. 2003;3(2):102–109. doi:10.1038/nrc99112563309
  • HauptS, VijayakumaranR, MirandaPJ, BurgessA, LimE, HauptY. The role of MDM2 and MDM4 in breast cancer development and prevention. J Mol Cell Biol. 2017;9(1):53–61. doi:10.1093/jmcb/mjx00728096293
  • ZhouY, ZhangX, KlibanskiA. MEG3 noncoding RNA: a tumor suppressor. J Mol Endocrinol. 2012;48(3):45–53. doi:10.1530/JME-12-0008
  • ZhangX, GejmanR, MahtaA, et al. Maternally expressed gene 3, an imprinted noncoding RNA gene, is associated with meningioma pathogenesis and progression. Cancer Res. 2010;70(6):2350–2358. doi:10.1158/0008-5472.CAN-09-388520179190
  • ZhouY, ZhongY, WangY, et al. Activation of p53 by MEG3 non-coding RNA. J Biol Chem. 2007;282(34):24731–24742. doi:10.1074/jbc.M70202920017569660
  • BraconiC, KogureT, ValeriN, et al. MicroRNA-29 can regulate expression of the long non-coding RNA gene MEG3 in hepatocellular cancer. Oncogene. 2011;30(47):4750–4756. doi:10.1038/onc.2011.19321625215
  • WangP, RenZ, SunP. Overexpression of the long non-coding RNA MEG3 impairs in vitro glioma cell proliferation. J Cell Biochem. 2012;113(6):1868–1874. doi:10.1002/jcb.2405522234798
  • ZhangL, LiangX, LiY. Long non-coding RNA MEG3 inhibits cell growth of gliomas by targeting miR-93 and inactivating PI3K/AKT pathway. Oncol Rep. 2017;38(4):2408–2416. doi:10.3892/or.2017.587128791407
  • CaoX, ZhuangS, HuY, et al. Associations between polymorphisms of long non-coding RNA MEG3 and risk of colorectal cancer in Chinese. Oncotarget. 2016;7(14):19054–19059. doi:10.18632/oncotarget.776426934323
  • GongWJ, PengJB, YinJY, et al. Association between well-characterized lung cancer lncRNA polymorphisms and platinum-based chemotherapy toxicity in Chinese patients with lung cancer. Acta Pharmacol Sin. 2017;38(4):581–590. doi:10.1038/aps.2016.16428260796
  • PengJ, ZhangL, YuanC, et al. Expression profile analysis of long noncoding RNA in ER-positive subtype breast cancer using microarray technique and bioinformatics. Cancer Manag Res. 2017;9:891–901. doi:10.2147/CMAR.S15112029276409
  • ZhangY, WuJ, JingH, HuangG, SunZ, XuS. Long noncoding RNA MEG3 inhibits breast cancer growth via upregulating endoplasmic reticulum stress and activating NF-κB and p53. J Cell Biochem. 2019;120(4):6789–6797. doi:10.1002/jcb.2798230556250
  • SchallerL, LauschkeVM. The genetic landscape of the human solute carrier (SLC) transporter superfamily. Hum Genet. 2019;138(11–12):1359–1377. doi:10.1007/s00439-019-02081-x31679053
  • FredrikssonR, NordströmKJV, StephanssonO, HägglundMGA, SchiöthHB. The solute carrier (SLC) complement of the human genome: phylogenetic classification reveals four major families. FEBS Lett. 2008;582(27):3811–3816. doi:10.1016/j.febslet.2008.10.01618948099
  • HöglundPJ, NordströmKJV, SchiöthHB, FredrikssonR. The solute carrier families have a remarkably long evolutionary history with the majority of the human families present before divergence of bilaterian species. Mol Biol Evol. 2011;28(4):1531–1541. doi:10.1093/molbev/msq35021186191
  • SchlessingerA, YeeSW, SaliA, GiacominiKM. SLC classification: an update. Clin Pharmacol Ther. 2013;94(1):19–23. doi:10.1038/clpt.2013.7323778706
  • OkazakiT, JavleM, TanakaM, AbbruzzeseJL, LiD. Single nucleotide polymorphisms of gemcitabine metabolic genes and pancreatic cancer survival and drug toxicity. Clin Cancer Res. 2010;16(1):320–329. doi:10.1158/1078-0432.CCR-09-155520028759
  • MitraAK, KirsteinMN, KhatriA, et al. Pathway-based pharmacogenomics of gemcitabine pharmacokinetics in patients with solid tumors. Pharmacogenomics. 2012;13(9):1009–1021. doi:10.2217/pgs.12.8122838949
  • DudenkovTM, IngleJN, BuzdarAU, et al. SLCO1B1 polymorphisms and plasma estrone conjugates in postmenopausal women with ER+ breast cancer: genome-wide association studies of the estrone pathway. Breast Cancer Res Treat. 2017;164(1):189–199. doi:10.1007/s10549-017-4243-328429243
  • GregoryBJ, ChenSM, MurphyMA, AtchleyDH, KamdemLK. Impact of the OATP1B1 c.521T>C single nucleotide polymorphism on the pharmacokinetics of exemestane in healthy post-menopausal female volunteers. J Clin Pharm Ther. 2017;42(5):547–553. doi:10.1111/jcpt.1256928868654
  • SmileyDA, KhalilRA. Estrogenic compounds, estrogen receptors and vascular cell signaling in the aging blood vessels. Curr Med Chem. 2000;16(15):1863–1887. doi:10.2174/092986709788186093
  • WangX, PankratzVS, FredericksenZ, et al. Common variants associated with breast cancer in genome-wide association studies are modifiers of breast cancer risk in BRCA1 and BRCA2 mutation carriers. Hum Mol Genet. 2010;19(14):2886–2897. doi:10.1093/hmg/ddq17420418484
  • SeijoER, SongH, LynchMA, et al. Identification of Genetic Alterations in the TGF Type II Receptor Gene Promoter. Vol. 4832001.
  • DerynckR, AkhurstRJ. TGF-β signaling in tumor suppression and cancer progression. Nat Genet. 2001;29:117–129.11586292
  • DerynckR, ZhangYE. Smad-dependent and Smad-independent pathways in TGF-b family signalling. Nature. 2003;425:577–584. doi:10.1038/nature0200614534577
  • XieF, JinK, ShaoL, et al. FAF1 phosphorylation by AKT accumulates TGF-β type II receptor and drives breast cancer metastasis. Nat Commun. 2017;8(1). doi:10.1038/ncomms15021
  • FerrettiG, FeliciA, CognettiF, MandalaM. Transforming growth factor-signaling and regulatory T cells. J Clin Oncol. 2007;25(29):4693–4695. doi:10.1200/JCO.2007.13.400717925569
  • BuckMB, FritzP, DipponJ, ZugmaierG, KnabbeC. Prognostic significance of transforming growth factor β receptor II in estrogen receptor-negative breast cancer patients. Clin Cancer Res. 2004;10(2):491–498. doi:10.1158/1078-0432.CCR-0320-0314760070
  • PaduaD, ZhangH-F, WangQ. TGFβ primes breast tumors for lung metastasis seeding through angiopoietin-like 4. Cell. 2008;133(1):66–77. doi:10.1016/j.cell.2008.01.04618394990
  • BuschS, SimsAH, StalO, FernoM, LandbergG. Loss of TGFβ receptor type 2 expression impairs estrogen response and confers tamoxifen resistance. Cancer Res. 2015;75(7):1457–1469. doi:10.1158/0008-5472.CAN-14-158325833830
  • SurgetS, KhouryMP, BourdonJC. Uncovering the role of p53 splice variants in human malignancy: a clinical perspective. Onco Targets Ther. 2013;7:57–67. doi:10.2147/OTT.S5387624379683
  • VousdenKH, LuX. Live or let die: the cell’s response to p53. Nat Rev Cancer. 2002;2(8):594–604. doi:10.1038/nrc86412154352
  • WilliamsAB, SchumacherB. p53 in the DNA-damage-repair process. Cold Spring Harb Perspect Med. 2016;6(5):1–15. doi:10.1101/cshperspect.a026070
  • OlivierM, HollsteinM, HainautP. TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harb Perspect Biol. 2010;2(1):a001008–a001008. doi:10.1101/cshperspect.a00100820182602
  • WangY, HellandÅ, HolmR, et al. TP53 mutations in early-stage ovarian carcinoma, relation to long-term survival. Br J Cancer. 2004;90(3):678–685. doi:10.1038/sj.bjc.660153714760384
  • WangY, KringenP, KristensenGB, et al. Effect of the codon 72 polymorphism (c.215G>C, p.Arg72Pro) in combination with somatic sequence variants in the TP53 gene on survival in patients with advanced ovarian carcinoma. Hum Mutat. 2004;24(1):21–34. doi:10.1002/humu.2005515221786
  • LangerødA, ZhaoH, BorganØ, et al. TP53 mutation status and gene expression profiles are powerful prognostic markers of breast cancer. Breast Cancer Res. 2007;9(3). doi:10.1186/bcr1675
  • ApostolouP, PapasotiriouI. Current perspectives on CHEK2 mutations in breast cancer. Breast Cancer. 2017;9:331–335. doi:10.2147/BCTT.S11139428553140
  • ToledoF, WahlGM. Regulating the p53 pathway: in vitro hypotheses, in vivo veritas. Nat Rev Cancer. 2006;6(12):909–923. doi:10.1038/nrc201217128209
  • ChrisantharR, KnappskogS, LøkkevikE, et al. CHEK2 mutations affecting kinase activity together with mutations in TP53 indicate a functional pathway associated with resistance to epirubicin in primary breast cancer. PLoS One. 2008;3(8):1–15. doi:10.1371/journal.pone.0003062
  • GeislerS, LønningE, AasT, et al. Influence of TP53 gene alterations and C-ErbB-2 expression on the response to treatment with doxorubicin in locally advanced breast cancer. Cancer Res. 2001;61(6):2505–2512.11289122
  • GeislerS, Børresen-DaleA-L, JohnsenH, et al. Gene mutations predict the response to neoadjuvant treatment with 5-fluorouracil and mitomycin in locally advanced breast cancer. J Clin Oncol. 2003;20(3):751–757.
  • Kandioler-EckersbergerD, LudwigC, RudasM, et al. TP53 mutation and p53 overexpression for prediction of response to neoadjuvant treatment in breast cancer patients. Clin Cancer Res. 2000;6(1):50–56.10656431
  • LanniJS, LoweSW, LicitraEJ, LiuJO, JacksT, p53-independent apoptosis induced by paclitaxel through an indirect mechanism. Proc Natl Acad Sci USA. 1997;94(18):9679–9683. doi:10.1073/pnas.94.18.96799275183
  • WahlAF, DonaldsonKL, FaircnildC, et al. Loss of normal p53 function confers sensitization to Taxol by increasing G2/M arrest and apoptosis. Nat Med. 1996;2(1):72–79. doi:10.1038/nm0196-728564846
  • BerghJ, NorbergT, SjögrenS, LindgrenA, HolmbergL. Complete sequencing of the p53 gene provides prognostic information in breast cancer patients, particularly in relation to adjuvant systemic therapy and radiotherapy. Nat Med. 1995;1(10):1029–1034. doi:10.1038/nm1095-10297489358
  • GuillemetteC. Pharmacogenomics of human UDP-glucuronosyltransferase enzymes. Pharmacogenomics J. 2003;3(3):136–158. doi:10.1038/sj.tpj.650017112815363
  • GongQ-H, Cho AãJW, HuangT, et al. Thirteen UDPglucuronosyltransferase genes are encoded at the human UGT1 gene complex locus. Pharmacogenet. 2001;11:367–368.
  • TurgeonD, CarrierJ-S, LevesqueE, HumDW, BelangerA. Relative enzymatic activity, protein stability, and tissue distribution of human steroid-metabolizing UGT2B subfamily members this work was supported by the medical research council of canada, the fonds de la recherche en sante du quebec, and endorecherche. Endocrinology. 2001;142(2):778–787. doi:10.1210/endo.142.2.795811159850
  • JinY, PenningTM. Aldo-keto reductases and bioactivation/detoxication. Annu Rev Pharmacol Toxicol. 2007;47(1):263–292. doi:10.1146/annurev.pharmtox.47.120505.10533716970545
  • HuDG, RogersA, MackenziePI. Epirubicin upregulates UDP glucuronosyltransferase 2B7 expression in liver cancer cells via the p53 pathway. Mol Pharmacol. 2014;85(6):887–897. doi:10.1124/mol.114.09160324682467
  • OrmrodD, HolmK, GoaK, SpencerC, AcklandSP. Epirubicin A review of its efficacy as adjuvant therapy and in the treatment of metastatic disease in breast cancer. Drugs Aging. 1999;15(5):389–416. doi:10.2165/00002512-199915050-0000610600046
  • UGT2B7 UDP glucuronosyltransferase family 2 member B7 [Homo sapiens (human)] - Gene - NCBI. Available from: https://www.ncbi.nlm.nih.gov/gene/7364. Accessed 67, 2020.
  • ZhengY, SunD, SharmaAK, ChenG, AminS, LazarusP. Elimination of antiestrogenic effects of active tamoxifen metabolites by glucuronidation. Drug Metab Dispos. 2007;35(10):1942–1948. doi:10.1124/dmd.107.01627917620345