210
Views
2
CrossRef citations to date
0
Altmetric
Review

Neu Perspectives, Therapies, and Challenges for Metastatic HER2-Positive Breast Cancer

, ORCID Icon, & ORCID Icon
Pages 539-557 | Published online: 24 Sep 2021

References

  • ShihC, PadhyLC, MurrayM, WeinbergRA. Transforming genes of carcinomas and neuroblastomas introduced into mouse fibroblasts. Nature. 1981;290(5803):261–264. doi:10:1038/290261a07207618
  • VennstromB, BishopJM. Isolation and characterization of chicken DNA homologous to the two putative oncogenes of avian erythroblastosis virus. Cell. 1982;28(1):135–143. doi:10.1016/0092-8674(82)90383-x6279309
  • SchechterAL, StemDF, VaidyanathanL, et al. The neu oncogene: an erb-B-related gene encoding a 185,000-Mr tumour antigen. Nature. 1984;312(5994):513–516. doi:10.1038/312513a06095109
  • KingCR, KrausMH, AaronsonSA. Amplification of a novel v-erbB-related gene in a human mammary carcinoma. Science. 1985;229(4717):974–976. doi:10.1126/science.29920892992089
  • AkiyamaT, SudoC, OgawaraH, ToyoshimaK, YamamotoT. The product of the human c-erbB-2 gene: a 185 kilodalton glycoprotein with tyrosine kinase activity. Science. 1986;232(4758):1644–1646. doi:10.1126/science.30127813012781
  • van der GeerP, HunterT, LindbergRA. Receptor protein-tyrosine kinases and their signal transduction pathways. Annu Rev Cell Biol. 1994;10:251–337. doi:10.1146/annurev.cb.10.110194.0013437888178
  • ZhangX, GureaskoJ, ShenK, ColePA, KuriyanJ. An allosteric mechanism for activation of the kinase domain of epidermal growth factor receptor. Cell. 2006;125(6):1137–1149. doi:10.1016/j.cell.2006.05.01316777603
  • van LengerichB, AgnewC, PuchnerEM, HuangB, JuraN. EGF and NRG induce phosphorylation of HER3/ERBB3 by EGFR using distinct oligomeric mechanisms. Proc Natl Acad Sci U S A. 2017;114(14):E2836–E2845. doi:10.1073/pnas.161799411428320942
  • JonesFE, SternDF. Expression of dominant-negative ErbB2 in the mammary gland of transgenic mice reveals a role in lobuloalveolar development and lactation. Oncogene. 1999;18(23):3481–3490. doi:10.1038/sj.onc.120269810376526
  • HynesNE, SternDF. The biology of erbB-2/neu/HER-2 and its role in cancer. Biochim Biophys Acta. 1994;1198(2–3):165–184. doi:10.1016/0304-419x(94)90012-47819273
  • McCannAH, DervanPA, O’ReganM, et al. Prognostic significance of c-erbB-2 and estrogen receptor status in human breast cancer. Cancer Res. 1991;51(12):3296–3303.1674898
  • MenardS, FortisS, CastiglioniF, AgrestiR, BalsariA. HER2 as a prognostic factor in breast cancer. Oncology. 2001;61(Suppl 2):67–72. doi:10.1159/00005540411694790
  • SlamonDJ, Leyland-JonesB, ShakS, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med. 2001;344(11):783–792. doi:10.1056/NEJM20010315344110111248153
  • von MinckwitzG, Du BoisA, SchmidtM, et al. Trastuzumab beyond progression in human epidermal growth factor receptor 2–positive advanced breast cancer: a German breast group 26/breast international group 03–05 study. J Clin Oncol. 2009;27(12):1999–2006. doi:10.1200/JCO.2008.19.661819289619
  • BurgessAW, ChoHS, EigenbrotC, et al. An open-and- shut case? Recent insights into the activation of EGF/ErbB receptors. Mol Cell. 2003;12(3):541–552. doi:10.1016/s1097-2765(03)00350-214527402
  • Di FiorePP, PierceJH, KrausMH, SegattoO, KingCR, AaronsonSA. erbB-2 is a potent oncogene when overexpressed in NIH/3T3 cells. Science. 1987;237(4811):178–182. doi:10.1126/science.28859172885917
  • Pegram Md, LiptonA, HayesDF, et al. Phase II study of receptor‐enhanced chemosensitivity using recombinant humanized anti‐p185HER2/neu monoclonal antibody plus cisplatin in patients with HER2/neu‐overexpressing metastatic breast cancer refractory to chemotherapy treatment. J Clin Oncol. 1998;16(8):2659–2671. doi:10.1200/JCO.1998.16.8.26599704716
  • BaselgaJ, TripathyD, MendelsohnJ, et al. Phase II study of weekly intravenous trastuzumab (Herceptin) in patients with HER2/neu‐overexpressing metastatic breast cancer. Semin Oncol. 1999;26(4 Suppl 12):78–83.
  • QuirkeP, PicklesA, TuziNL, MohamdeeO, GullickWJ. Pattern of expression of c-erbB2 oncoprotein in human fetuses. Br J Cancer. 1989;60(1):64–69. doi:10.1038/bjc.1989.2212572267
  • OzcelikC, ErdmannB, PilzB, et al. Conditional mutation of the ErbB2 (HER2) receptor in cardiomyocytes leads to dilated cardiomyopathy. Proc Natl Acad Sci USA. 2002;99(13):8880–8885. doi:10.1073/pnas.12224929912072561
  • HongTT, SmythJW, GaoD, et al. BIN1 localizes the L-type calcium channel to cardiac T-tubules. PloS Biol. 2010;8(2):e1000312. doi:10.1371/journal.pbio.100031220169111
  • Graus-PortaD, BeerliRR, DalyJM, HynesNE. ErbB-2, the preferred heterodimerization partner of all ErbB receptors, is a mediator of lateral signaling. EMBO J. 1997;16(7):1647–1655. doi:10.1093/emboj/16.7.16479130710
  • ChoHS, MasonK, RamyarKX, et al. Structure of the extracellular region of HER2 alone and in complex with the Herceptin Fab. Nature. 2003;421(6924):756–760. doi:10.1038/nature0139212610629
  • AgusDB, AkitaRW, FoxWD, et al. Targeting ligand-activated ErbB2 signaling inhibits breast and prostate tumor growth. Cancer Cell. 2002;2(2):127–137. doi:10.1016/s1535-6108(02)00097-112204533
  • BaselgaJ, CortésJ, KimSB, et al. Pertuzumab plus trastuzumab plus docetaxel for metastatic breast cancer. N Engl J Med. 2012;366(2):109–119. doi:10.1056/NEJMoa111321622149875
  • SwainSM, MilesD, KimSB, et al. Pertuzumab, trastuzumab, and docetaxel for HER2-positive metastatic breast cancer (CLEOPATRA): end-of-study results from a double-blind, randomised, placebo-controlled, phase 3 study. Lancet Oncol. 2020;21(4):519–530. doi:10.1016/S1470-2045(19)30863-032171426
  • ZhangM, ZhangZ, GarmestaniK, et al. Activating Fc receptors are required for antitumor efficacy of the antibodies directed toward CD25 in a murine model of adult T-cell leukemia. Cancer Res. 2004;64(16):5825–5829. doi:10.1158/0008-5472.CAN-04-108815313926
  • StavenhagenJB, GorlatovS, TuaillonN, et al. Fc optimization of therapeutic antibodies enhances their ability to kill tumor cells in vitro and controls tumor expansion in vivo via low-affinity activating Fcγ receptors. Cancer Res. 2007;67(18):8882–8890. doi:10.1158/0008-5472.CAN-07-069617875730
  • RugoHS, ImSA, CardosoF, et al. Efficacy of margetuximab vs trastuzumab in patients with pretreated ERBB2-positive advanced breast cancer. A phase 3 randomized clinical trial. JAMA Oncol. 2021;7(4):573. doi:10.1001/jamaoncol.2020.793233480963
  • TanAR, ImSA, MattarA, et al. Subcutaneous administration of the fixed-dose combination of trastuzumab and pertuzumab in combination with chemotherapy in HER2-positive early breast cancer: primary analysis of the Phase III, multicenter, randomized, open-label, two-arm FeDeriCa study. Poster presentation at: 2019 San Antonio Breast Cancer Symposium; 1210–14, 2019; San Antonio, Tx. Abstract PD4-07.
  • VermaS, MilesD, GianniL, et al. Trastuzumab emtansine for HER2-positive advanced breast cancer. N Engl J Med. 2012;367(19):1783–1791. doi:10.1056/NEJMoa120912423020162
  • ModiS, SauraC, YamashitaT, et al. Trastuzumab deruxtecan in previously treated HER2-positive breast cancer. N Engl J Med. 2020;382(7):610–621. doi:10.1056/NEJMoa191451031825192
  • PowellCA, ModiS, IwataH, et al. Pooled analysis of drug-related interstitial lung disease (ILD) in 8 single-arm trastuzumab deruxtecan (T-DXd) studies. Presented at: AACR Annual Meeting 2021; 410–15, 2021; Virtual. Abstract CT167.
  • WoodER, TruesdaleAT, McDonaldOB, et al. A unique structure for epidermal growth factor receptor bound to GW572016 (Lapatinib): relationships among protein conformation, inhibitor off-rate, and receptor activity in tumor cells. Cancer Res. 2004;64(18):6652–6659. doi:10.1158/0008-547215374980
  • XiaW, LiuL-H, HoP, SpectorNL. Truncated ErbB2 receptor (p95ErbB2) is regulated by heregulin through heterodimer formation with ErbB3 yet remains sensitive to the dual EGFR/ErbB2 kinase inhibitor GW72016. Oncogene. 2004;23(3):646–653. doi:10.1038/sj.onc.120716614737100
  • GeyerCE, ForsterJ, LindquistD, et al. Lapatinib plus capecitabine for HER2-positive advanced breast cancer. N Engl J Med. 2006;355(26):2733–2743. doi:10.1056/NEJMoa06432017192538
  • GeyerCE, ForsterJ, CameronMD. Lapatinib plus capecitabine in breast cancer. N Engl J Med. 2007;356(27):1471–1472. doi:10.1056/NEJMc07018217409332
  • ChanA, DelalogeS, HolmesFA, et al.; for the ExteNET Study Group. Neratinib after trastuzumab-based adjuvant therapy in patients with HER2positive breast cancer (ExteNET): a multicentre, randomised, double-blind, placebo controlled, phase 3 trial. Lancet Oncol. 2016;17(3):367–377. doi:10.1016/S1470-2045(15)00551-326874901
  • SauraC, OliveiraM, FengYH, et al. Neratinib plus capecitabine versus lapatinib plus capecitabine in HER2-positive metastatic breast cancer previously treated with >2 HER2-directed regimens: Phase III NALA Trial. J Clin Oncol. 2020;38(27):3138–3149. doi:10.1200/JCO.20.0014732678716
  • RabindranSK, DiscafaniCM, RosfjordEC, et al. Antitumor activity of HKI-272, an orally active, irreversible inhibitor of the HER-2 tyrosine kinase. Cancer Res. 2004;64(11):3958–3965. doi:10.1158/0008-5472.CAN-03-286815173008
  • MaaMC, LeuTH, McCarleyDJ, SchatzmanRC, ParsonsSJ. Potentiation of epidermal growth factor receptor-mediated oncogenesis by c-Src: implications for the etiology of multiple human cancers. Proc Natl Acad Sci USA. 1995;92(15):6981–6985. doi:10.1073/pnas.92.15.69817542783
  • KlothMT, LaughlinKK, BiscardiJS, BoernerJL, ParsonsSJ, SilvaCM. STAT5b, a mediator of synergism between c-Src and the epidermal growth factor receptor. J Biol Chem. 2003;278(3):1671–1679. doi:10.1074/jbc.M20728920012429742
  • EllisLM, StaleyCA, LiuW, et al. Down-regulation of vascular endothelial growth factor in a human colon carcinoma cell line transfected with an antisense expression vector specific for c-src. J Biol Chem. 1998;273(2):1052–1057. doi:10.1074/jbc.273.2.10529422768
  • MukhopadhyayD, TsiokasL, ZhouXM, FosterD, BruggeJS, SukhatmeVP. Hypoxic induction of human vascular endothelial growth factor expression through c-Src activation. Nature. 1995;375(6532):577–581. doi:10.1038/375577a07540725
  • SinibaldiD, WhartonW, TurksonJ, BowmanT, PledgerWJ, JoveR. Induction of p21WAF1/CIP1 and cyclin D1 expression by the Src oncoprotein in mouse fibroblasts: role of activated STAT3 signaling. Oncogene. 2000;19(48):5419–5427. doi:10.1038/sj.onc.120394711114718
  • MatherB, ViswanathanK, MillerK, LongT. Michael addition reactions in macromolecular design for emerging technologies. Prog Polym Sci. 2006;31(5):487–531. doi:10.1016/j.progpolymsci.2006.03.001
  • ZhaoXQ, XieJD, ChenXG, et al. Neratinib reverses ATP-binding cassette B1-mediated chemotherapeutic drug resistance in vitro, in vivo, and ex vivo. Mol Pharmacol. 2012;82(1):47–58. doi:10.1124/mol.111.07629922491935
  • DaiCL, TiwariAK, WuCP, et al. Lapatinib (Tykerb, GW572016) reverses multidrug resistance in cancer cells by inhibiting the activity of ATP-binding cassette subfamily B member 1 and G member 2. Cancer Res. 2008;68(19):7905–7914. doi:10.1158/0008-5472.CAN-08-049918829547
  • PhenegerT, BouhanaK, AndersonD, et al. In vitro and in vivo activity of ARRY-380: a potent, small molecule inhibitor of ErbB2. Cancer Res. 2009;69(9):1795.
  • MurthyRK, LoiS, OkinesA, et al. Tucatinib, trastuzumab, and capecitabine for HER2-positive metastatic breast cancer. N Engl J Med. 2020;382(7):597–609. doi:10.1056/NEJMoa191460931825569
  • RimawiM, FerreroJM, de la Haba-rodriguezJ, et al. First-line trastuzumab plus an aromatase inhibitor, with or without pertuzumab, in human epidermal growth factor receptor 2-positive and hormone receptor-positive metastatic or locally advanced breast cancer (PERTAIN): a randomized, open-label phase II trial. J Clin Oncol. 2018;36(28):2826–2835. doi:10.1200/JCO.2017.76.7863]30106636
  • SchmidP, RugoHS, AdamsS, et al.; for IMpassion130 Investigators. Atezolizumab plus nab-paclitaxel as first-line treatment for unresectable, locally advanced or metastatic triple-negative breast cancer (IMpassion130): updated efficacy results from a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2020;21(1):44–59. doi:10.1016/S1470-2045(19)30689-831786121
  • CortesJ, CesconDW, RugoHS, et al.; for KEYNOTE-355 Investigators. Pembrolizumab plus chemotherapy versus placebo plus chemotherapy for previously untreated locally recurrent inoperable or metastatic triple-negative breast cancer (KEYNOTE-355): a randomised, placebo-controlled, double-blind, phase 3 clinical trial. Lancet. 2020;396(10265):1817–1828. doi:10.1016/S0140-6736(20)32531-933278935
  • DieciMV, GriguoloG, MigliettaF, GuarneriV. The immune system and hormone-receptor positive breast cancer: is it really a dead end?Cancer Treat Rev. 2016;46:9–19. doi:10.1016/j.ctrv.2016.03.01127055087
  • LiS, ChenL, JiangJ. Role of programmed cell death ligand-1 expression on prognostic and overall survival of breast cancer: a systematic review and meta-analysis. Medicine. 2019;98(16):e15201. doi:10.1097/MD.000000000001520131008945
  • XuJ, GuoX, JingM, SunT. Prediction of tumor mutation burden in breast cancer based on the expression of ER, PR, HER-2, and Ki-67. Onco Ther. 2018;11:2269–2275. doi:10.2147/OTT.S159830
  • AlvaAS, MangatPK, Garrett-MayerE, et al. Pembrolizumab in patients with metastatic breast cancer with high tumor mutational burden: results from the Targeted Agent and Profiling Utilization Registry (TAPUR) study. J Clin Oncol. 2021;39(22):2443–2451. doi:10.1200/JCO.20.0292333844595
  • LoiS, Giobbe-HurderA, GombosA, et al. Pembrolizumab plus trastuzumab in trastuzumab-resistant, advanced, HER2-positive breast cancer (PANACEA): a single-arm, multicentre, phase 1b–2 trial. Lancet Oncol. 2019;20(3):371–382. doi:10.1016/S1470-2045(18)30812-X30765258
  • ChungA, CuiX, AudehW, GiulianoA. Current status of anti-human epidermal growth factor receptor 2 therapies: predicting and overcoming herceptin resistance. Clin Breast Cancer. 2013;13(4):223–232. doi:10.1016/j.clbc.2013.04.00123829888
  • IshidaY, AgataY, ShibaharaK, HonjoT. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J. 1992;11(11):3887–3895. doi:10.1002/j.1460-2075.1992.tb05481.x1396582
  • AgataY, KawasakiA, NishimuraH, et al. Expression of the PD-1 antigen on the surface of stimulated mouse T and B lymphocytes. Int Immunol. 1996;8(5):765–772. doi:10.1093/intimm/8.5.7658671665
  • MuCY, HuangJA, ChenY, ChenC, ZhangXG. High expression of PD-L1 in lung cancer may contribute to poor prognosis and tumor cells immune escape through suppressing tumor infiltrating dendritic cells maturation. Med Oncol. 2011;28(3):682–688. doi:10.1007/s12032-010-9515-220373055
  • SongM, ChenD, LuB, et al. PTEN loss increases PD-L1 protein expression and affects the correlation between PD-L1 expression and clinical parameters in colorectal cancer. PLoS One. 2013;8(6):e65821. doi:10.1371/journal.pone.006582123785454
  • TsangJY, AuWL, LoKY, et al. PD-L1 expression and tumor infiltrating PD-1+ lymphocytes associated with outcome in HER2+ breast cancer patients. Breast Cancer Res Treat. 2017;162(1):19–30. doi:10.1007/s10549-016-4095-228058578
  • BaptistaMZ, SarianLO, DerchainSF, PintoGA, VassalloJ. Prognostic significance of PD-L1 and PD-L2 in breast cancer. Hum Pathol. 2016;47(1):78–84. doi:10.1016/j.humpath.2015.09.00626541326
  • BaeSB, ChoHD, OhMH, et al. Expression of programmed death receptor ligand 1 with high tumor-infiltrating lymphocytes is associated with better prognosis in breast cancer. J Breast Cancer. 2016;19(3):242–251. doi:10.4048/jbc.2016.19.3.24227721873
  • DillEA, GruAA, AtkinsKA, et al. PD-L1 expression and Intratumoral heterogeneity across breast cancer subtypes and stages: an assessment of 245 primary and 40 metastatic tumors. Am J Surg Pathol. 2017;41(3):334–342. doi:10.1097/PAS.000000000000078028195880
  • HerbstRS, SoriaJ-C, KowanetzM, et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature. 2014;515(7528):563–567. doi:10.1038/nature1401125428504
  • KimJW, EderJP. Prospects for targeting PD-1 and PD-L1 in various tumor types. Oncology. 2014;28(Suppl 3):15–28.25387682
  • KimHR, HaSJ, HongMH, et al. PD-L1 expression on immune cells, but not on tumor cells, is a favorable prognostic factor for head and neck cancer patients. Sci Rep. 2016;6:36956. doi:10.1038/srep3695627841362
  • de KleijnS, LangereisJD, LeentjensJ, et al. IFN-γ-stimulated neutrophils suppress lymphocyte proliferation through expression of PD-L1. PLoS One. 2013;8(8):e72249. doi:10.1371/journal.pone.007224924015224
  • BursteinHJ, SunY, DirixLY, et al. Neratinib, an irreversible erbB receptor tyrosine kinase inhibitor, in patients with advanced erbB2-positive breast cancer. J Clin Oncol. 2010;28(8):1301–1307. doi:10.1200/JCO.2009.25.870720142587
  • OlayioyeMA, Graus-PortaD, BeerliRR, RohrerJ, GayB, HynesNE. ErbB-1 and erbB-2 acquire distinct signaling properties dependent upon their dimerization partner. Mol Cell Biol. 1998;18(9):5042–5051. doi:10.1128/mcb.18.9.50429710588
  • AlimandiM, RomanoA, CuriaMC, et al. Cooperative signaling of erbB3 and erbB2 in neoplastic transformation and human mammary carcinomas. Oncogene. 1995;10:1813–1821.7538656
  • KokaiY, MyersJN, WadaT, et al. Synergistic interaction of p185c-neu and the EGF receptor leads to transformation of rodent fibroblasts. Cell. 1989;58(2):287–292. doi:10.1016/0092-8674(89)90843-x2568888
  • BoulbesDR, AroldST, ChauhanGB, et al. HER family kinase domain mutations promote tumor progression and can predict response to treatment in human breast cancer. Mol Oncol. 2015;9(3):586–600. doi:10.1016/j.molonc.2014.10.01125435280
  • BoseR, KavuriSM, SearlemanAC, et al. Activating HER2 mutations in HER2 gene amplification negative breast cancer. Cancer Discov. 2013;3(2):224–237. doi:10.1158/2159-8290.CD-12-034923220880
  • LeeJW, SoungYH, SeoSH, et al. Somatic mutations of ERBB2 kinase domain in gastric, colorectal, and breast carcinomas. Clin Cancer Res. 2006;12(1):57–61. doi:10.1158/1078-0432.CCR-05-097616397024
  • SegattoO, KingCR, PierceJH, DiFiorePP, AaronsonSA. Different structural alterations upregulate in vitro tyrosine kinase activity and transforming potency of the erbB-2 gene. Mol Cell Biol. 1988;8(12):5570–5574. doi:10.1128/mcb.8.12.55702907606
  • LiuPCC, LiuX, LiY, et al. Identification of ADAM10 as a major source of HER2 ectodomain sheddase activity in HER2 overexpressing breast cancer cells. Cancer Biol Ther. 2006;5(6):657–664. doi:10.4161/cbt.5.6.270816627989
  • MolinaMA, SaezR, RamseyEE, et al. NH(2)-terminal truncated HER-2 protein but not full-length receptor is associated with nodal metastasis in human breast cancer. Clin Cancer Res. 2002;8(2):347–353.11839648
  • LuY, ZiX, ZhaoY, MascarenhasD, PollakM. Insulin-like growth factor-1 receptor signaling and resistance to trastuzumab. J Natl Cancer Inst. 2001;93(24):1852–1857. doi:10.1093/jnci/93.24.185211752009
  • HarrisLN, YouF, SchnittSJ, et al. Predictors of resistance to preoperative trastuzumab and vinorelbine for HER2-positive early breast cancer. Clin Cancer Res. 2007;13(4):1198–1207. doi:10.1158/1078-0432.CCR-06-130417317830
  • NahtaR, YuanLXH, ZhangB, KobayashiR, EstevaFJ. Insulin-like growth factor-1 receptor/human epidermal growth factor receptor 2 heterodimerization contributes to trastuzumab resistance of breast cancer cells. Cancer Res. 2005;65(23):11118–11128. doi:10.1158/0008-5472.CAN-04-384116322262
  • LaiA, SarcevicB, PrallOWJ, SutherlandRL. Insulin/insulin-like growth factor-I and estrogen cooperate to stimulate cyclin E-Cdk2 activation and cell cycle progression in MCF-7 breast cancer cells through differential regulation of cyclin E and p21WAF1/Cip . J Biol Chem. 2001;276(28):25823–25833. doi:10.1074/jbc.M10092520011337496
  • NicholsonRI, HutchesonIR, KnowldenJM, et al. Nonendocrine pathways and endocrine resistance; observations with antiestrogens and signal transduction inhibitors in combination. Clin Cancer Res. 2004;10(1 Pt 2):346S–354S. doi:10.1158/1078-0432.ccr-03120614734490
  • TangCK, PerezC, GruntT, WaibelC, ChoC, LupuR. Involvement of heregulin-beta2 in the acquisition of the hormone-independent phenotype of breast cancer cells. Cancer Res. 1996;56(14):3350–3358.8764133
  • NicholsonRI, StakaC, BoynsF, HutchesonIR, GeeJM. Growth factor-driven mechanisms associated with resistance to estrogen deprivation in breast cancer: new opportunities for therapy. Endocr Relat Cancer. 2004;11(4):623–641. doi:10.1677/erc.1.0077815613443
  • MassarwehS, OsborneCK, JiangS, et al. Mechanisms of tumor regression and resistance to estrogen deprivation and fulvestrant in a model of estrogen receptor-positive, HER-2/neu-positive breast cancer. Cancer Res. 2006;66(16):8266–8273. doi:10.1158/0008-5472.CAN-05-404516912207
  • KaufmanB, MackeyJR, ClemensM, et al. Trastuzumab plus anastrozole versus anastrozole alone for the treatment of postmenopausal women with human epidermal growth factor receptor 2-positive, hormone receptor-positive metastatic breast cancer: results from the randomized phase III TAnDEM study. J Clin Oncol. 2009;27(33):5529–5537. doi:10.1200/JCO.2008.20.684719786670
  • JohnstonS, PippenJ, PivotX, et al. Lapatinib combined with letrozole versus letrozole and placebo as first-line therapy for postmenopausal hormone receptor-positive metastatic breast cancer. J Clin Oncol. 2009;27(33):5538–5546. doi:10.1200/JCO.2009.23.373419786658
  • WangYC, MorrisonG, GillihanR, et al. Different mechanisms for resistance to trastuzumab versus lapatinib in HER2-positive breast cancers – role of estrogen receptor and HER2 reactivation. Breast Cancer Res. 2011;13(6):R121. doi:10.1186/bcr306722123186
  • XiaW, BacusS, HegdeP, et al. A model of acquired auto-resistance to a potent erbB2 tyrosine kinase inhibitor and a therapeutic strategy to prevent its onset in breast cancer. Proc Natl Acad Sci U S A. 2006;103(20):7795–7800. doi:10.1073/pnas.0602468103]16682622
  • MarksPA, RichonVM, RifkindRA. Histone deacetylase inhibitors: inducers of differentiation or apoptosis of transformed cells. J Natl Cancer Inst. 2000;92(15):1210–1216. doi:10.1093/jnci/92.15.121010922406
  • ChandarlapatyS, ScaltritiM, AngeliniP, et al. Inhibitors of HSP90 block p95-HER2 signaling in trastuzumab-resistant tumors and suppress their growth. Oncogene. 2010;29(3):325–334. doi:10.1038/onc.2009.33719855434
  • KenneckeH, YerushalmiR, WoodsR, et al. Metastatic behavior of breast cancer subtypes. J Clin Oncol. 2010;28(20):3271–3277. doi:10.1200/JCO.2009.25.982020498394
  • ArvoldMD, OhKS, NiemierkoA, et al. Brain metastases after breast conserving therapy and systemic therapy: incidence and characteristics by biologic subtype. Breast Cancer Res Treat. 2012;136(1):153–160. doi:10.1007/s10549-012-2243-x22968656
  • GuptaP, SrivastavaSK. HER2 mediated de novo production of TGFβ leads to SNAIL driven epithelial-to-mesenchymal transition and metastasis of breast cancer. Mol Oncol. 2014;8(8):1532–1547. doi:10.1016/j.molonc.2014.06.00624994678
  • NietoMA. The snail superfamily of zinc-finger transcription factors. Nat Rev Mol Cell Biol. 2002;3(3):155–166. doi:10.1038/nrm75711994736
  • HohenseeI, LamszusK, RiethdorfS, et al. Frequent genetic alterations in EGFR- and HER2-driven pathways in breast cancer brain metastases. Am J Pathol. 2013;183(1):83–95. doi:10.1016/j.ajpath.2013.03.02323665199
  • Da SilvaL, SimpsonPT, SmartCE, et al. HER3 and downstream pathways are involved in colonization of brain metastases from breast cancer. Breast Cancer Res. 2010;12(4):R46. doi:10.1186/bcr260320604919
  • YardenY, SliwkowskiMX. Untangling the ErbB signalling network. Nat Rev Mol Cell Biol. 2001;2(2):127–137. doi:10.1038/3505207311252954
  • LawAJ, Shannon WeickertC, HydeTM, KleinmanJE, HarrisonPJ. Neuregulin-1 (NRG-1) mRNA and protein in the adult human brain. Neuroscience. 2004;127(1):125–136. doi:10.1016/j.neuroscience.2004.04.02615219675
  • GaedckeJ, TraubF, MildeS, et al. Predominance of the basal type and HER-2/neu type in brain metastasis from breast cancer. Mod Pathol. 2007;20(8):864–870. doi:10.1038/modpathol.380083017541441
  • WikmanH, LamszusK, DetelsN, et al. Relevance of PTEN loss in brain metastasis formation in breast cancer patients. Breast Cancer Res. 2012;14(2):R49. doi:10.1186/bcr315022429330
  • ZhangL, RidgwayL, WetzelM, et al. The identification and isolation of breast cancer CTCs with brain metastatic competence. Sci Transl Med. 2013;5(180):84–93. doi:10.1126/scitranslmed.3005109
  • ZetserA, BashenkoY, MiaoH-Q, VlodavskyI, IlanN. Heparanase affects adhesive and tumorigenic potential of human glioma cells. Cancer Res. 2003;63:7733–7741.14633698
  • RidgwayL, WetzelMA, EpsteinA, MarchettiD. Heparanase-induced GEF-H1 signaling regulates the cytoskeletal dynamics of brain metastatic breast cancer cells. Mol Cancer Res. 2013;10(6):689–702. doi:10.1158/1541-7786.MCR-11-0534
  • ChoiYK, WooSM, ChoSG, et al. Brain-metastatic triple-negative breast cancer cells regain growth ability by altering gene expression patterns. Cancer Genomics Proteomics. 2013;10(6):265–275.24336635
  • UenoY, SakuraiH, TsunodaS, et al. Heregulin-induced activation of ErbB3 by EGFR tyrosine kinase activity promotes tumor growth and metastasis in melanoma cells. Int J Cancer. 2008;123(2):340–347. doi:10.1002/ijc.2346518398842
  • BachelotT, RomieuG, CamponeM, et al. Lapatinib plus capecitabine in patients with previously untreated brain metastases from HER2-positive metastatic breast cancer (LANDSCAPE): a single-group phase 2 study. Lancet Oncol. 2013;14(1):64–71. doi:10.1016/S1470-2045(12)70432-123122784
  • FreedmanRA, GelmanRS, AndersCK, et al. TBCRC 022: phase II trial of neratinib + capecitabine for patients with human epidermal growth factor receptor 2 breast cancer brain metastases. J Clin Oncol. 2019;37(13):1081–1089. doi:10.1200/JCO.18.0151130860945
  • MorikawaA, PeereboomDM, ThorsheimHR, et al. Capecitabine and lapatinib uptake in surgically resected brain metastases from metastatic breast cancer patients: a prospective study. Neuro Oncol. 2015;17(2):289–295. doi:10.1093/neuonc/nou14125015089
  • PoolaI, DeWittyRL, MarshalleckJJ, BhatnagarR, AbrahamJ, LeffallLD. Identification of MMP-1 as a putative breast cancer predictive marker by global gene expression analysis. Nat Med. 2005;11(5):481–483. doi:10.1038/nm124315864312
  • NørregaardR, KwonTH, FrøkiærJ. Physiology and pathophysiology of cyclooxygenase-2 and prostaglandin E2 in the kidney. Kidney Res Clin Pract. 2015;34(4):194–200. doi:10.1016/j.krcp.2015.10.00426779421
  • LeeKY, KimYJ, YooH, LeeSH, ParkJB, KimHJ. Human brain endothelial cell-derived COX-2 facilitates extravasation of breast cancer cells across the blood-brain barrier. Anticancer Res. 2011;31(12):4307–4313.22199296
  • XingF, KobayashiA, OkudaH, et al. Reactive astrocytes promote the metastatic growth of breast cancer stem-like cells by activating Notch signalling in brain. EMBO Mol Med. 2013;5(3):384–396. doi:10.1002/emmm.20120162323495140
  • ChaissonK, RivereA, CorsettiR, WeissT, FuhrmanGM. A potential additional variable to consider in the surgical treatment of ductal carcinoma in situ. Ochsner J Winter. 2017;17:341–344.
  • BursteinHJ, KeshaviahA, BaronAD, et al. Trastuzumab plus vinorelbine or taxane chemotherapy for HER2-overexpressing metastatic breast cancer: the trastuzumab and vinorelbine or taxane study. Cancer. 2007;110(5):965–972. doi:10.1002/cncr.2288517614302
  • BlackwellKL, BursteinH, StornioloA, et al. Randomized study of lapatinib alone or in combination with trastuzumab in women with ErbB2-positive, trastuzumab-refractory metastatic breast cancer. J Clin Oncol. 2010;28(7):1124–1130. doi:10.1200/JCO.2008.21.443720124187