378
Views
5
CrossRef citations to date
0
Altmetric
Review

An Update on the Molecular Pathology of Metaplastic Breast Cancer

ORCID Icon, & ORCID Icon
Pages 161-170 | Published online: 26 Feb 2021

References

  • Board WCoTE. Breast Tumours. Lyon, France: Interantional Agency for Research on Cancer; 2019.
  • Reis-FilhoJ, GobbiH, McCart ReedA, et al. Metaplastic Breast Cancer. Board WCoTE, editor. Breast Cancer. Lyon, France: International Agency for Research on Cancer. 2019. 135–138.
  • SchroederMC, RastogiP, GeyerCE, MillerLD, ThomasA. Early and Locally Advanced Metaplastic Breast Cancer: presentation and Survival by Receptor Status in Surveillance, Epidemiology, and End Results (SEER) 2010–2014. Oncologist. 2018;23(4):481–488.29330212
  • LeiT, PuT, WeiB, et al. Clinicopathologic characteristics of HER2-positive metaplastic squamous cell carcinoma of the breast. J Clin Pathol. 2020.
  • HennessyBT, Gonzalez-AnguloAM, Stemke-HaleK, et al. Characterization of a naturally occurring breast cancer subset enriched in epithelial-to-mesenchymal transition and stem cell characteristics. Cancer Res. 2009;69(10):4116–4124.19435916
  • TaubeJH, HerschkowitzJI, KomurovK, et al. Core epithelial-to-mesenchymal transition interactome gene-expression signature is associated with claudin-low and metaplastic breast cancer subtypes. Proc Natl Acad Sci U S A. 2010;107(35):15449–15454.20713713
  • FougnerC, BergholtzH, NorumJH, SorlieT. Re-definition of claudin-low as a breast cancer phenotype. Nat Commun. 2020;11(1):1787.32286297
  • AiD, YaoJ, YangF, et al. TRPS1: a highly sensitive and specific marker for breast carcinoma, especially for triple-negative breast cancer. Mod Pathol. 2020.
  • RakhaEA, CoimbraND, HodiZ, JuneinahE, EllisIO, LeeAH. Immunoprofile of metaplastic carcinomas of the breast. Histopathology. 2017;70(6):975–985.28029685
  • RakhaE, QuinnCM, Pia FoschiniM, et al. Metaplastic carcinomas of the breast without evidence of epithelial differentiation: a diagnostic approach for management. Histopathology. 2020. doi:10.1111/his.14290
  • McCart ReedAE, KalawE, NonesK, et al. Phenotypic and molecular dissection of Metaplastic Breast Cancer and the prognostic implications. J Pathol. 2019;247(2):214–227. doi:10.1002/path.518430350370
  • RaysonD, AdjeiAA, SumanVJ, WoldLE, IngleJN. Metaplastic breast cancer: prognosis and response to systemic therapy. Ann Oncol. 1999;10(4):413–419. doi:10.1023/A:100832991036210370783
  • TzanninisI-G, KotteasEA, Ntanasis-StathopoulosI, KontogianniP, FotopoulosG. Management and Outcomes in Metaplastic Breast Cancer. Clin Breast Cancer. 2016;16(6):437–443. doi:10.1016/j.clbc.2016.06.00227431460
  • SulaimanA, McGarryS, HanX, LiuS, WangL. CSCs in Breast Cancer—One Size Does Not Fit All: therapeutic Advances in Targeting Heterogeneous Epithelial and Mesenchymal CSCs. Cancers. 2019;11(8):8. doi:10.3390/cancers11081128
  • ZhangY, ToyKA, KleerCG. Metaplastic breast carcinomas are enriched in markers of tumor-initiating cells and epithelial to mesenchymal transition. Mod Pathol. 2012;25(2):178–184. doi:10.1038/modpathol.2011.16722080057
  • GerhardR, RicardoS, AlbergariaA, et al. Immunohistochemical features of claudin-low intrinsic subtype in metaplastic breast carcinomas. Breast. 2012;21(3):354–360. doi:10.1016/j.breast.2012.03.00122464177
  • MayCD, SphyrisN, EvansKW, WerdenSJ, GuoW, ManiSA. Epithelial-mesenchymal transition and cancer stem cells: a dangerously dynamic duo in breast cancer progression. Breast Cancer Res. 2011;13(1):202. doi:10.1186/bcr278921392411
  • NunesT, HamdanD, LeboeufC, et al. Targeting Cancer Stem Cells to Overcome Chemoresistance. Int J Mol Sci. 2018;19(12):12. doi:10.3390/ijms19124036
  • YuanH, ChenJ, LiuY, et al. Association of PIK3CA mutation status before and after neoadjuvant chemotherapy with response to chemotherapy in women with breast cancer. Clin Cancer Res. 2015;21(19):4365–4372. doi:10.1158/1078-0432.CCR-14-335425979484
  • MoseleF, StefanovskaB, LusqueA, et al. Outcome and molecular landscape of patients with PIK3CA-mutated metastatic breast cancer. Ann Oncol. 2020;31(3):377–386. doi:10.1016/j.annonc.2019.11.00632067679
  • KringsG, Chen-Y-Y. Genomic profiling of metaplastic breast carcinomas reveals genetic heterogeneity and relationship to ductal carcinoma. Mod Pathol. 2018;31(11):1661–1674. doi:10.1038/s41379-018-0081-z29946183
  • Gonzalez-MartinezS, Perez-MiesB, Carretero-BarrioI, et al. Molecular features of metaplastic breast carcinoma: an infrequent subtype of triple negative breast carcinoma. Cancers. 2020;12(7):7. doi:10.3390/cancers12071832
  • NgCKY, PiscuoglioS, GeyerFC, et al. The landscape of somatic genetic alterations in metaplastic breast carcinomas. Clin Cancer Res. 2017;23(14):3859–3870. doi:10.1158/1078-0432.CCR-16-285728153863
  • HayesMJ, ThomasD, EmmonsA, GiordanoTJ, KleerCG. Genetic changes of Wnt pathway genes are common events in metaplastic carcinomas of the breast. Clin Cancer Res. 2008;14(13):4038–4044. doi:10.1158/1078-0432.CCR-07-437918593979
  • AvigdorBE, BeierlK, GockeCD, et al. Whole-Exome Sequencing of Metaplastic Breast Carcinoma Indicates Monoclonality with Associated ductal carcinoma component. Clin Cancer Res. 2017;23(16):4875–4884. doi:10.1158/1078-0432.CCR-17-010828424200
  • MoukarzelL, FerrandoL, Da Cruz PaulaA, et al. The genetic landscape of metaplastic breast cancers and uterine carcinosarcomas. Mol Oncol. 2020. doi:10.1002/1878-0261.12813
  • HennessyBT, KrishnamurthyS, GiordanoS, et al. Squamous cell carcinoma of the breast. J Clin Oncol. 2005;23(31):7827–7835. doi:10.1200/JCO.2004.00.958916258085
  • AbouharbS, MoulderS. Metaplastic breast cancer: clinical overview and molecular aberrations for potential targeted therapy. Curr Oncol Rep. 2015;17(3):431. doi:10.1007/s11912-014-0431-z25691085
  • El ZeinD, HughesM, KumarS, et al. Metaplastic carcinoma of the breast is more aggressive than triple-negative breast cancer: a study from a single institution and review of literature. Clin Breast Cancer. 2017;17(5):382–391. doi:10.1016/j.clbc.2017.04.00928529029
  • HanM, SalamatA, ZhuL, et al. Metaplastic breast carcinoma: a clinical-pathologic study of 97 cases with subset analysis of response to neoadjuvant chemotherapy. Mod Pathol. 2019;32(6):807–816.30723293
  • Al-HilliZ, ChoongG, KeeneyMG, et al. Metaplastic breast cancer has a poor response to neoadjuvant systemic therapy. Breast Cancer Res Treat. 2019;176(3):709–716.31119569
  • Cimino-MathewsA, VermaS, Figueroa-MagalhaesMC, et al. A clinicopathologic analysis of 45 patients with metaplastic breast carcinoma. Am J Clin Pathol. 2016;145(3):365–372.27124919
  • HennessyBT, GiordanoS, BroglioK, et al. Biphasic metaplastic sarcomatoid carcinoma of the breast. Ann Oncol. 2006;17(4):605–613.16469754
  • NagaoT, KinoshitaT, HojoT, TsudaH, TamuraK, FujiwaraY. The differences in the histological types of breast cancer and the response to neoadjuvant chemotherapy: the relationship between the outcome and the clinicopathological characteristics. Breast. 2012;21(3):289–295.22277312
  • AydinerA, SenF, TambasM, et al. Metaplastic breast carcinoma versus triple-negative breast cancer: survival and response to treatment. Medicine. 2015;94(52):e2341.26717372
  • MoroneyJ, FuS, MoulderS, et al. Phase I study of the antiangiogenic antibody bevacizumab and the mTOR/hypoxia-inducible factor inhibitor temsirolimus combined with liposomal doxorubicin: tolerance and biological activity. Clin Cancer Res. 2012;18(20):5796–5805.22927482
  • BashoRK, GilcreaseM, MurthyRK, et al. Targeting the PI3K/AKT/mTOR pathway for the treatment of mesenchymal triple-negative breast cancer: evidence from a phase 1 trial of mTOR inhibition in combination with liposomal doxorubicin and bevacizumab. JAMA Oncol. 2017;3(4):509–515.27893038
  • BashoRK, YamC, GilcreaseM, et al. Comparative Effectiveness of an mTOR-based systemic therapy regimen in advanced, metaplastic and nonmetaplastic triple-negative breast cancer. Oncologist. 2018;23(11):1300–1309.30139837
  • YangMH, ChenIC, LuYS. PI3K inhibitor provides durable response in metastatic metaplastic carcinoma of the breast: a hidden gem in the BELLE-4 study. J Formos Med Assoc. 2019;118(9):1333–1338.30577988
  • LuYS, LeeKS, ChaoTY, et al. A phase ib study of alpelisib or buparlisib combined with tamoxifen plus goserelin in premenopausal women with hr-positive her2-negative advanced breast cancer. Clin Cancer Res. 2020.
  • CoussyF, El BottyR, LavigneM, et al. Combination of PI3K and MEK inhibitors yields durable remission in PDX models of PIK3CA-mutated metaplastic breast cancers. J Hematol Oncol. 2020;13(1):13.32087759
  • MatutinoA, AmaroC, VermaS. CDK4/6 inhibitors in breast cancer: beyond hormone receptor-positive HER2-negative disease. Ther Adv Med Oncol. 2018;10:1758835918818346.30619511
  • SeoT, NoguchiE, YoshidaM, et al. response to dabrafenib and trametinib of a patient with metaplastic breast carcinoma harboring a braf v600e mutation. case rep oncol med. 2020;2020:2518383.32206360
  • HennemanL, van MiltenburgMH, MichalakEM, et al. Selective resistance to the PARP inhibitor olaparib in a mouse model for BRCA1-deficient metaplastic breast cancer. Proc Natl Acad Sci U S A. 2015;112(27):8409–8414.26100884
  • TrayN, TaffJ, AdamsS. Therapeutic landscape of metaplastic breast cancer. Cancer Treat Rev. 2019;79:101888.31491663
  • AdamsS. Dramatic response of metaplastic breast cancer to chemo-immunotherapy. NPJ Breast Cancer. 2017;3:8.28649648
  • Al SayedAD, ElshenawyMA, TulbahA, Al-TweigeriT, GhebehH. Complete response of chemo-refractory metastatic metaplastic breast cancer to paclitaxel-immunotherapy combination. Am J Case Rep. 2019;20:1630–1635.31690713
  • AdamsS, OthusM, PatelS, et al. Dual anti-CTLA-4 and anti-PD-1 blockade in metaplastic carcinoma of the breast: dart (SWOG S1609, Cohort 36). J Clin Oncol. 2020;38.33052757
  • AfkhamiM, SchmolzeD, YostSE, et al. Mutation and immune profiling of metaplastic breast cancer: correlation with survival. PLoS One. 2019;14(11):e0224726.31693690
  • BataillonG, FuhrmannL, GirardE, et al. High rate of PIK3CA mutations but no TP53 mutations in low-grade adenosquamous carcinoma of the breast. Histopathology. 2018;73(2):273–283.29537649
  • BecaF, SebastiaoAPM, ParejaF, et al. Whole-exome analysis of metaplastic breast carcinomas with extensive osseous differentiation. Histopathology. 2020.
  • EdenfieldJ, SchammelC, CollinsJ, SchammelD, EdenfieldWJ. Metaplastic breast cancer: molecular typing and identification of potential targeted therapies at a single institution. Clin Breast Cancer. 2017;17(1):e1–e10.27568101
  • JonejaU, VranicS, SwensenJ, et al. Comprehensive profiling of metaplastic breast carcinomas reveals frequent overexpression of programmed death-ligand 1. J Clin Pathol. 2017;70(3):255–259.27531819
  • RossJS, BadveS, WangK, et al. Genomic profiling of advanced-stage, metaplastic breast carcinoma by next-generation sequencing reveals frequent, targetable genomic abnormalities and potential new treatment options. Arch Pathol Lab Med. 2015;139(5):642–649.25927147
  • TrayN, TaffJ, SinghB, et al. Metaplastic breast cancers: genomic profiling, mutational burden and tumor-infiltrating lymphocytes. Breast. 2018;44:29–32.30609392
  • VranicS, StaffordP, PalazzoJ, et al. Molecular profiling of the metaplastic spindle cell carcinoma of the breast reveals potentially targetable biomarkers. Clin Breast Cancer. 2020;20(4):326–331.32197944
  • ZhaiJ, GianniniG, EwaltMD, et al. Molecular characterization of metaplastic breast carcinoma via next-generation sequencing. Hum Pathol. 2019;86:85–92.30537493
  • DaveB, GonzalezDD, LiuZB, et al. Role of RPL39 in Metaplastic Breast Cancer. J Natl Cancer Inst. 2017;109:6.
  • MittendorfEA, PhilipsAV, Meric-BernstamF, et al. PD-L1 expression in triple-negative breast cancer. Cancer Immunol Res. 2014;2(4):361–370.24764583
  • BeckersRK, SelingerCI, VilainR, et al. Programmed death ligand 1 expression in triple-negative breast cancer is associated with tumour-infiltrating lymphocytes and improved outcome. Histopathology. 2016;69(1):25–34.26588661
  • DogukanR, UcakR, DogukanFM, TanikC, CitgezB, KabukcuogluF. Correlation between the Expression of PD-L1 and Clinicopathological parameters in triple negative breast cancer patients. Eur J Breast Health. 2019;15(4):235–241.31620682
  • MorganE, SureshA, GanjuA, et al. Assessment of outcomes and novel immune biomarkers in metaplastic breast cancer: a single institution retrospective study. World J Surg Oncol. 2020;18(1):11.31937323
  • LienHC, LeeYH, ChenIC, et al. Tumor-infiltrating lymphocyte abundance and programmed death-ligand 1 expression in metaplastic breast carcinoma: implications for distinct immune microenvironments in different metaplastic components. Virchows Arch. 2020;24.
  • KalawE, LimM, KutasovicJR, et al. Metaplastic breast cancers frequently express immune checkpoint markers FOXP3 and PD-L1. Br J Cancer. 2020.
  • ChaoX, LiuL, SunP, et al. Immune parameters associated with survival in metaplastic breast cancer. Breast Cancer Res. 2020;22(1):92.32811533