362
Views
1
CrossRef citations to date
0
Altmetric
Review

Breast Cancer Adjuvant Radiotherapy in BRCA1/2, TP53, ATM Genes Mutations: Are There Solved Issues?

ORCID Icon, , & ORCID Icon
Pages 299-310 | Published online: 12 May 2021

References

  • Terui-KohbataH, YoshidaM. Current condition of genetic medicine for hereditary breast cancer. Mol Clin Oncol. 2017;7:98–102. doi:10.3892/mco.2017.126028685084
  • EastonDF, PharoahPDP, AntoniouAC, et al. Gene-panel sequencing and the prediction of breast-cancer risk. N Engl J Med. 2015;372:2243–2257. doi:10.1056/NEJMsr150134126014596
  • BergomC, WestCM, HigginsonDS, et al. The implications of genetic testing on radiation therapy decisions: a guide for radiation oncologists. Int J Radiat Oncol Biol Phys. 2019;105:698–712. doi:10.1016/j.ijrobp.2019.07.02631381960
  • TungNM, BougheyJC, PierceLJ, et al. Management of Hereditary Breast Cancer: American Society of Clinical Oncology, American Society for Radiation Oncology, and Society of Surgical Oncology Guideline. J Clin Oncol. 2020;38:2080–2106. doi:10.1200/JCO.20.0029932243226
  • ShiovitzS, KordeLA. Genetics of breast cancer: a topic in evolution. Ann Oncol. 2015;26:1219–1291. doi:10.1093/annonc/mdv022
  • FordD, EastonDF, PetoJ. Estimates of the gene frequency of BRCA1 and its contribution to breast and ovarian cancer incidence. Am J Hum Genet. 1995;57:1457–1462.8533776
  • Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490(7418):61–70. doi:10.1038/nature1141223000897
  • Gonzalez-AnguloAM, TimmsKM, LiuS, et al. Incidence and outcome of BRCA mutations in unselected patients with triple receptor-negative breast cancer. Clin Cancer Res. 2011;17:1082–1089. doi:10.1158/1078-0432.ccr-10-256021233401
  • MavaddatN, BarrowdaleD, AndrulisIL, et al. Pathology of breast and ovarian cancers among BRCA1 and BRCA2 mutation carriers: results from the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA). Cancer Epidemiol Biomarkers Prev. 2012;21:134–147. doi:10.1158/1055-9965.epi-11-077522144499
  • RischHA, McLaughlinJR, ColeDE, et al. Population BRCA1 and BRCA2 mutation frequencies and cancer penetrances: a kin-cohort study in Ontario, Canada. J Natl Cancer Inst. 2006;98:1694–1706. doi:10.1093/jnci/djj46517148771
  • RakhaEA, Reis-FilhoJS, EllisIO. Basal-like breast cancer: a critical review. J Clin Oncol. 2008;26:2568–2581. doi:10.1200/JCO.2007.13.174818487574
  • LeeEH, ParkSK, ParkB, et al. Effect of BRCA1/2 mutation on short-term and long-term breast cancer survival: a systematic review and metaanalysis. Breast Cancer Res Treat. 2010;122:11–25. doi:10.1007/s10549-010-0859-220376556
  • BarettaZ, MocellinS, GoldinE, et al. Effect of BRCA germline mutations on breast cancer prognosis: a systematic review and meta-analysis. Medicine. 2016;95:e4975. doi:10.1097/MD.000000000000497527749552
  • CopsonER, MaishmanTC, TapperWJ, et al. Germline BRCA mutation and outcome in young-onset breast cancer (POSH): a prospective cohort study. Lancet Oncol. 2018;19:169–180. doi:10.1016/S1470-2045(17)30891-429337092
  • PetitjeanA, AchatzMI, Borresen-DaleAL, et al. TP53 mutations in human cancers: functional selection and impact on cancer prognosis and outcomes. Oncogene. 2007;26:2157–2165. doi:10.1038/sj.onc.121030217401424
  • LiFP, FraumeniJF, MulvihillJJ, et al. A cancer family syndrome in twenty-four kindreds. Cancer Res. 1988;48:5358–5362.3409256
  • MaiPL, BestAF, PetersJA, et al. Risks of first and subsequent cancers among TP53 mutation carriers in the National Cancer Institute LiFraumeni syndrome Cohort. Cancer. 2016;122:3673–3681. doi:10.1002/cncr.3024827496084
  • KamiharaJ, RanaHQ, GarberJE. Germline TP53 mutations and the changing landscape of Li-Fraumeni syndrome. Hum Mutat. 2014;35:654–662. doi:10.1002/humu.2255924706533
  • McCuaigJM, ArmelSR, NovokmetA, et al. Routine TP53 testing for breast cancer under age 30: ready for prime time?Fam Cancer. 2012;11:607–613. PMID: 22851211. doi:10.1007/s10689-012-9557-z22851211
  • GonzalezKD, BuzinCH, NoltnerKA, et al. High frequency of de novo mutations in Li–Fraumeni syndrome. J Med Genet. 2009;46:689–693. doi:10.1136/jmg.2008.05895819556618
  • Melhem-BertrandtA, BojadzievaJ, ReadyKJ, et al. Early onset HER2-positive breast cancer is associated with germline TP53 mutations. Cancer. 2012;118(4):908–913. doi:10.1002/cncr.2637721761402
  • RathMG, MasciariS, GelmanR, et al. Prevalence of germline TP53 mutations in HER2+ breast cancer patients. Breast Cancer Res Treat. 2013;139:193–198. doi:10.1007/s10549-012-2375-z23580068
  • PackwoodK, MartlandG, SommerladM, et al. Breast cancer in patients with germline TP53 pathogenic variants have typical tumour characteristics: the Cohort study of TP53 carrier early onset breast cancer (COPE study). J Pathol Clin Res. 2019;5(3):189–198. doi:10.1002/cjp2.13331041842
  • LiaoH, LiH. Advances in the detection technologies and clinical applications of circulating tumor DNA in metastatic breast cancer. Cancer Manag Res. 2020;12:3547–3560. doi:10.2147/CMAR.S24904132547192
  • OvergaardJ. TP53 mutation is an independent prognostic marker for poor outcome in both node-negative and node-positive breast cancer. Acta Oncol. 2000;39(3):327–333. doi:10.1080/02841860075001309610987229
  • BartekJ, BartkovaJ, LukasJ. DNA damage signalling guards against activated oncogenes and tumour progression. Oncogene. 2007;26(56):7773–7779. doi:10.1038/sj.onc.121088118066090
  • Geoffroy-PerezB, JaninN, OssianK, et al. Cancer risk in heterozygotes for ataxia–telangiectasia. Int J Cancer. 2001;93:288–293. doi:10.101002/ijc.132911410879
  • BremerM, KlöpperK, YaminiP, et al. Clinical radiosensitivity in breast cancer patients carrying pathogenic ATM gene mutations: no observation of increased radiation-induced acute or late effects. Radiother Oncol. 2003;69:155–160. doi:10.1016/j.radonc.2003.08.00414643952
  • ThompsonD, DuedalS, KirnerJ, et al. Cancer risks and mortality in heterozygous ATM mutation carriers. J Natl Cancer Inst. 2005;97:813–822. doi:10.1093/jnci/dji14115928302
  • RenwickA, ThompsonD, SealS, et al. ATM mutations that cause ataxia-telangiectasia are breast cancer susceptibility alleles. Nat Genet. 2006;38:873–875. doi:10.1038/ng183716832357
  • LavinMF, ScottS, GuevenN, et al. Functional consequences of sequence alterations in the ATM gene. DNA Repair. 2004;3(8–9):1197–1205. doi:10.1016/j.dnarep.2004.03.01115279808
  • ScottSP, BendixR, ChenP, et al. Missense mutations but not allelic variants alter the function of ATM by dominant interference in patients with breast cancer. Proc Natl Acad Sci USA. 2002;99:925–930. doi:10.1073/pnas.01232969911805335
  • MullinsBT, GuptaG. Increased radiation toxicity with germline ATM variant of uncertain clinical significance. Rep Pract Oncol Radiother. 2019;24:672–680. doi:10.1016/j.rpor.2019.09.00831719806
  • VenkitaramanAR. How do mutations affecting the breast cancer genes BRCA1 and BRCA 2 cause cancer susceptibility?DNA Repair. 2019;81:102668. doi:10.1016/j.dnarep.2019.10266831337537
  • MoynahanME, PierceAJ, JasinM. BRCA2 is required for homology-directed repair of chromosomal breaks. Mol Cell. 2001;7:263–272. doi:10.1016/S10972765(01)00174-511239455
  • CareyLA. Targeted chemotherapy? Platinum in BRCA1 – dysfunctional breast cancer. J Clin Oncol. 2010;28:361–365. doi:10.1200/JCO.2009.24.083820008634
  • KanC, ZhangJ. BRCA1 mutation: a predictive marker for radiation therapy?Int J Radiat Oncol Biol Phys. 2015;93:281–293. doi:10.1016/j.ijrobp.2015.05.03726383678
  • BarwellJ, PangonL, GeorgiouA, et al. Lymphocyte radiosensitivity in BRCA1 and BRCA2 mutation carriers and implications for breast cancer susceptibility. Int J Cancer. 2007;121:1631–1636. doi:10.1002/ijc.2291517582599
  • ShenSX, WeaverZ, XuX, et al. A targeted disruption of the murine Brca1 gene causes gamma-irradiation hypersensitivity and genetic instability. Oncogene. 1998;17:3115–3124. doi:10.1038/sj.onc.12022439872327
  • ForayN, RandrianarisonV, MarotD, et al. Gamma-rays induced death of human cells carrying mutations of BRCA1 or BRCA2. Oncogene. 1999;18:7334–7342. doi:10.1038/sj.onc.120316510602489
  • BaertA, DepuydtJ, Van MaerkenT, et al. Increased chromosomal radiosensitivity in asymptomatic carriers of a heterozygous BRCA1 mutation. Breast Cancer Res. 2016;18:52–64. doi:10.1186/s13058-016-0709-127184744
  • BaertA, DepuydtJ, Van MaerkenT, et al. Analysis of chromosomal radiosensitivity of healthy BRCA2 mutation carriers and non-carriers in BRCA families with the G2 micronucleus assay. Oncol Rep. 2017;37:1379–1386. doi:10.3892/or.2017.540728184943
  • RobsonME, ChappuisPO, SatagopanJ, et al. A combined analysis of outcome following breast cancer: differences in survival based on BRCA1/ BRCA2 mutation status and administration of adjuvant treatment. Breast Cancer Res. 2004;6:8–17. doi:10.1186/bcr658
  • PierceLJ, LevinAM, RebbeckTR, et al. Ten-year multi-institutional results of breastconserving surgery and radiotherapy in BRCA1/2 associated stage I/II breast cancer. J Clin Oncol. 2006;24:2437–2443. doi:10.1200/JCO.2005.02.788816636335
  • BrekelmansCTM, Tilanus-LinthorstMMA, SeynaeveC, et al. Tumour characteristics, survival and prognostic factors of hereditary breast cancer from BRCA2-, BRCA1- and non-BRCA1/2 families as compared to sporadic breast cancer cases. Eur J Cancer. 2007;43:867–876. doi:10.1016/j.ejca.2006.12.00917307353
  • KirovaYM, SavignoniA, Sigal-ZafraniB, et al. Is the breast-conserving treatment with radiotherapy appropriate in BRCA1/2 mutation carriers? Long-term results and review of the literature. Breast Cancer Res Treat. 2010;120:119–126. doi:10.1007/s10549-009-0685-620033769
  • ValachisA, NearchouAD, LindP. Surgical management of breast cancer in BRCA mutation carriers: a systematic review and meta-analysis. Breast Cancer Res Treat. 2014;144:443–455. doi:10.1007/s10549-014-2890-124567198
  • VallardA, MagnèN, GuyJB, et al. Is breast-conserving therapy adequate in BRCA1/2 mutation carriers? The radiation oncologist’s point of view. Br J Radiol. 2019;92:20170657 1–9. doi:10.1259/bjr.2017065730810334
  • KastanMB, ZhanO, El-DeiryWS, et al. A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell. 1992;71:587–597. doi:10.1016/0092-8674(92)90593-21423616
  • McllwrathAJ, VaseyPA, RossGM, et al. Cell cycle arrests and radiosensitivity of human tumor cell lines: dependence on wild-type p53 for radiosensitivity. Cancer Res. 1994;54:3718–3722.8033090
  • OlivierM, GoldgarDE, SodhaN, et al. Li–Fraumeni and related syndromes: correlation between tumor type, family structure, and TP53 genotype. Cancer Res. 2003;63:6643–6650.14583457
  • SchonK, TischkowitzM. Clinical implications of germline mutations in breast cancer: TP53. Breast Cancer Res Treat. 2018;167:417–423. doi:10.1007/s10549-017-4531-y29039119
  • McBrideKA, BallingerML, KillickE, et al. Li–Fraumeni syndrome: cancer risk assessment and clinical management. Nat Rev Clin Oncol. 2014;11:260–271. doi:10.1038/nrclinonc.2014.4124642672
  • KappelS, JanschekE, WolfB, et al. TP53 germline mutation may affect response to anticancer treatments: analysis of an intensively treated Li–Fraumeni family. Breast Cancer Res Treat. 2015;151:671–678. doi:10.1007/s10549-015-3424-125981898
  • BarlowC, BrownKD, DengCX, et al. Atm selectively regulates distinct p53- dependent cell-cycle checkpoint and apoptotic pathways. Nat Genet. 1997;17:453–456. doi:10.1038/ng1297-4539398849
  • WorgulBV, SmilenovL, BrennerDJ, et al. Atm heterozygous mice are more sensitive to radiation induced cataracts than are their wild-type counterparts. Proc Natl Acad Sci. 2002;99:9836–9839. doi:10.1073/pnas.16234969912119422
  • PatersonMC, AndersonAK, SmithBP, et al. Enhanced radiosensitivity of cultured fibroblasts from ataxia telangiectasia heterozygotes manifested by defective colony-forming ability and reduced DNA repair replication after hypoxic gamma-irradiation. Cancer Res. 1979;39:3725–3734.476695
  • ClarkeRA, FangZH, MarrPJ, et al. ATM induction insufficiency in a radiosensitive breast-cancer patient. Aust Radiol. 2002;46:329–335. doi:10.1046/j.1440-1673.2002.01072.x
  • SuY, SwiftM. Outcomes of adjuvant radiation therapy for breast cancer in women with ataxia–telangiectasia mutations. JAMA. 2001;286:2233–2234. doi:10.1001/jama.286.18.2233
  • MeyerA, JohnE, DorkT, et al. Breast cancer in female carriers of ATM gene alterations: outcome of adjuvant radiotherapy. Radiother Oncol. 2004;72:319–323. doi:10.1016/j.radonc.2004.07.01015450731
  • JerzakKJ, MancusoT, EisenA. Ataxia-telangiectasia gene (ATM) mutation heterozygosity in breast cancer: a narrative review. Curr Oncol. 2018;25(2):176–180. doi:10.3747/co.25.370729719434
  • ShanleyS, McReynoldsK, Ardern-JonesA, et al. LateToxicity is not increased in BRCA1/BRCA2 mutation carriers undergoing breast radiotherapy in the United Kingdom. Clin Cancer Res. 2006;12:7025–7032. doi:10.1158/1078-0432.CCR-06-124417145824
  • ParkH, ChoiDH, NohJM, et al. Acute skin toxicity in Korean breast cancer patients carrying BRCA mutations. Int J Radiat Biol. 2014;90:90–94. doi:10.3109/09553002.2013.83550423957571
  • HusznoJ, BudrykM, KołoszaZ, et al. The risk factors of toxicity during chemotherapy and radiotherapy in breast cancer patients according to the presence of BRCA gene mutation. Contemp Oncol. 2015;19:72–76. doi:10.5114/wo.2015.50014
  • Fuentes-RaspallMJ, CaragolI, AlonsoC, et al. Apoptosis for prediction of radiotherapy late toxicity: lymphocyte subset sensitivity and potential effect of TP53 Arg72Pro polymorphism. Apoptosis. 2015;20:371–382. doi:10.1007/s10495-014-1056-225398538
  • TanXL, PopandaO, AmbrosoneCB, et al. Association between TP53 and p21 genetic polymorphisms and acute side effects of radiotherapy in breast cancer patients. Breast Cancer Res Treat. 2006;97:255–262. doi:10.1007/s10549-005-9119-216331344
  • SantiR, CeticaV, FranchiA, et al. Tumour suppressor gene TP53 mutations in atypical vascular lesions of breast skin following radiotherapy. Histopathology. 2011;58:455–466. doi:10.1111/j.1365-2559.2011.03770.x21323968
  • WeissbergJB, HuangDD, SwiftM. Radiosensitivity of normal tissues in ataxia– telangiectasia heterozygotes. Int J Radiat Oncol Biol Phys. 1998;42:1133–1136. doi:10.1016/S0360-3016(98)00295-89869240
  • PollardJM, GattiRA. Clinical radiation sensitivity with DNA repair disorders: an overview. Int J Radiat Oncol Biol Phys. 2009;74:1323–1331. doi:10.1016/j.ijrobp.2009.02.05719616740
  • FangZ, KozlovS, McKayMJ, et al. Low levels of ATM in breast cancer patients with clinical radiosensitivity. Genome Integr. 2010;1:9–20. doi:10.1186/2041-9414-1-920678261
  • IannuzziCM, AtencioDP, GreenS, et al. ATM mutations in female breast cancer patients predict for an increase in radiation-induced late effects. Int J Radiat Oncol Biol Phys. 2002;52:606–613. doi:10.1016/S0360-3016(01)02684-011849780
  • ByrdPJ, SrinivasanV, LastJI, et al. Severe reaction to radiotherapy for breast cancer as the presenting feature of ataxiateleangectasia. Br J Cancer. 2012;106:262–268. doi:10.1038/bjc.2011.53422146522
  • HoAY, FanG, AtencioDP, et al. Possession of ATM sequence variants as predictor for late normal tissue responses in breast cancer patients treated with radiotherapy. Int J Radiat Oncol Biol Phys. 2007;69:677–684. doi:10.1016/j.ijrobp.2007.04.01217517479
  • DongL, CuiJ, TangF, et al. Ataxia telangiectasia-mutated gene polymorphisms and acute normal tissue injuries in cancer patients after radiation therapy: a systematic review and meta-analysis. Int J Radiat Oncol Biol Phys. 2015;91:1090–1098. doi:10.1016/j.ijrobp.2014.12.04125832699
  • ZhangY, LiuZ, WangM, et al. Single nucleotide polymorphism rs1801516 in Ataxia Telangiectasia-mutated gene predicts late fibrosis in cancer patients after radiotherapy: a PRISMA-compliant systematic review and meta-analysis. Medicine. 2016;95:e3267. doi:10.1097/MD.000000000000326727057881
  • SuM, YinZH, WuW, et al. Meta-analysis of associations between ATM Asp1853Asn and TP53 Arg72Pro polymorphisms and adverse effects of cancer radiotherapy. Asian Pac J Cancer Prev. 2014;15:10675–10681. doi:10.7314/apjcp.2014.15.24.1067525605158
  • TerrazzinoS, CargninS, DeantonioL, et al. Impact of ATM rs1801516 on late skin reactions of radiotherapy for breast cancer: evidences from a cohort study and a trial sequential meta-analysis. PLoS One. 2019;14:e0225685. doi:10.1371/journal.pone.022568531756226
  • ZhangW, BeccioliniA, BiggeriA, et al. Second malignancies in breast cancer patients following radiotherapy: a study in Florence, Italy. Breast Cancer Res. 2011;13:38–47. doi:10.1186/bcr2860
  • ShethGR, CranmerLD, SmithBD, et al. Radiation-induced sarcoma of the breast: a systematic review. Oncologist. 2012;17:405–418. doi:10.1634/theoncologist.2011-028222334455
  • NieuwenhuisB, Van Assen-boltAJ, Van Waarde-verhagenMAWH, et al. BRCA1 and BRCA2 heterozygosity and repair of X-ray-induced DNA damage. Int J Radiat Biol. 2002;78:285–295. doi:10.1080/0955300011009797412020440
  • SpeitG, TrenzK. Chromosomal mutagen sensitivity associated with mutations in BRCA genes. Cytogenet Genome Res. 2004;104(1–4):325–332. doi:10.1159/00007751115162060
  • BayensA, ThierensH, ClaesK, et al. Chromosomal radiosensitivity in BRCA1 and BRCA2 mutation carriers. Int J Radiat Oncol Biol. 2004;80(10):745–756. doi:10.1080/09553000400017937
  • PijpeA, AndrieuN, EastonDF, et al. Exposure to diagnostic radiation and risk of breast cancer among carriers of BRCA1/2 mutations: retrospective cohort study (GENERADRISK). Br Med J. 2012;6:e5660. doi:10.1136/bmj.e5660
  • AndrieuN, EastonFD, Chang-ClaudeJ, et al. Effect of chest X-rays on the risk of breast cancer among BRCA1/2 mutation carriers in the International BRCA1/2 Carrier Cohort Study: a report from the EMBRACE, GENEPSO, GEO-HEBON, and IBCCS Collaborators’ Group. J Clin Oncol. 2006;24:3361–3366. doi:10.1200/JCO.2005.03.312616801631
  • WarnerE. Impact of MRI surveillance and breast cancer detection in young women with BRCA mutations. Ann Oncol. 2011;22:44–49. doi:10.1093/annonc/mdq665
  • SchlosserS, RabinovitchR, ShatzZ, et al. Radiation Associated secondary malignancies in BRCA mutation carriers treated for breast cancer. Int J Radiat Oncol Biol Phys. 2020;107:353–359. doi:10.1016/j.ijrobp.2020.02.02032084523
  • KadouriL, SagiM, GoldbergY, et al. Genetic predisposition to radiation induced sarcoma: possible role for BRCA and p53 mutations. Breast Cancer Res Treat. 2013;140:207–211. doi:10.1007/s10549-013-2621-z23824362
  • EvronE, Ben-DavidAM, GoldbergH, et al. Prophylactic irradiation to the contralateral breast for BRCA mutation carriers with early-stage breast cancer. Ann Oncol. 2019;30:412–417. doi:10.1093/annonc/mdy51530475942
  • KasperE, AngotE, ColasseE, et al. Contribution of genotoxic anticancer treatments to the development of multiple primary tumours in the context of germline TP53 mutations. Eur J Cancer. 2018;101:254–262. doi:10.1016/j.ejca.2018.06.01130072235
  • SalmonA, AmikamD, SodhaN, et al. Rapid development of post-radiotherapy sarcoma and breast cancer in a patient with a novel germline ‘De-Novo’ TP53 mutation. Clin Oncol. 2007;19:490–493. doi:10.1016/j.clon.2007.05.001
  • NandikollaAG, VenugopalS, AnampaJ. Breast cancer in patients with Li-Fraumeni syndrome – a case series study and review of literature. Breast Cancer (Dove Med Press). 2017;9:207–215. doi:10.2147/BCTT.S13424128356770
  • BarbosaOV, ReirizAB, BoffRA, et al. Angiosarcoma in previously irradiated breast in patient with Li-Fraumeni syndrome. A case report. Sao Paulo Med J. 2015;133:151–153. doi:10.1590/1516-3180.2012674000425271877
  • HenryE, VillalobosV, MillionL, et al. Chest wall leiomyosarcoma after breast conservative therapy for early-stage breast cancer in a young woman with Li-Fraumeni syndrome. J Natl Compr Cancer Netw. 2012;10:939–942. doi:10.6004/jnccn.2012.0097
  • PetryV, Colombo BonadioR, Carneiro CagnacciAQ, et al. Radiotherapy- induced malignancies in breast cancer patients with TP53 pathogenic germline variants (Li-Fraumeni syndrome). Fam Cancer. 2020;19:47–53. doi:10.1007/s10689-019-00153-531748977
  • StovallM, SmithSA, LangholzBM, et al. Dose to the contralateral breast from radiation therapy and risk of second primary breast cancer in the WECARE Study. Int J Radiat Oncol Biol Phys. 2008;72:1021–1030. doi:10.1016/j.ijrobp.2008.02.04018556141
  • BorgA, HaileRW, MaloneKE, et al. Characterization of BRCA1 and BRCA2 deleterious mutations and variants of unknown clinical significance in unilateral and bilateral breast cancer: the WECARE Study. Hum Mutat. 2010;31(3):E1200–E1240. doi:10.1002/humu.2120220104584
  • Cline MS, Liao MG, Parsons MT, et al. BRCA Challenge: BRCA Exchange as a global resource for variants in BRCA1 and BRCA2. PLoS Genet. 2018;14(12):e1007752. doi:10.1371/journal.pgen.10077527
  • EngelC, FischerC, ZachariaeS, et al. Breast cancer risk in BRCA1/2 mutation carriers and noncarriers under prospective intensified surveillance. Int J Cancer. 2020;146:999–1009. doi:10.1002/ijc.3239631081934
  • DroogerJC, AkdenizD, PignolJP, et al. Adjuvant radiotherapy for primary breast cancer in BRCA1 and BRCA2 mutation carriers and risk of contralateral breast cancer with special attention to patients irradiated at younger age. Breast Cancer Res Treat. 2015;154:171–180. doi:10.1007/s10549-015-3597-726467044
  • BernsteinJL, ThomasDC, ShoreRE, et al. Contralateral Breast Cancer after radiotherapy among BRCA 1 and BRCA 2 mutation carriers: a WECARE study report. Eur J Cancer. 2013;49(14):2979–2985. doi:10.1016/j.ejca.2013.04.02823706288
  • BroeksA, BraafLM, HuseinovicA, et al. The spectrum of ATM missense variants and their contribution to contralateral breast cancer. Breast Cancer Res Treat. 2008;107:243–248. doi:10.1007/s10549-007-9543-617393301
  • BernsteinJL, ConcannonP; WECARE Study Collaborative Group. ATM, radiation, and the risk of second primary breast cancer. Int J Radiat Biol. 2017;93:1121–1127. doi:10.1080/09553002.2017.134436328627265
  • NakamuraH, YasuiY, SaitoN, et al. DNA repair defect in AT cells and their hypersensitivity to low-dose-rate radiation. Radiat Res. 2006;165:277–282. doi:10.1667/rr3519.116494515
  • OjimaM, BanN, KaiM. DNA double-strand breaks induced by very low X-ray doses are largely due to bystander effects. Radiat Res. 2008;170:365–371. doi:10.1667/RR1255.118763860
  • TeohV, TasoulisMK, GeraldG. Contralateral prophylactic mastectomy in women with unilateral breast cancer who are genetic carriers, have a strong family history or are just young at presentation. Cancers. 2020;12:140. doi:10.3390/cancers12010140