400
Views
7
CrossRef citations to date
0
Altmetric
Original Research

Potentiating the Cytotoxic Activity of a Novel Simvastatin-Loaded Cubosome against Breast Cancer Cells: Insights on Dual Cell Death via Ferroptosis and Apoptosis

, & ORCID Icon
Pages 675-689 | Published online: 14 Dec 2021

References

  • SungH, FerlayJ, SiegelRL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–249. doi:10.3322/caac.2166033538338
  • KimbungS, LomanN, HedenfalkI. Clinical and molecular complexity of breast cancer metastases. Semin Cancer Biol. 2015;35:85–95. doi:10.1016/j.semcancer.2015.08.00926319607
  • AlarfiH, YoussefLA, SalamoonM, ProspectiveA. Randomized, placebo-controlled study of a combination of simvastatin and chemotherapy in metastatic breast cancer. J Oncol. 2020;2020:e4174395. doi:10.1155/2020/4174395
  • Di BelloE, ZwergelC, MaiA, ValenteS. The innovative potential of statins in cancer: new targets for new therapies. Front Chem. 2020;8. doi:10.3389/fchem.2020.00516
  • BeckwittCH, BrufskyA, OltvaiZN, WellsA. Statin drugs to reduce breast cancer recurrence and mortality. Breast Cancer Res BCR. 2018;20. doi:10.1186/s13058-018-1066-z
  • HarborgS, Heide-JørgensenU, AhernTP, EwertzM, Cronin-FentonD, BorgquistS. Statin use and breast cancer recurrence in postmenopausal women treated with adjuvant aromatase inhibitors: a Danish population-based cohort study. Breast Cancer Res Treat. 2020;183(1):153–160. doi:10.1007/s10549-020-05749-532572715
  • BuranratB, SuwannaloetW, NaowabootJ. Simvastatin potentiates doxorubicin activity against MCF-7 breast cancer cells. Oncol Lett. 2017;14(5):6243–6250. doi:10.3892/ol.2017.678329113274
  • AwanZA, FahmyA, Badr-EldinSM, et al. The Enhanced Cytotoxic and Pro-Apoptotic Effects of Optimized Simvastatin-Loaded Emulsomes on MCF-7 Breast Cancer Cells. Pharmaceutics. 2020;12(7):597. doi:10.3390/pharmaceutics12070597
  • SpampanatoC, DE MARIAS, SarnataroM, et al. Simvastatin inhibits cancer cell growth by inducing apoptosis correlated to activation of Bax and down-regulation of BCL-2 gene expression. Int J Oncol. 2011;40(4):935–941. doi:10.3892/ijo.2011.127322134829
  • JangHJ, HongEM, ParkSW, et al. Statin induces apoptosis of human colon cancer cells and downregulation of insulin-like growth factor 1 receptor via proapoptotic ERK activation. Oncol Lett. 2016;12(1):250–256. doi:10.3892/ol.2016.456927347133
  • MouY, WangJ, WuJ, et al. Ferroptosis, a new form of cell death: opportunities and challenges in cancer. J Hematol OncolJ Hematol Oncol. 2019;12(1):34. doi:10.1186/s13045-019-0720-y30925886
  • HanC, LiuY, DaiR, IsmailN, SuW, LiB. Ferroptosis and its potential role in human diseases. Front Pharmacol. 2020;11. doi:10.3389/fphar.2020.00239
  • LiJ, CaoF, YinH, et al. Ferroptosis: past, present and future. Cell Death Dis. 2020;11(2):1–13. doi:10.1038/s41419-020-2298-231911576
  • LiD, LiY. The interaction between ferroptosis and lipid metabolism in cancer. Signal Transduct Target Ther. 2020;5. doi:10.1038/s41392-020-00216-5
  • StockwellBR, AngeliJPF, BayirH, et al. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell. 2017;171(2):273–285. doi:10.1016/j.cell.2017.09.02128985560
  • BathaieSZ, AshrafiM, AzizianM, TamanoiF. Mevalonate Pathway and Human Cancers. Curr Mol Pharmacol. 2017;10(2):77–85. doi:10.2174/187446720966616011212320526758953
  • SethunathV, HuH, AngelisCD, et al. Targeting the Mevalonate Pathway to Overcome Acquired Anti-HER2 Treatment Resistance in Breast Cancer. Mol Cancer Res. 2019;17(11):2318–2330. doi:10.1158/1541-7786.MCR-19-075631420371
  • PetyaevIM. Improvement of hepatic bioavailability as a new step for the future of statin. Arch Med Sci AMS. 2015;11(2):406–410. doi:10.5114/aoms.2015.5097225995759
  • SchachterM. Chemical, pharmacokinetic and pharmacodynamic properties of statins: an update. Fundam Clin Pharmacol. 2005;19(1):117–125. doi:10.1111/j.1472-8206.2004.00299.x15660968
  • AbdelazizHM, ElzoghbyAO, HelmyMW, SamahaMW, FangJ-Y, FreagMS. Liquid crystalline assembly for potential combinatorial chemo–herbal drug delivery to lung cancer cells. Int J Nanomedicine. 2019;14:499–517. doi:10.2147/IJN.S18833530666110
  • ChenY, MaP, GuiS. Cubic and hexagonal liquid crystals as drug delivery systems. BioMed Res Int. 2014;2014:e815981. doi:10.1155/2014/815981
  • GaballaSA, El GarhyOH, AbdelkaderH. Cubosomes: composition, preparation, and drug delivery applications. J Adv Biomed Pharm Sci. 2020;3(1):1–9. doi:10.21608/jabps.2019.16887.1057
  • CytryniakA, NazarukE, BilewiczR, et al. Lipidic Cubic-Phase Nanoparticles (Cubosomes) Loaded with Doxorubicin and Labeled with 177Lu as a Potential Tool for Combined Chemo and Internal Radiotherapy for Cancers. Nanomaterials. 2020;10(11):2272. doi:10.3390/nano10112272
  • NazarukE, Majkowska-PilipA, BilewiczR. Lipidic Cubic-Phase Nanoparticles—Cubosomes for Efficient Drug Delivery to Cancer Cells. ChemPlusChem. 2017;82(4):570–575. doi:10.1002/cplu.20160053431961592
  • HuQ, ZhangY, LouH, et al. GPX4 and vitamin E cooperatively protect hematopoietic stem and progenitor cells from lipid peroxidation and ferroptosis. Cell Death Dis. 2021;12(7):1–9. doi:10.1038/s41419-021-04008-933414393
  • TavakolS, SeifalianAM. Vitamin E at a high dose as an anti-ferroptosis drug and not just a supplement for COVID-19 treatment. Biotechnol Appl Biochem. 2021. doi:10.1002/bab.2176
  • KajarabilleN, Latunde-DadaGO. Programmed cell-death by ferroptosis: antioxidants as mitigators. Int J Mol Sci. 2019;20(19):4968. doi:10.3390/ijms20194968
  • GuoC, WangJ, CaoF, LeeRJ, ZhaiG. Lyotropic liquid crystal systems in drug delivery. Drug Discov Today. 2010;15(23–24):1032–1040. doi:10.1016/j.drudis.2010.09.00620934534
  • FlakDK, AdamskiV, NowaczykG, et al. AT101-loaded cubosomes as an alternative for improved glioblastoma therapy. Int J Nanomedicine. 2020;15:7415–7431. doi:10.2147/IJN.S26506133116479
  • TangX, LocWS, DongC, et al. The use of nanoparticulates to treat breast cancer. Nanomed. 2017;12(19):2367–2388. doi:10.2217/nnm-2017-0202
  • Abdel-MageedHM, AbuelEzzNZ, RadwanRA, MohamedSA. Nanoparticles in nanomedicine: a comprehensive updated review on current status, challenges and emerging opportunities. J Microencapsul. 2021;38(6):414–436. doi:10.1080/02652048.2021.194227534157915
  • PadhyeSG, NagarsenkerMS. Simvastatin Solid Lipid Nanoparticles for Oral Delivery: formulation Development and In vivo Evaluation. Indian J Pharm Sci. 2013;75(5):591–598.24403661
  • LerouxJ-C, AllémannE, De JaeghereF, DoelkerE, GurnyR. Biodegradable nanoparticles — from sustained release formulations to improved site specific drug delivery. J Controlled Release. 1996;39(2):339–350. doi:10.1016/0168-3659(95)00164-6
  • SkehanP, StorengR, ScudieroD, et al. New colorimetric cytotoxicity assay for anticancer-drug screening. J Natl Cancer Inst. 1990;82(13):1107–1112. doi:10.1093/jnci/82.13.11072359136
  • BuegeJA, AustSD. Microsomal lipid peroxidation. Methods Enzymol. 1978;52:302–310. doi:10.1016/s0076-6879(78)52032-6672633
  • EllmanGL. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959;82(1):70–77. doi:10.1016/0003-9861(59)90090-613650640
  • AliMA, KataokaN, RannehA-H, et al. Enhancing the solubility and oral bioavailability of poorly water-soluble drugs using monoolein cubosomes. Chem Pharm Bull. 2017;65(1):42–48. doi:10.1248/cpb.c16-00513
  • BarbalataCI, TefasLR, AchimM, TomutaI, PorfireAS. Statins in risk-reduction and treatment of cancer. World J Clin Oncol. 2020;11(8):573–588. doi:10.5306/wjco.v11.i8.57332879845
  • MageedH, EzzN, RadwanR. Bio-inspired trypsin-chitosan cross-linked enzyme aggregates: a versatile approach for stabilization through carrier-free immobilization. BioTechnologia. 2019;100(3):301–309. doi:10.5114/bta.2019.87589
  • AbuelezzNZ, ShabanaME, RashedL, MorcosGN. Nanocurcumin Modulates miR-223-3p and NF-κB Levels in the Pancreas of Rat Model of Polycystic Ovary Syndrome to Attenuate Autophagy Flare, Insulin Resistance and Improve β Cell Mass. J Exp Pharmacol. 2021;13:873–888. doi:10.2147/JEP.S32396234475786
  • RizviSAA, SalehAM. Applications of nanoparticle systems in drug delivery technology. Saudi Pharm J SPJ. 2018;26(1):64–70. doi:10.1016/j.jsps.2017.10.01229379334
  • MoghimiSM, HunterAC, MurrayJC. Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev. 2001;53(2):283–318.11356986
  • HashizumeH, BalukP, MorikawaS, et al. Openings between Defective Endothelial Cells Explain Tumor Vessel Leakiness. Am J Pathol. 2000;156(4):1363–1380. doi:10.1016/S0002-9440(10)65006-710751361
  • ZeinR, SharroufW, SeltingK. Physical properties of nanoparticles that result in improved cancer targeting. J Oncol. 2020;2020:e5194780. doi:10.1155/2020/5194780
  • ElakkadYE, YounisMK, AllamRM, MohsenAF, KhalilIA. Tenoxicam loaded hyalcubosomes for osteoarthritis. Int J Pharm. 2021;601:120483. doi:10.1016/j.ijpharm.2021.12048333737098
  • NasrM, YounesH, Abdel-RashidRS. Formulation and evaluation of cubosomes containing colchicine for transdermal delivery. Drug Deliv Transl Res. 2020;10(5):1302–1313. doi:10.1007/s13346-020-00785-632399604
  • JacobsC, MüllerRH. Production and characterization of a budesonide nanosuspension for pulmonary administration. Pharm Res. 2002;19(2):189–194. doi:10.1023/A:101427691736311883646
  • SinghH, PhilipB, PathakK. Preparation, Characterization and Pharmacodynamic Evaluation of Fused Dispersions of Simvastatin using PEO-PPO Block Copolymer. Iran J Pharm Res IJPR. 2012;11(2):433–445.24250467
  • Krishnam RajuK, SudhakarB, MurthyKVR. Factorial Design Studies and Biopharmaceutical Evaluation of Simvastatin Loaded Solid Lipid Nanoparticles for Improving the Oral Bioavailability. ISRN Nanotechnol. 2014;2014:e951016. doi:10.1155/2014/951016
  • BuranratB, SenggunpraiL, PrawanA, KukongviriyapanV. Simvastatin and atorvastatin as inhibitors of proliferation and inducers of apoptosis in human cholangiocarcinoma cells. Life Sci. 2016;153:41–49. doi:10.1016/j.lfs.2016.04.01827098189
  • Shen-Y-Y, YuanY, Du-Y-Y, Pan-Y-Y. Molecular mechanism underlying the anticancer effect of simvastatin on MDA-MB-231 human breast cancer cells. Mol Med Rep. 2015;12(1):623–630. doi:10.3892/mmr.2015.341125738368
  • VivarelliF, CanistroD, CirilloS. Co-carcinogenic effects of vitamin E in prostate. Sci Rep. 2019;9(1). doi:10.1038/s41598-019-48213-1
  • DiaoQX, ZhangJZ, ZhaoT, et al. Vitamin E promotes breast cancer cell proliferation by reducing ROS production and p53 expression. Eur Rev Med Pharmacol Sci. 2016;20(12):2710–2717.27383327
  • MurphyC, DeplazesE, CranfieldCG, GarciaA. The Role of Structure and Biophysical Properties in the Pleiotropic Effects of Statins. Int J Mol Sci. 2020;21(22):8745. doi:10.3390/ijms21228745
  • AdamsJM, CoryS. The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene. 2007;26(9):1324–1337. doi:10.1038/sj.onc.121022017322918
  • ShenY, DuY, ZhangY, PanY. Synergistic effects of combined treatment with simvastatin and exemestane on MCF-7 human breast cancer cells. Mol Med Rep. 2015;12(1):456–462. doi:10.3892/mmr.2015.340625738757
  • DixonSJ, StockwellBR. The Hallmarks of Ferroptosis. Annu Rev Cancer Biol. 2019;3(1):35–54. doi:10.1146/annurev-cancerbio-030518-055844
  • HaoS, LiangB, HuangQ, et al. Metabolic networks in ferroptosis. Oncol Lett. 2018;15(4):5405–5411. doi:10.3892/ol.2018.806629556292
  • ForcinaGC, DixonSJ. GPX4 at the Crossroads of Lipid Homeostasis and Ferroptosis. Proteomics. 2019;19(18):e1800311. doi:10.1002/pmic.20180031130888116
  • JiangW, HuJ-W, HeX-R, JinW-L, HeX-Y. Statins: a repurposed drug to fight cancer. J Exp Clin Cancer Res. 2021;40(1):241. doi:10.1186/s13046-021-02041-234303383
  • UrsiniF, MaiorinoM. Lipid peroxidation and ferroptosis: the role of GSH and GPx4. Free Radic Biol Med. 2020;152:175–185. doi:10.1016/j.freeradbiomed.2020.02.02732165281
  • WangH, ChengY, MaoC, et al. Emerging mechanisms and targeted therapy of ferroptosis in cancer. Mol Ther. 2021:254. doi:10.1016/j.ymthe.2021.03.022