254
Views
1
CrossRef citations to date
0
Altmetric
Original Research

Based on BATMAN-TCM to Explore the Molecular Mechanism of Xihuang Pill Regulating Immune Function to Treat Breast Precancerous Lesions

, , , , , & show all
Pages 725-742 | Published online: 23 Dec 2021

References

  • SiegelRL, MillerKD, JemalA. Cancer statistics, 2020. CA Cancer J Clin. 2020;70(1):7–30. doi:10.3322/caac.2159031912902
  • HanB, DuY, FuT, et al. Differences and relationships between normal and atypical ductal hyperplasia, ductal carcinoma in situ, and invasive ductal carcinoma tissues in the breast based on raman spectroscopy. Appl Spectrosc. 2017;71(2):300–307. doi:10.1177/000370281668100928181469
  • Hodorowicz-ZaniewskaD, BrzuszkiewiczK, SzporJ, et al. Clinical predictors of malignancy in patients diagnosed with atypical ductal hyperplasia on vacuum-assisted core needle biopsy. Wideochir Inne Tech Maloinwazyjne. 2018;13(2):184–191. doi:10.5114/wiitm.2018.7352830002750
  • ZhangLY, HemminkiO, ZhengGQ, et al. Comparison of familial clustering of anogenital and skin cancers between in situ and invasive types. Sci Rep. 2019;9(1):16151. doi:10.1038/s41598-019-51651-631695117
  • ZhangGJ, JiangXF, LiuYS, et al. Therapeutic efficiency of an external chinese herbal formula of Mammary precancerous lesions by BATMAN-TCM online bioinformatics analysis tool and experimental validation. Evid Based Complement Alternat Med. 2019;2019:2795010. doi:10.1155/2019/279501030906412
  • MyersDJ, WallsAL, MyersDJ, WallsAL. Breast, atypical hyperplasia. [Updated 2018 Oct 27]. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2018. Available fromhttps://www.ncbi.nlm.nih.gov/books/NBK470258/.
  • SinnHP, KreipeH. A brief overview of the WHO classification of breast tumors, 4th edition, focusing on issues and updates from the 3rd edition. Breast Care. 2013;8(2):149–154. doi:10.1159/00035077424415964
  • DettogniRS, SturE, LausAC, et al. Potential biomarkers of ductal carcinoma in situ progression. BMC Cancer. 2020;20(1):119. doi:10.1186/s12885-020-6608-y32050925
  • MaoD, FengL, HuangSQ, et al. Meta-analysis of xihuang pill efficacy when combined with chemotherapy for treatment of breast cancer. Evid Based Complement Alternat Med. 2019;2019:3502460. doi:10.1155/2019/350246030992708
  • ZhengWX, HanSY, JiangST, et al. Multiple effects of Xihuang pill aqueous extract on the Hs578T triple-negative breast cancer cell line. Biomed Rep. 2016;5(5):559–566. doi:10.3892/br.2016.76927882217
  • LiDH, FanHF, SunCX, et al. Effects of liquid extract of Xihuang pills on mTOR and VEGF expression in precancerous cells of human breast cancer. Hunan J Tradit Chin Med. 2017;33(06):145–148. doi:10.16808/j.cnki.issn1003-7705.2017.06.068
  • LiDH, SuYF, FanHF, et al. Effect of Xihuang Pill on microcirculation in DMBA combined estrogen and progesterone induced breast precancerous lesions rats. IOP Conf. 2020;474(5):52053–52055. doi:10.1088/1755-1315/474/5/052053
  • LiDH, SuYF, FanHF, et al. Effect of Xihuang Pill on hemorheological properties in DMBA combined estrogen and progesterone induced breast precancerous lesions rats. Basic Clin Pharmacol Toxicol. 2020;127:14–15. doi:10.1111/bcpt.13461
  • WagnerJ, RapsomanikiMA, ChevrierS, et al. A single-cell atlas of the tumor and Immune ecosystem of human breast cancer. Cell. 2019;177(5):1330–1345. doi:10.1016/j.cell.2019.03.00530982598
  • BuruguS, Asleh-AburayaK, NielsenTO. Immune infiltrates in the breast cancer microenvironment: detection, characterization and clinical implication. Breast Cancer. 2017;24(1):3–15. doi:10.1007/s12282-016-0698-z27138387
  • ChenLJ, WangJ, ZhangWJ. Relationship between Th1/Th2 cell imbalance and disease severity, lung injury in patients with sepsis. J Mol Diag Ther. 2020;12(10):1315–1318. doi:10.3969/j.issn.1674-6929.2020.10.010
  • LiuC, LiuHY, FanH, et al. Cellullar immune state and the change of Th1/Th2 cytokines in the triple negative breast cancer. J Mod Oncol. 2016;24(2):234–236. doi:10.3969/j.issn.1672-4992.2016.02.019
  • GuoQR, LiuY, SuCY, et al. Non-coding RNA and tumor immune regulation. Acta Pharm Sin. 2019;54(10):1783–1791. doi:10.16438/j.0513-4870.2019-0570
  • ZengTL, LiJX, YinZP, et al. Research progress of PD-1/PD-L1 inhibitors in immunotherapy of triple-negative breast cancer. Chin J Immunol. 2019;35(19):2423–2429. doi:CNKI:SUN:ZMXZ.0.2019-19-024
  • SakleNS, MoreSA, MokaleSN. A network pharmacology-based approach to explore potential targets of Caesalpinia pulcherima: an updated prototype in drug discovery. Sci Rep. 2020;10(1):17217. doi:10.1038/s41598-020-74251-133057155
  • HuangSJ, MuF, LiF, et al. Systematic elucidation of the potential mechanism of Erzhi Pill against drug-induced liver injury via network pharmacology approach. Evid Based Complement Alternat Med. 2020;2020:1–15. doi:10.1155/2020/6219432
  • LongSR, YuanCH, WangY, et al. Network pharmacology analysis of damnacanthus indicus C.F.Gaertn in gene-phenotype. Evid Based Complement Alternat Med. 2019;2019:1368371. doi:10.1155/2019/136837130906409
  • TangYJ, ZhangY, LiL, et al. Kunxian capsule for rheumatoid arthritis: inhibition of inflammatory network and reducing adverse reactions through drug matching. Front Pharmacol. 2020;11:485. doi:10.3389/fphar.2020.0048532362827
  • LiuZY, GuoFF, WangY, et al. BATMAN-TCM: a bioinformatics analysis tool for molecular mechANism of traditional chinese medicine. Sci Rep. 2016;6(1):21146. doi:10.1038/srep2114626879404
  • FanHF, LiDH, GuoN, et al. Xihuang Pill inhibits the development of DMBA combined estrogen and progesterone induced breast precancerous lesions rats by PI3K/AKT/mTOR signaling pathway; 2021. doi:10.21203/rs.3.rs-151758/v1
  • MaM, LiDH, ZhangGJ, et al. Study of Rats’ Mammary Precancer models-induced by DMBA combined estrogen and progesterone. International Conference on Human Health and Biomedical Engineering (HHBE 2011). Jilin, China; 2011:1292–1295. doi:10.1109/hhbe.2011.6029068
  • FrankGA, DanilovaNV, AndreevaII, et al. WHO classification of tumors of the breast, 2012. Arkh Patol. 2013;75(2):53–63.24006766
  • SongYN, WangHY, PanYJ, et al. Investigating the multi-target pharmacological mechanism of Hedyotis diffusa Willd acting on prostate cancer: a network pharmacology approach. Biomolecules. 2019;9(10):591. doi:10.3390/biom9100591
  • HopkinsAL. Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol. 2008;4(11):682–690. doi:10.1038/nchembio.11818936753
  • ZhuJQ, LiB, JiYS, et al. βelemene inhibits the generation of peritoneum effusion in pancreatic cancer via suppression of the HIF1AVEGFA pathway based on network pharmacology. Oncol Rep. 2019;42(6):2561–2571. doi:10.3892/or.2019.736031638231
  • YuanWD. Effects of 17β-estradiol on immunocompetence of peritoneal macrophages of rat in Vitro. J Jining Med Univ. 2007;11(4):296–298. doi:10.3969/j.issn.1000-9760.2007.04.010
  • LiXX. 17β-estradiol regulates DC to influence the immune response of B cells. Nanjing University; 2010.
  • SongXF, NiuZG, GuoJQ, et al. Regulatory effect of 17-β-estradiol on IM-9 cells of human B lymphocyte line. Chin J Cell Mol Immunol. 2009;25(03):274–275+279. doi:10.3321/j.issn:1007-8738.2009.03.026
  • SongXF, SunX, WangH. Regulating effect of estrogen and progesterone on the growth of T lymphocytes. J Cell Mol Immunol. 2005;126(02):249–253. doi:CNKI:SUN:XBFM.0.2005-02-00Y
  • EllisMJ, DehdahtiF, KommareddyA, et al. A randomized Phase 2 trial of low dose (6 mg daily) versus high dose (30 mg daily) estradiol for patients with estrogen receptor positive aromatase inhibitor resistant advanced breast cancer. Cancer Res. 2009:69. doi:10.1158/0008-5472
  • LonningPE, TaylorPD, AnkerG, et al. High-dose estrogen treatment in postmenopausal breast cancer patients heavily exposed to endocrine therapy. Breast Cancer Res Treat. 2001;67(2):111–116. doi:10.1023/A:101061922520911519859
  • TangDB, ZhangQY, WangJX, et al. A clinical study of estradiol therapy in endocrine-resistant advanced breast cancer. J Pract Oncol. 2012;26(04):289–292. doi:10.3969/j.issn.1002-3070.2012.04.001
  • PanGF. Clinical research and experimental study on Xihuang Pill treating breast cancer based on estrogen receptor. Chin J Exper Tradit Med Form. 2012;18(23):330–333. doi:10.13422/j.cnki.syfjx.2012.23.099
  • GlaserR, DimitrakakisC. Testosterone and breast cancer prevention. Maturitas. 2015;82(3):291–295. doi:10.1016/j.maturitas.2015.06.00226160683
  • BoniC, PaganoM, PanebiancoM, et al. Therapeutic activity of testosterone in metastatic breast cancer. Anticancer Res. 2014;34(3):1287–1290.24596374
  • GlaserRL, DimitrakakisC. Rapid response of breast cancer to neoadjuvant intramammary testosterone-anastrozole therapy: neoadjuvant hormone therapy in breast cancer. Menopause. 2014;21(6):673–678. doi:10.1097/GME.000000000000009624149917
  • KentLN, KonnoT, SoaresMJ. Phosphatidylinositol 3 kinase modulation of trophoblast cell differentiation. BMC Dev Biol. 2010;10(1):97. doi:10.1186/1471-213X-10-9720840781
  • PangBB, ChuYK, YangH. Anti-breast cancer mechanism of flavonoids. China J Chin Mater Med. 2018;43(05):913–920. doi:10.19540/j.cnki.cjcmm.20171211.005
  • CoombsMR, HarrisonME, HoskinDW. Apigenin inhibits the inducible expression of programmed death ligand 1 by human and mouse mam mary carcinoma cells. Cancer Lett. 2016;380(2):424. doi:10.1016/j.canlet.2016.06.02327378243
  • PanZY, ZhouLP, QiB, et al. Research progress on antitumor mechanism of phytoestrogen. Chin J Biochem Pharmaceut. 2014;34(9):174–176. doi:CNKI:SUN:SHYW.0.2014-09-052
  • JiangDC, JinL, ChenHX, et al. Quercetin promotes apoptosis of breast cancer cells by targeting GAS5/Notch1 signaling pathway. Chin Pharmacol Bull. 2021;37(5):637–644.
  • MuCJ, PanW, WangJ. Quercetin modulates the proliferation and apoptosis of human breast cancer cells T47D by regulating EGFR/AKT/mTOR signaling pathway. J Clin Exper Med. 2019;18(14):1460–1464. doi:10.3969/j.issn.1671-4695.2019.14.002
  • LiWF, OuQ, ZhangH, et al. Inhibition effect of luteolin on SDF-1α/CXCR4 signal pathway in breast cancer cells MDA-MB-231. J Basic Clin Oncol. 2014;3:199–202. doi:10.3969/j.issn.1673-5412.2014.03.005
  • WangLM, XieKP, HuoHN, et al. Luteolin inhibits proliferation induced by IGF-1 pathway dependent ERα in human breast cancer MCF-7 cells. Asia Pac J Cancer Prev. 2012;13(4):1431–1437. doi:10.7314/APJCP.2012.13.4.1431
  • SuiJQ, XieKP, XieMJ. Inhibitory effect of luteolin on the proliferation of human breast cancer cell lines induced by epidermal growth factor. Acta Physiol Sin. 2016;68(1):27–34.
  • MaoCM, YuDH, GuiH. Effect and mechanism of hesperetin on P-selectin mediated breast cancer MDA-MB-231 metastasis. Chin Tradit Herb Drugs. 2017;591(4):714–721. doi:10.7501/j.issn.0253-2670.2017.04.017
  • OlkhanudPB, RochmanY, BodogaiM, et al. Thymic stromal lymphopoietin is a key mediator of breast cancer progression. J Immunol. 2011;186(10):5656–5662. doi:10.4049/jimmunol.110046321490155
  • SharmaD, SmitsBM, EichelbergMR, et al. Quantification of epithelial cell differentiation in mammary glands and carcinomas from DMBA- and MNU-exposed rats. PLoS One. 2011;6(10):e26145. doi:10.1371/journal.pone.002614522022542
  • ThompsonHJ, SinghM. Rat models of premalignant breast disease. J Mammary Gland Biol Neoplasia. 2000;5(4):409–420. doi:10.1023/A:100958201249314973385
  • SongAL, YeL, LiJW, et al. Effect of Rufu Decoction on the microcirculation of model rats with atypical hyperplasia of mammary glands. Shandong J Tradit Chin Med. 2003;22(10):622–625. doi:CNKI:SUN:SDZY.0.2003-10-030
  • WangF, MaZB, WangF, et al. Establishment of novel rat models for premalignant breast disease. Chin Med J. 2014;127(11):2147–2152. doi:10.3760/cma.j.issn.0366-6999.2013027624890169