289
Views
2
CrossRef citations to date
0
Altmetric
Review

Drug-Resistant Breast Cancer: Dwelling the Hippo Pathway to Manage the Treatment

, , , ORCID Icon, , , ORCID Icon & show all
Pages 691-700 | Published online: 14 Dec 2021

References

  • SunY-S, ZhaoZ, YangZ-N, et al. Risk factors and preventions of breast cancer. Int J Biol Sci. 2017;13(11):1387. doi:10.7150/ijbs.2163529209143
  • World Health Organization. Available from:https://www.who.int/news-room/fact-sheets/detail/breast-cancer. Accessed December3, 2021.
  • ZengR, DongJ. The Hippo signaling pathway in drug resistance in cancer. Cancers. 2021;13(2):318. doi:10.3390/cancers1302031833467099
  • KyriazoglouA, LiontosM, ZakopoulouR, et al. The role of the hippo pathway in breast cancer carcinogenesis, prognosis, and treatment: a systematic review. Breast Care. 2021;16(1):6–15. doi:10.1159/00050753833716627
  • VarelasX. The Hippo pathway effectors TAZ and YAP in development, homeostasis and disease. Development. 2014;141(8):1614–1626. doi:10.1242/dev.10237624715453
  • ZhangK, QiHX, HuZM, et al. YAP and TAZ Take Center Stage in Cancer. Biochemistry. 2015;54(43):6555–6566. doi:10.1021/acs.biochem.5b0101426465056
  • Maugeri-SaccàM, BarbaM, PizzutiL, et al. The Hippo transducers TAZ and YAP in breast cancer: oncogenic activities and clinical implications. Expert Rev Mol Med. 2015;17:e14. doi:10.1017/erm.2015.1226136233
  • Maugeri-SaccàM, De MariaR. Hippo pathway and breast cancer stem cells. Crit Rev Oncol Hematol. 2016;99:115–122. PMID: 26725175. doi:10.1016/j.critrevonc.2015.12.00426725175
  • ShiP, FengJ, ChenC. Hippo pathway in mammary gland development and breast cancer. Acta Biochim Biophys Sin. 2015;47(1):53–59. PMID: 25467757. doi:10.1093/abbs/gmu11425467757
  • WeiC, WangY, XiangqiL. The role of Hippo signal pathway in breast cancer metastasis. Onco Targets Ther. 2018;11:2185. doi:10.2147/OTT.S15705829713187
  • ZhaoB, TumanengK, GuanKL. The Hippo pathway in organ size control, tissue regeneration and stem cell self-renewal. Nat Cell Biol. 2011;13(8):877–883. doi:10.1038/ncb230321808241
  • JusticeRW, ZilianO, WoodsDF, et al. The Drosophila tumor suppressor gene warts encodes a homolog of human myotonic dystrophy kinase and is required for the control of cell shape and proliferation. Genes Dev. 1995;9(5):534–546. doi:10.1101/gad.9.5.5347698644
  • XuT, WangW, ZhangS, et al. Identifying tumor suppressors in genetic mosaics: the Drosophila LATS gene encodes a putative protein kinase. Development. 1995;121(4):1053–1063. doi:10.1242/dev.121.4.10537743921
  • TaponN, HarveyKF, BellDW, et al. Salvador Promotes both cell cycle exit and apoptosis in Drosophila and is mutated in human cancer cell lines. Cell. 2002;110(4):467–478. doi:10.1016/S0092-8674(02)00824-312202036
  • HarveyKF, PflegerCM, HariharanIK. The Drosophila Mst ortholog, hippo, restricts growth and cell proliferation and promotes apoptosis. Cell. 2003;114(4):457–467. doi:10.1016/S0092-8674(03)00557-912941274
  • JiaJ, ZhangW, WangB, et al. The Drosophila Ste20 family kinase dMST functions as a tumor suppressor by restricting cell proliferation and promoting apoptosis. Genes Dev. 2003;17(20):2514–2519. doi:10.1101/gad.113400314561774
  • WuS, HuangJ, DongJ, et al. hippo encodes a Ste-20 family protein kinase that restricts cell proliferation and promotes apoptosis in conjunction with salvador and warts. Cell. 2003;114(4):445–456. doi:10.1016/S0092-8674(03)00549-X12941273
  • PantalacciS, TaponN, PierreL. The Salvador partner Hippo promotes apoptosis and cell-cycle exit in Drosophila. Nat Cell Biol. 2003;5(10):921–927. doi:10.1038/ncb105114502295
  • UdanRS, Kango-SinghM, NoloR, et al. Hippo promotes proliferation arrest and apoptosis in the Salvador/Warts pathway. Nat Cell Biol. 2003;5(10):914–920.14502294
  • LaiZ-C, WeiX, ShimizuT, et al. Control of cell proliferation and apoptosis by mob as tumor suppressor, mats. Cell. 2005;120(5):675–685. doi:10.1016/j.cell.2004.12.03615766530
  • WeiX, ShimizuT, LaiZ-C. Mob as tumor suppressor is activated by Hippo kinase for growth inhibition in Drosophila. EMBO J. 2007;26(7):1772–1781. doi:10.1038/sj.emboj.760163017347649
  • HuangJ, WuS, BarreraJ, et al. The Hippo signaling pathway coordinately regulates cell proliferation and apoptosis by inactivating Yorkie, the Drosophila Homolog of YAP . Cell. 2005;122(3):421–434. doi:10.1016/j.cell.2005.06.00716096061
  • WuS, LiuY, ZhengY, et al. The TEAD/TEF family protein scalloped mediates transcriptional output of the hippo growth-regulatory pathway. Dev Cell. 2008;14(3):388–398. doi:10.1016/j.devcel.2008.01.00718258486
  • OhH, IrvineKD. In vivo analysis of Yorkie phosphorylation sites. Oncogene. 2009;28(17):1916–1927. doi:10.1038/onc.2009.4319330023
  • OhH, IrvineKD. In vivo regulation of Yorkie phosphorylation and localization. Development (Cambridge, England). 2008;135:1081–1088. doi:10.1242/dev.015255
  • DongJ, FeldmannG, HuangJ, et al. Elucidation of a universal size-control mechanism in Drosophila and mammals. Cell. 2007;130(6):1120–1133. doi:10.1016/j.cell.2007.07.01917889654
  • ZhengY, PanD. The Hippo signaling pathway in development and disease. Dev Cell. 2019;50(3):264–282. doi:10.1016/j.devcel.2019.06.00331386861
  • ZhaoB, LiL, TumanengK, et al. A coordinated phosphorylation by Lats and CK1 regulates YAP stability through SCF β-TRCP. Genes Dev. 2010;24(1):72–85. doi:10.1101/gad.184381020048001
  • LiuC-Y, ZhaZ-Y, ZhouX, et al. The hippo tumor pathway promotes TAZ degradation by phosphorylating a phosphodegron and recruiting the SCFβ-TrCP E3 ligase. J Biol Chem. 2010;285(48):37159–37169. doi:10.1074/jbc.M110.15294220858893
  • HoaL, KulaberogluY, GundogduR, et al. The characterization of LATS2 kinase regulation in Hippo-YAP signaling. Cell Signal. 2016;28(5):488–497. doi:10.1016/j.cellsig.2016.02.01226898830
  • AtkinsM, PotierD, RomanelliL, et al. An ectopic network of transcription factors regulated by hippo signaling drives growth and invasion of a malignant tumor model. Curr Biol. 2016;26(16):2101–2113.27476594
  • LinKC, ParkHW, GuanK-L. Deregulation and therapeutic potential of the hippo pathway in Cancer. Ann Rev Cancer Biol. 2018;2:59–79. doi:10.1146/annurev-cancerbio-030617-050202
  • RosenbluhJ, NijhawanD, CoxA, et al. β-Catenin-driven cancers require a YAP1 transcriptional complex for survival and tumorigenesis. Cell. 2012;151(7):1457–1473. doi:10.1016/j.cell.2012.11.02623245941
  • ZhangH, LiuCY, ZhaZY, et al. TEAD transcription factors mediate the function of TAZ in cell growth and epithelial-mesenchymal transition. J Biol Chem. 2009;284(20):13355–13362. doi:10.1074/jbc.M90084320019324877
  • ZhaoB, YeX, YuJ, et al. TEAD mediates YAP-dependent gene induction and growth control. Genes Dev. 2008;22(14):1962–1971.18579750
  • SkibinskiA, BreindelJ, PratA, et al. The Hippo transducer TAZ interacts with the SWI/SNF complex to regulate breast epithelial lineage commitment. Cell Rep. 2014;6(6):1059–1072. doi:10.1016/j.celrep.2014.02.03824613358
  • ChenD, SunY, WeiY, et al. LIFR is a breast cancer metastasis suppressor upstream of the Hippo-YAP pathway and a prognostic marker. Nat Med. 2012;18(10):1511–1517. doi:10.1038/nm.294023001183
  • HiemerSE, SzymaniakAD, VarelasX. The transcriptional regulators TAZ and YAP direct transforming growth factor β-induced tumorigenic phenotypes in breast cancer cells*♦. J Biol Chem. 2014;289(19):13461–13474.3461-13474. doi:10.1074/jbc.M113.529115
  • ZhiX, ZhaoD, ZhouZ, et al. YAP promotes breast cell proliferation and survival partially through stabilizing the KLF5 transcription factor. Am J Pathol. 2012;180(6):2452–2461. doi:10.1016/j.ajpath.2012.02.02522632819
  • GuiuS, MichielsS, AndréF, et al. Molecular subclasses of breast cancer: how do we define them? The IMPAKT 2012 Working Group Statement. Ann Oncol. 2012;23(12):2997–3006. doi:10.1093/annonc/mds58623166150
  • MartinHL, SmithL, TomlinsonDC. Multidrug-resistant breast cancer: current perspectives. Breast Cancer. 2014;6:1.24648765
  • YeS, Eisinger-MathasonTS. Targeting the Hippo pathway: clinical implications and therapeutics. Pharmacol Res. 2016;103:270–278. doi:10.1016/j.phrs.2015.11.02526678601
  • LinC-H, PelissierFA, ZhangH, et al. Microenvironment rigidity modulates responses to the HER2 receptor tyrosine kinase inhibitor lapatinib via YAP and TAZ transcription factors.”. Mol Biol Cell. 2015;26(22):3946–3953. doi:10.1091/mbc.E15-07-045626337386
  • LiZ, RazaviP, LiQ, et al. Loss of the FAT1 tumor suppressor promotes resistance to CDK4/6 inhibitors via the hippo pathway. Cancer Cell. 2018;34(6):893–905. doi:10.1016/j.ccell.2018.11.00630537512
  • LaiD, HoKC, HaoY, et al. Taxol resistance in breast cancer cells is mediated by the hippo pathway component TAZ and its downstream transcriptional targets Cyr61 and CTGF. Cancer Res. 2011;71(7):2728–2738.21349946
  • ZhaoY, YangX. Regulation of sensitivity of tumor cells to antitubulin drugs by Cdk1-TAZ signaling. Oncotarget. 2015;6(26):21906. doi:10.18632/oncotarget.425926183396
  • BartucciM, DattiloR, MoriconiC, et al. TAZ is required for metastatic activity and chemoresistance of breast cancer stem cells. Oncogene. 2015;34(6):681–690.24531710
  • CordenonsiM, ZanconatoF, AzzolinL, et al. The Hippo transducer TAZ confers cancer stem cell-related traits on breast cancer cells. Cell. 2011;147(4):759–772. doi:10.1016/j.cell.2011.09.04822078877
  • JeongW, KimSB, SohnBH, et al. Activation of YAP1 is associated with poor prognosis and response to taxanes in ovarian cancer. Anti Cancer Res. 2014;34(2):811–817.
  • XiaY, ChangT, WangY, et al. YAP promotes ovarian cancer cell tumorigenesis and is indicative of a poor prognosis for ovarian cancer patients. PLoS One. 2014;9(3):e91770. doi:10.1371/journal.pone.009177024622501
  • ZhangX, GeorgeJ, DebS, et al. The Hippo pathway transcriptional co-activator, YAP, is an ovarian cancer oncogene. Oncogene. 2011;30(25):2810–2822. doi:10.1038/onc.2011.821317925
  • HuoX, ZhangQI, LiuAM, et al. Overexpression of Yes-associated protein confers doxorubicin resistance in hepatocellullar carcinoma. Oncol Rep. 2013;29(2):840–846. doi:10.3892/or.2012.217623232767
  • JiangN, Hjorth-JensenK, HekmatO, et al. In vivo quantitative phosphoproteomic profiling identifies novel regulators of castration-resistant prostate cancer growth. Oncogene. 2015;34(21):2764–2776. doi:10.1038/onc.2014.20625065596
  • HuangJ-M, NagatomoI, SuzukiE, et al. YAP modifies cancer cell sensitivity to EGFR and survivin inhibitors and is negatively regulated by the non-receptor type protein tyrosine phosphatase 14. Oncogene. 2013;32(17):2220–2229. doi:10.1038/onc.2012.23122689061
  • Visser-GrieveS, HaoY, YangX. Human homolog of Drosophila expanded, hEx, functions as a putative tumor suppressor in human cancer cell lines independently of the Hippo pathway. Oncogene. 2012;31(9):1189–1195. doi:10.1038/onc.2011.31821785462
  • RenA, YanG, YouB, et al. Down-regulation of mammalian sterile 20–Like Kinase 1 by heat shock protein 70 mediates cisplatin resistance in prostate cancer cells. Cancer Res. 2008;68(7):2266–2274. doi:10.1158/0008-5472.CAN-07-624818381433
  • VisserS, YangX. LATS tumor suppressor: a new governor of cellular homeostasis. Cell Cycle. 2010;9(19):3892–3903. doi:10.4161/cc.9.19.1338620935475
  • JiD, DeedsSL, WeinsteinEJ. A screen of shRNAs targeting tumor suppressor genes to identify factors involved in A549 paclitaxel sensitivity. Oncol Rep. 2007;18(6):1499–1505.17982636
  • KawaharaM, HoriT, ChonabayashiK, et al. Kpm/LATS2 is linked to chemosensitivity of leukemic cells through the stabilization of p73. Blood. 2008;112(9):3856–3866.18565851
  • LitLC, ScottS, ZhangH, et al. LATS2 is a modulator of estrogen receptor alpha. Anti Cancer Res. 2013;33(1):53–63.
  • HorwitzSB. “Taxol (paclitaxel): mechanisms of action.” Annals of oncology: official. J Eur Soc Med Oncol. 1994;5:S3–S6.
  • RisingerAL, GilesFJ, MooberrySL. Microtubule dynamics as a target in oncology. Cancer Treat Rev. 2009;35(3):255–261. doi:10.1016/j.ctrv.2008.11.00119117686
  • LamarJM, SternP, LiuH, et al. The Hippo pathway target, YAP, promotes metastasis through its TEAD-interaction domain. Proc Natl Acad Sci. 2012;109(37):E2441–E2450. doi:10.1073/pnas.121202110922891335
  • LeiQ-Y, ZhangH, ZhaoB, et al. TAZ promotes cell proliferation and epithelial-mesenchymal transition and is inhibited by the hippo pathway. Mol Cell Biol. 2008;28(7):2426–2436. doi:10.1128/MCB.01874-0718227151
  • DasariS, TchounwouPB. Cisplatin in cancer therapy: molecular mechanisms of action. Eur J Pharmacol. 2014;740:364–378. doi:10.1016/j.ejphar.2014.07.02525058905
  • ZhaoY, YangX. WWTR1 (WW domain containing transcription regulator 1). Atlas Genet Cytogenet Oncol Haematol. 2014;18(11):849. doi:10.4267/2042/5416926366208
  • XiaW, MullinRJ, KeithBR, et al. Anti-tumor activity of GW572016: a dual tyrosine kinase inhibitor blocks EGF activation of EGFR/erbB2 and downstream Erk1/2 and AKT pathways. Oncogene. 2002;21(41):6255–6263. doi:10.1038/sj.onc.120579412214266
  • AhnER, VogelCL. Dual HER2-targeted approaches in HER2-positive breast cancer. Breast Cancer Res Treat. 2012;131(2):371–383. doi:10.1007/s10549-011-1781-y21956210
  • OttoT, SicinskiP. Cell cycle proteins as promising targets in cancer therapy. Nat Rev Cancer. 2017;17(2):93–115. doi:10.1038/nrc.2016.13828127048
  • SherrCJ, RobertsJM. Living with or without cyclins and cyclin-dependent kinases. Genes Dev. 2004;18(22):2699–2711. doi:10.1101/gad.125650415545627
  • Available from:https://www.cancerresearchuk.org/about-cancer/cancer-in-general/treatment/cancer-drugs/drugs/doxorubicin#:~:text=Doxorubicin%20is%20a%20type%20of,combination%20with%20other%20chemotherapy%20drugs. Accessed December3, 2021.
  • BaiN, ZhangC, LiangN, et al. Yes-associated protein (YAP) increases chemosensitivity of hepatocellular carcinoma cells by modulation of p53. Cancer Biol Ther. 2013;14(6):511–520. doi:10.4161/cbt.2434523760493
  • PanD. The hippo signaling pathway in development and cancer. Dev Cell. 2010;19(4):491–505. doi:10.1016/j.devcel.2010.09.01120951342
  • ChanEHY, NousiainenM, ChalamalasettyRB, et al. The Ste20-like kinase Mst2 activates the human large tumor suppressor kinase LATS1. Oncogene. 2005;24(12):2076–2086. doi:10.1038/sj.onc.120844515688006
  • WuL, YangX. Targeting the Hippo pathway for breast cancer therapy. Cancers. 2018;10(11):422. doi:10.3390/cancers10110422
  • ShouJ, MassarwehS, OsborneCK, et al. Mechanisms of tamoxifen resistance: increased estrogen receptor-HER2/neu crosstalk in ER/HER2–positive breast cancer. J Natl Cancer Inst. 2004;96(12):926–935. doi:10.1093/jnci/djh16615199112
  • KimHB, MyungSJ. Clinical implications of the Hippo-YAP pathway in multiple cancer contexts. BMB Rep. 2018;51(3):119–125. doi:10.5483/bmbrep.2018.51.3.01829366445