260
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

The Programmed Cell Death Ligand 1 and Lipocalin 2 Expressions in Primary Breast Cancer and Their Associations with Molecular Subtypes and Prognostic Factors

ORCID Icon, , , ORCID Icon, , , ORCID Icon, & show all
Pages 1-13 | Received 24 Oct 2023, Accepted 21 Dec 2023, Published online: 02 Jan 2024

References

  • Orrantia-Borunda E, Anchondo-Nuñez P, Acuña-Aguilar LE, Gómez-Valles FO, Ramírez-Valdespino CA. Subtypes of Breast Cancer. Breast Cancer. 2022. doi:10.36255/exon-publications-breast-cancer-subtypes
  • Semiglazov V, Tseluiko A, Kudaybergenova A, Artemyeva A, Krivorotko P, Donskih R. Immunology and immunotherapy in breast cancer. Cancer Biol Med. 2022;19(5):609–618. doi:10.20892/j.issn.2095-3941.2021.0597
  • Emens LA. Immunotherapy in Triple-Negative Breast Cancer. Cancer J. 2021;27(1). doi:10.1097/PPO.0000000000000497
  • Wang ZQ, Milne K, Derocher H, Webb JR, Nelson BH, Watson PH. PD-L1 and intratumoral immune response in breast cancer. Oncotarget. 2017;8(31). doi:10.18632/oncotarget.18305
  • Li CW, Lim SO, Chung EM, et al. Eradication of Triple-Negative Breast Cancer Cells by Targeting Glycosylated PD-L1. Cancer Cell. 2018;33(2):187–201.e10. doi:10.1016/j.ccell.2018.01.009
  • Prestwich RJ, Errington F, Hatfield P, et al. The Immune System - is it Relevant to Cancer Development, Progression and Treatment? Clin Oncol. 2008;20(2):101–112. doi:10.1016/j.clon.2007.10.011
  • Han Y, Liu D, Li L. PD-1/PD-L1 pathway: current researches in cancer. Am J Cancer Res. 2020;10(3):56.
  • Solinas G, Germano G, Mantovani A, Allavena P. Tumor-associated macrophages (TAM) as major players of the cancer-related inflammation. J Leukoc Biol. 2009;86(5):1065–1073. doi:10.1189/jlb.0609385
  • Qian BZ, Pollard JW. Macrophage Diversity Enhances Tumor Progression and Metastasis. Cell. 2010;141(1):39–51. doi:10.1016/j.cell.2010.03.014
  • Bai J, Gao Z, Li X, Dong L, Han W, Nie J. Regulation of PD-1/PD-L1 pathway and resistance to PD-1/PDL1 blockade. Oncotarget. 2017;8(66):110693–110707. doi:10.18632/oncotarget.22690
  • Badve SS, Penault-Llorca F, Reis-Filho JS, et al. Determining PD-L1 Status in Patients with Triple-Negative Breast Cancer: lessons Learned from IMpassion130. J Natl Cancer Inst. 2022;114(5):664–675. doi:10.1093/jnci/djab121
  • Botti G, Collina F, Scognamiglio G, et al. Programmed death ligand 1 (PD-L1) tumor expression is associated with a better prognosis and diabetic disease in triple negative breast cancer patients. Int J Mol Sci. 2017;18(2):459. doi:10.3390/ijms18020459
  • Oner G, Önder S, Karatay H, et al. Clinical impact of PD-L1 expression in triple-negative breast cancer patients with residual tumor burden after neoadjuvant chemotherapy. World J Surg Oncol. 2021;19(1). doi:10.1186/s12957-021-02361-9
  • Tarantino P, Gandini S, Trapani D, Criscitiello C, Curigliano G. Immunotherapy addition to neoadjuvant chemotherapy for early triple negative breast cancer: a systematic review and meta-analysis of randomized clinical trials. Crit Rev Oncol Hematol. 2021;159. doi:10.1016/j.critrevonc.2021.103223
  • Yang J, Moses MA. Lipocalin 2: a multifaceted modulator of human cancer. Cell Cycle. 2009;8(15):2347–2352. doi:10.4161/cc.8.15.9224
  • Zhao H, Konishi A, Fujita Y, et al. Lipocalin 2 bolsters innate and adaptive immune responses to blood-stage malaria infection by reinforcing host iron metabolism. Cell Host Microbe. 2012;12(5):705–716. doi:10.1016/j.chom.2012.10.010
  • Li C, Chan YR. Lipocalin 2 regulation and its complex role in inflammation and cancer. Cytokine. 2011;56(2):435–441. doi:10.1016/j.cyto.2011.07.021
  • Candido S, Abrams SL, Steelman LS, et al. Roles of NGAL and MMP-9 in the tumor microenvironment and sensitivity to targeted therapy. Biochim Biophys Acta Mol Cell Res. 2016;1863(3):438–448. doi:10.1016/j.bbamcr.2015.08.010
  • Chakraborty S, Kaur S, Guha S, Batra SK. The multifaceted roles of neutrophil gelatinase associated lipocalin (NGAL) in inflammation and cancer. Biochim Biophys Acta Rev Cancer. 2012;1826(1). doi:10.1016/j.bbcan.2012.03.008
  • Mertens C, Mora J, Ören B, et al. Macrophage-derived lipocalin-2 transports iron in the tumor microenvironment. Oncoimmunology. 2018;7(3):e1408751. doi:10.1080/2162402X.2017.1408751
  • Cheng Z, Akatsuka S, Li GH, Mori K, Takahashi T, Toyokuni S. Ferroptosis resistance determines high susceptibility of murine A/J strain to iron-induced renal carcinogenesis. Cancer Sci. 2022;113(1):65–78. doi:10.1111/cas.15175
  • Mertens C, Schnetz M, Rehwald C, et al. Iron-bound lipocalin-2 from tumor-associated macrophages drives breast cancer progression independent of ferroportin. Metabolites. 2021;11(3):180. doi:10.3390/metabo11030180
  • Jung M, Mertens C, Bauer R, Rehwald C, Brüne B. Lipocalin-2 and iron trafficking in the tumor microenvironment. Pharmacol Res. 2017;120. doi:10.1016/j.phrs.2017.03.018
  • Atiya HI, Frisbie L, Goldfeld E, et al. Endometriosis-Associated Mesenchymal Stem Cells Support Ovarian Clear Cell Carcinoma through Iron Regulation. Cancer Res. 2022;82(24):4680–4693. doi:10.1158/0008-5472.CAN-22-1294
  • Ören B, Urosevic J, Mertens C, et al. Tumour stroma-derived lipocalin-2 promotes breast cancer metastasis. J Pathol. 2016;239(3):274–285. doi:10.1002/path.4724
  • Hu C, Yang K, Li M, Huang W, Zhang F, Wang H. Lipocalin 2: a potential therapeutic target for breast cancer metastasis. Onco Targets Ther. 2018;11. doi:10.2147/OTT.S181223
  • Yang J, Bielenberg DR, Rodig SJ, et al. Lipocalin 2 promotes breast cancer progression. Proc Natl Acad Sci U S A. 2009;106(10):3913–3918. doi:10.1073/pnas.0810617106
  • Kurozumi S, Alsaeed S, Orah N, et al. Clinicopathological significance of lipocalin 2 nuclear expression in invasive breast cancer. Breast Cancer Res Treat. 2020;179(3):557–564. doi:10.1007/s10549-019-05488-2
  • Santiago-Sánchez GS, Pita-Grisanti V, Quiñones-Díaz B, Gumpper K, Cruz-Monserrate Z, Vivas-Mejía PE. Biological functions and therapeutic potential of lipocalin 2 in cancer. Int J Mol Sci. 2020;21(12):4365. doi:10.3390/ijms21124365
  • Ekemen S, Comunoglu C, Kayhan CK, et al. Endometrial Staining of CD56 (Uterine Natural Killer), BCL-6, and CD138 (Plasma Cells) Improve Diagnosis and Clinical Pregnancy Outcomes in Unexplained Infertility and Recurrent IVF Failures: standardization of Diagnosis with Digital Pathology. Diagnostics. 2023;13(9):1557. doi:10.3390/diagnostics13091557
  • Elston CW, Ellis IO. pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long‐term follow‐up. Histopathology. 1991;19(5):403–410. doi:10.1111/j.1365-2559.1991.tb00229.x
  • Yildiz P, Aydin Ulgen O, Yol C, Demirkesen C. Proliferating Pilar Tumors: can Immunohistochemistry Differentiate Benign and Malignant Forms? Am J Dermatopathol. 2021;43(3):198–201. doi:10.1097/DAD.0000000000001743
  • do NRG, Otoni KM. Histological and molecular classification of breast cancer: what do we know? Mastology. 2020;30. doi:10.29289/25945394202020200024
  • Sukumar J, Gast K, Quiroga D, Lustberg M, Williams N. Triple-negative breast cancer: promising prognostic biomarkers currently in development. Expert Rev Anticancer Ther. 2021;21(2):135–148. doi:10.1080/14737140.2021.1840984
  • Ambrosini-Spaltro A, Limarzi F, Gaudio M, Calpona S, Meccariello G. PD-L1 expression in head and neck carcinoma by combined positive score: a comparison among preoperative biopsy, tumor resection, and lymph node metastasis. Virchows Archiv. 2022;481(1):93–99. doi:10.1007/s00428-022-03322-7
  • Akhtar M, Rashid S, Al-Bozom IA. PD−L1 immunostaining: what pathologists need to know. Diagn Pathol. 2021;16(1). doi:10.1186/s13000-021-01151-x
  • Bauer M, Eickhoff JC, Gould MN, Mundhenke C, Maass N, Friedl A. Neutrophil gelatinase-associated lipocalin (NGAL) is a predictor of poor prognosis in human primary breast cancer. Breast Cancer Res Treat. 2008;108(3):389–397. doi:10.1007/s10549-007-9619-3
  • Ahmad Fauzi MF, Ahmad WSHM W, Jamaluddin MF, et al. Allred Scoring of ER-IHC Stained Whole-Slide Images for Hormone Receptor Status in Breast Carcinoma. Diagnostics. 2022;12(12):3093. doi:10.3390/diagnostics12123093
  • Rai PD, Vagha S, Shukla S, Bhake A. Comparison of various scoring systems by immunohistochemistry for evaluating hormone receptors (Estrogen receptor and progesterone receptor) in carcinoma of breast. J Datta Meghe Inst Med Sci Univ. 2020;15(2):202. doi:10.4103/jdmimsu.jdmimsu_7_20
  • Yamashita H, Ando Y, Nishio M, et al. Immunohistochemical evaluation of hormone receptor status for predicting response to endocrine therapy in metastatic breast cancer. Breast Cancer. 2006;13(1):74–83. doi:10.2325/jbcs.13.74
  • Buisseret L, Garaud S, De Wind A, et al. Tumor-infiltrating lymphocyte composition, organization and PD-1/PD-l1 expression are linked in breast cancer. Oncoimmunology. 2017;6(1):e1257452. doi:10.1080/2162402X.2016.1257452
  • Won KA, Spruck C. Triple-negative breast cancer therapy: current and future perspectives. Int J Oncol. 2020;57(6):1245–1261. doi:10.3892/ijo.2020.5135
  • Stanton SE, Adams S, Disis ML. Variation in the Incidence and Magnitude of Tumor-Infiltrating Lymphocytes in Breast Cancer Subtypes: a Systematic Review. JAMA Oncol. 2016;2(10):1354. doi:10.1001/jamaoncol.2016.1061
  • Sobral-Leite M, Van de Vijver K, Michaut M, et al. Assessment of PD-L1 expression across breast cancer molecular subtypes, in relation to mutation rate, BRCA1 -like status, tumor-infiltrating immune cells and survival. Oncoimmunology. 2018;7(12):e1509820. doi:10.1080/2162402X.2018.1509820
  • Kamble PG, Pereira MJ, Almby K, Eriksson JW. Estrogen interacts with glucocorticoids in the regulation of lipocalin 2 expression in human adipose tissue. Reciprocal roles of estrogen receptor α and β in insulin resistance? Mol Cell Endocrinol. 2019;490. doi:10.1016/j.mce.2019.04.002