186
Views
5
CrossRef citations to date
0
Altmetric
Review

Nucleic Acid Therapy for β-Thalassemia

ORCID Icon
Pages 95-105 | Published online: 15 Sep 2020

References

  • Cao A, Galanello R. Beta-thalassemia. Genet Med. 2010;12(2):61–76. doi:10.1097/GIM.0b013e3181cd68ed20098328
  • Cao A, Kan YW. The prevention of Thalassemia. Cold Spring Harb Perspect Med. 2013;3(2):a011775. doi:10.1101/cshperspect.a01177523378598
  • Rivella S. Ineffective erythropoiesis and Thalassemias. Curr Opin Hematol. 2009;16(3):187–194. doi:10.1097/MOH.0b013e32832990a419318943
  • Nienhuis AW, Nathan DG. Pathophysiology and clinical manifestations of the β-thalassemias. Cold Spring Harb Perspect Med. 2012;2:12. doi:10.1101/cshperspect.a011726
  • Riewpaiboon A, Nuchprayoon I, Torcharus K, et al. Economic burden of Beta-thalassemia/Hb E and Beta-thalassemia major in Thai children. BMC Res Notes. 2010;3(1):29. doi:10.1186/1756-0500-3-2920181056
  • Ansari S, Baghersalimi A, Azarkeivan A, et al. Quality of life in patients with Thalassemia major. Iran J Ped Hematol Oncol. 2014;4(2):57–63.25002926
  • Kleanthous M, Phylactides M. Thalassemia and its relevance to personalized medicine. Per Med. 2008;5(2):141–153. doi:10.2217/17410541.5.2.14129783353
  • Fucharoen S. Overview of genotypes and Phenotypes of Thalassemia in Asia Availabe from: https://www.slideshare.net/Thalassaemia_Intl_Fed/overview-of-genotypes-and-phenotypes-of-thalassemia-inasia. Accessed September 5, 2020.
  • Thein SL. Molecular basis of β-thalassemia and potential therapeutic targets. Blood Cells Mol Dis. 2017.
  • Voon HPJ, Wardan H, Vadolas J. Co-inheritance of α- and β-thalassaemia in mice ameliorates thalassaemic phenotype. Blood Cells Mol Dis. 2007;39(2):184–188. doi:10.1016/j.bcmd.2007.01.00617493845
  • Mettananda S, Gibbons RJ, Higgs DR. α-globin as a molecular target in treatment of β-thalassemia. Blood. 2015;125:3694–3701. doi:10.1182/blood-2015-03-63359425869286
  • Voon HPJ, Wardan H, Vadolas J. siRNA-mediated reduction of α-globin results in phenotypic improvements in β-thalassemic cells. Haematologica. 2008;93(8):1238–1242. doi:10.3324/haematol.1255518556409
  • Sarakul O, Vattanaviboon P, Wilairat P, et al. Inhibition of α-globin gene expression by RNAi. Biochem Biophys Res Commun. 2008;369(3):935–938. doi:10.1016/j.bbrc.2008.02.12418328259
  • Xie S-Y, Ren Z-R, Zhang J-Z, et al. Restoration of the balanced α/β-globin gene expression in β 654 -thalassemia mice using combined RNAi and antisense RNA approach. Hum Mol Genet. 2007;16(21):2616–2625. doi:10.1093/hmg/ddm21817716993
  • Xie SY, Li W, Ren ZR, et al. Correction of β654-thalassaemia mice using direct intravenous injection of siRNA and antisense RNA vectors. Int J Hematol. 2011;93(3):301–310. doi:10.1007/s12185-010-0727-121369857
  • Mettananda S, Fisher CA, Hay D, et al. Editing an α-globin enhancer in primary human hematopoietic stem cells as a treatment for β-thalassemia. Nat Commun. 2017;8(1):424. doi:10.1038/s41467-017-00479-728871148
  • Valencia-Sanchez MA, Liu J, Hannon GJ, et al. Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev. 2006;20(5):515–524. doi:10.1101/gad.139980616510870
  • Ghildiyal M, Zamore PD. Small silencing RNAs: an expanding universe. Nat Rev Genet. 2009;10(2):94–108.19148191
  • Li H, Yang Y, Hong W, et al. Applications of genome editing technology in the targeted therapy of human diseases: mechanisms, advances and prospects. Signal Transduct Tar. 2020;5(1):1.
  • Cavazzana-Calvo M, Payen E, Negre O, et al. Transfusion independence and HMGA2 activation after gene therapy of human thalassaemia. Nature. 2010;467(7313):318–322. doi:10.1038/nature0932820844535
  • Negre O, Eggimann A-V, Beuzard Y, et al. Gene therapy of the β-hemoglobinopathies by lentiviral transfer of the β(A(T87Q))-globin gene. Hum Gene Ther. 2016;27(2):148–165. doi:10.1089/hum.2016.00726886832
  • Thompson AA, Walters MC, Kwiatkowski J, et al. Gene therapy in patients with transfusion-dependent β-thalassemia. N Engl J Med. 2018;378(16):1479–1493. doi:10.1056/NEJMoa170534229669226
  • Schuessler-Lenz M, Enzmann H, Vamvakas S. Regulators’ advice can make a difference: european medicines agency approval of zynteglo for beta thalassemia. Clin Pharmacol Ther. 2020;107(3):492–494. doi:10.1002/cpt.163931705534
  • Miccio A, Cesari R, Lotti F, et al. In vivo selection of genetically modified erythroblastic progenitors leads to long-term correction of β-thalassemia. Proc Natl Acad Sci USA. 2008;105(30):10547–10552. doi:10.1073/pnas.071166610518650378
  • Marktel S, Cicalese MP, Giglio F, et al. Gene therapy for Beta thalassemia: preliminary results from the PHASE I/II TIGET-BTHAL trial of autologous hematopoietic stem cells genetically modified with globe lentiviral vector. Blood. 2017;130(Suppl 1):355.
  • Marktel S, Scaramuzza S, Cicalese MP, et al. Intrabone hematopoietic stem cell gene therapy for adult and pediatric patients affected by transfusion-dependent ß-thalassemia. Nat Med. 2019;25(2):234–241. doi:10.1038/s41591-018-0301-630664781
  • Fucharoen S, Weatherall DJ. The hemoglobin E thalassemias. Cold Spring Harb Perspect Med. 2012;2:8. doi:10.1101/cshperspect.a011734
  • Kole R, Krainer AR, Altman S. RNA therapeutics: beyond RNA interference and antisense oligonucleotides. Nat Rev Drug Discov. 2012;11:125. doi:10.1038/nrd362522262036
  • Havens MA, Hastings ML. Splice-switching antisense oligonucleotides as therapeutic drugs. Nucleic Acids Res. 2016;44(14):6549–6563. doi:10.1093/nar/gkw53327288447
  • Summerton J. Morpholino antisense oligomers: the case for an RNase H-independent structural type. Biochim Biophys Acta. 1999;1489(1):141–158. doi:10.1016/S0167-4781(99)00150-510807004
  • Rinaldi C, Wood MJA. Antisense oligonucleotides: the next frontier for treatment of neurological disorders. Nat Rev Neurol. 2018;14(1):9–21.29192260
  • Crooke ST, Vickers TA, Liang X-H. Phosphorothioate modified oligonucleotide-protein interactions. Nucleic Acids Res. 2020;48(10):5235–5253. doi:10.1093/nar/gkaa29932356888
  • Svasti S, Suwanmanee T, Fucharoen S, et al. RNA repair restores hemoglobin expression in IVS2–654 thalassemic mice. Proc Natl Acad Sci USA. 2009;106(4):1205–1210. doi:10.1073/pnas.081243610619164558
  • El-Beshlawy A, Mostafa A, Youssry I, et al. Correction of aberrant pre-mRNA splicing by antisense oligonucleotides in β-thalassemia Egyptian patients with IVSI-110 mutation. J Pediatr Hematol Oncol. 2008;30(4):281–284. doi:10.1097/MPH.0b013e3181639afe18391696
  • Derakhshan SM, Khaniani MS. Restoration of correct splicing in IVSI-110 mutation of β-globin gene with antisense oligonucleotides: implications and applications in functional assay development. Iran J Basic Med Sci. 2017;20(6):700–707. doi:10.22038/IJBMS.2017.884028868125
  • Suwanmanee T, Sierakowska H, Lacerra G, et al. Restoration of human β-globin gene expression in murine and human IVS2–654 thalassemic erythroid cells by free uptake of antisense oligonucleotides. Mol Pharmacol. 2002;62(3):545–553. doi:10.1124/mol.62.3.54512181431
  • Nualkaew T, Jearawiriyapaisarn N, Hongeng S, et al. Restoration of correct βIVS2−654-globin mRNA splicing and HbA production by engineered U7 snRNA in β-thalassaemia/HbE erythroid cells. Sci Rep. 2019;9(1):7672. doi:10.1038/s41598-019-43964-331113996
  • Phanthong P, Borwornpinyo S, Kitiyanant N, et al. Enhancement of β‐globin gene expression in thalassemic IVS2‐654 induced pluripotent stem cell‐derived erythroid cells by modified U7 snRNA. Stem Cells Transl Med. 2017;6(4):1059–1069. doi:10.1002/sctm.16-012128213976
  • Schmajuk G, Sierakowska H, Kole R. Antisense oligonucleotides with different backbones: modification of splicing pathways and efficacy of uptake. J Biol Chem. 1999;274(31):21783–21789. doi:10.1074/jbc.274.31.2178310419493
  • Lacerra G, Sierakowska H, Carestia C, et al. Restoration of Hemoglobin A synthesis in erythroid cells from peripheral blood of thalassemic patients. Proc Natl Acad Sci USA. 2000;97(17):9591–9596. doi:10.1073/pnas.97.17.959110944225
  • Preedagasamzin S, Nualkaew T, Pongrujikorn T, et al. Engineered U7 snRNA mediates sustained splicing correction in erythroid cells from β-thalassemia/HbE patients. Biochem Biophys Res Commun. 2018;499(1):86–92. doi:10.1016/j.bbrc.2018.03.10229550480
  • Hammond SM, Wood MJA. Genetic therapies for RNA mis-splicing diseases. Trends Genet. 2011;27(5):196–205. doi:10.1016/j.tig.2011.02.00421497936
  • Gorman L, Suter D, Emerick V, et al. Stable alteration of pre-mRNA splicing patterns by modified U7 small nuclear RNAs. Proc Natl Acad Sci U S A. 1998;95:4929–4934. doi:10.1073/pnas.95.9.49299560205
  • Suter D, Tomasini R, Reber U, et al. Double-target antisense U7 snRNAs promote efficient skipping of an aberrant exon in three human β-thalassemic mutations. Hum Mol Genet. 1999;8(13):2415–2423. doi:10.1093/hmg/8.13.241510556289
  • Vacek MM, Ma H, Gemignani F, et al. High-level expression of hemoglobin A in human thalassemic erythroid progenitor cells following lentiviral vector delivery of an antisense snRNA. Blood. 2003;101(1):104–111. doi:10.1182/blood-2002-06-186912393543
  • Eckenfelder A, Tordo J, Babbs A, et al. The cellular processing capacity limits the amounts of chimeric U7 snRNA available for antisense delivery. Mol Ther Nucleic Acids. 2012;1:e31. doi:10.1038/mtna.2012.2423344083
  • Goyenvalle A, Babbs A, van Ommen G-JB, et al. Enhanced exon-skipping induced by U7 snRNA carrying a splicing silencer sequence: promising tool for DMD therapy. Mol Ther. 2009;17(7):1234–1240. doi:10.1038/mt.2009.11319455105
  • Goyenvalle A, Wright J, Babbs A, et al. Engineering multiple U7snRNA constructs to induce single and multiexon-skipping for Duchenne muscular dystrophy. Mol Ther. 2012;20(6):1212–1221. doi:10.1038/mt.2012.2622354379
  • Imbert M, Dias-Florencio G, Goyenvalle A. Viral vector-mediated antisense therapy for genetic diseases. Genes. 2017;8(2):51. doi:10.3390/genes8020051
  • Madocsai C, Lim SR, Geib T, et al. Correction of SMN2 pre-mRNA splicing by antisense U7 small nuclear RNAs. Mol Ther. 2005;12(6):1013–1022. doi:10.1016/j.ymthe.2005.08.02216226920
  • Meyer K, Marquis J, Trüb J, et al. Rescue of a severe mouse model for spinal muscular atrophy by U7 snRNA-mediated splicing modulation. Hum Mol Genet. 2008;18(3):546–555. doi:10.1093/hmg/ddn38219010792
  • Odermatt P, Trüb J, Furrer L, et al. Somatic therapy of a mouse SMA model with a U7 snRNA gene correcting SMN2 splicing. Mol Ther. 2016;24(10):1797–1805. doi:10.1038/mt.2016.15227456062
  • De Angelis FG, Sthandier O, Berarducci B, et al. Chimeric snRNA molecules carrying antisense sequences against the splice junctions of exon 51 of the dystrophin pre-mRNA induce exon skipping and restoration of a dystrophin synthesis in Δ48-50 DMD cells. Proc Natl Acad Sci USA. 2002;99(14):9456–9461. doi:10.1073/pnas.14230229912077324
  • Fang Y, Chen X, Godbey WT. Chapter 42 - Gene editing in regenerative medicine In: Atala A, Lanza R, Mikos AG, Nerem R, editors. Principles of Regenerative Medicine. Third Edition Boston: Academic Press; 2019:741–759.
  • Gupta RM, Musunuru K. Expanding the genetic editing tool kit: zFNs, TALENs, and CRISPR-Cas9. J Clin Invest. 2014;124(10):4154–4161. doi:10.1172/JCI7299225271723
  • Carroll D. Genome engineering with zinc-finger nucleases. Genetics. 2011;188(4):773–782. doi:10.1534/genetics.111.13143321828278
  • Maeder ML, Gersbach CA. Genome-editing technologies for gene and cell therapy. Mol Ther. 2016;24(3):430–446. doi:10.1038/mt.2016.1026755333
  • Modares Sadeghi M, Shariati L, Hejazi Z, et al. Inducing indel mutation in the SOX6 gene by zinc finger nuclease for gamma reactivation: an approach towards gene therapy of Beta-thalassemia. J Cell Biochem. 2018;119(3):2512–2519. doi:10.1002/jcb.2641228941328
  • Xu P, Tong Y, Liu X-Z, et al. Both TALENs and CRISPR/Cas9 directly target the HBB IVS2–654 (C > T) mutation in β-thalassemia-derived iPSCs. Sci Rep. 2015;5:12065. doi:10.1038/srep1206526156589
  • Fang Y, Cheng Y, Lu D, et al. Treatment of β654-thalassaemia by TALENs in a mouse model. Cell Prolif. 2018;51(6):e12491. doi:10.1111/cpr.1249130070404
  • Bolotin A, Quinquis B, Sorokin A, et al. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology. 2005;151(8):2551–2561. doi:10.1099/mic.0.28048-016079334
  • Brouns SJJ, Jore MM, Lundgren M, et al. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science. 2008;321(5891):960–964. doi:10.1126/science.115968918703739
  • Ran FA, Hsu PD, Wright J, et al. Genome engineering using the CRISPR-Cas9 system. Nat Protocols. 2013;8(11):2281–2308. doi:10.1038/nprot.2013.14324157548
  • Guan Y, Ma Y, Li Q, et al. CRISPR/Cas9-mediated somatic correction of a novel coagulator factor IX gene mutation ameliorates Hemophilia in mouse. EMBO Mol Med. 2016;8(5):477–488. doi:10.15252/emmm.20150603926964564
  • Liang X, Potter J, Kumar S, et al. Enhanced CRISPR/Cas9-mediated precise genome editing by improved design and delivery of gRNA, Cas9 nuclease, and donor DNA. J Biotechnol. 2017;241:136–146. doi:10.1016/j.jbiotec.2016.11.01127845164
  • Xie N, Zhou Y, Sun Q, et al. Novel epigenetic techniques provided by the CRISPR/Cas9 system. Stem Cells Int. 2018;2018:7834175. doi:10.1155/2018/783417530123293
  • Yang F, Liu C, Chen D, et al. CRISPR/Cas9-loxP-mediated gene editing as a novel site-specific genetic manipulation tool. Mol Ther Nucleic Acids. 2017;7:378–386. doi:10.1016/j.omtn.2017.04.01828624213
  • Miano JM, Zhu QM, Lowenstein CJ. A CRISPR path to engineering new genetic mouse models for cardiovascular research. Arterioscler Thromb Vasc Biol. 2016;36(6):1058–1075. doi:10.1161/ATVBAHA.116.30479027102963
  • Xie F, Ye L, Chang JC, et al. Seamless gene correction of β-thalassemia mutations in patient-specific iPSCs using CRISPR/Cas9 and piggyBac. Genome Res. 2014;24:1526–1533. doi:10.1101/gr.173427.11425096406
  • Antony JS, Latifi N, Haque AKMA, et al. Gene correction of HBB mutations in CD34+ hematopoietic stem cells using Cas9 mRNA and ssODN donors. Mol Cell Pediatr. 2018;5(1):9. doi:10.1186/s40348-018-0086-130430274
  • Wattanapanitch M, Damkham N, Potirat P, et al. One-step genetic correction of hemoglobin E/Beta-thalassemia patient-derived iPSCs by the CRISPR/Cas9 system. Stem Cell Res Ther. 2018;9(1):46. doi:10.1186/s13287-018-0779-329482624
  • Liu Y, Yang Y, Kang X, et al. One-Step biallelic and scarless correction of a β-Thalassemia mutation in patient-specific iPSCs without drug selection. Mol Ther Nucleic Acids. 2017;6:57–67. doi:10.1016/j.omtn.2016.11.01028325300
  • Xu S, Luk K, Yao Q, et al. Editing aberrant splice sites efficiently restores β-globin expression in β-thalassemia. Blood. 2019;133(21):2255–2262. doi:10.1182/blood-2019-01-89509430704988
  • Kouranova E, Forbes K, Zhao G, et al. CRISPRs for optimal targeting: delivery of CRISPR components as DNA, RNA, and protein into cultured cells and single-cell embryos. Hum Gene Ther. 2016;27(6):464–475. doi:10.1089/hum.2016.00927094534
  • Lino CA, Harper JC, Carney JP, et al. Delivering CRISPR: A review of the challenges and approaches. Drug Deliv. 2018;25(1):1234–1257. doi:10.1080/10717544.2018.147496429801422
  • Yu X, Liang X, Xie H, et al. Improved delivery of Cas9 protein/gRNA complexes using lipofectamine CRISPRMAX. Biotechnol Lett. 2016;38(6):919–929. doi:10.1007/s10529-016-2064-926892225
  • Li G, Zhang X, Zhong C, et al. Small molecules enhance CRISPR/Cas9-mediated homology-directed genome editing in primary cells. Sci Rep. 2017;7(1):8943. doi:10.1038/s41598-017-09306-x28827551
  • Thein SL. The molecular basis of β-thalassemia. Cold Spring Harb Perspect Med. 2013;3:5. doi:10.1101/cshperspect.a011700
  • Kaufman DP, Khattar J, Lappin SL. Physiology, Fetal Hemoglobin. Treasure Island (FL). StatPearls Publishing; 2020.
  • Lohani N, Bhargava N, Munshi A, et al. Pharmacological and molecular approaches for the treatment of β-hemoglobin disorders. J Cell Physiol. 2018;233(6):4563–4577. doi:10.1002/jcp.2629229159826
  • Bianchi N, Zuccato C, Lampronti I, et al. Fetal hemoglobin inducers from the natural world: A novel approach for identification of drugs for the treatment of β-thalassemia and sickle-cell anemia. Evidence-Based Complementary and Alternative Med. 2009;6(2):141–151. doi:10.1093/ecam/nem139
  • Taghavi SA, Hosseini KM, Tamaddon G, et al. Inhibition of γ/β globin gene switching in CD 34+ derived erythroid cells by BCL11A RNA silencing. Indian J Hematol Blo. 2019;35(4):758–764. doi:10.1007/s12288-019-01131-8
  • Guda S, Brendel C, Renella R, et al. miRNA-embedded shRNAs for lineage-specific BCL11A knockdown and hemoglobin F induction. Mol Ther. 2015;23(9):1465–1474. doi:10.1038/mt.2015.11326080908
  • Brendel C, Guda S, Renella R, et al. Lineage-specific BCL11A knockdown circumvents toxicities and reverses sickle phenotype. J Clin Inves. 2016;126(10):3868–3878. doi:10.1172/JCI87885
  • Hu JH, Navas P, Cao H, et al. Systematic RNAi studies on the role of Sp/KLF factors in globin gene expression and erythroid differentiation. J Mol Biol. 2007;366(4):1064–1073. doi:10.1016/j.jmb.2006.12.04717224162
  • Roosjen M, McColl B, Kao B, et al. Transcriptional regulators Myb and BCL11A interplay with DNA methyltransferase 1 in developmental silencing of embryonic and fetal β-like globin genes. FASEB J. 2014;28(4):1610–1620. doi:10.1096/fj.13-24266924371119
  • Khosravi MA, Abbasalipour M, Concordet JP, et al. Targeted deletion of BCL11A gene by CRISPR-Cas9 system for fetal hemoglobin reactivation: A promising approach for gene therapy of beta thalassemia disease. Eur J Pharmacol. 2019;854:398–405.31039344
  • Psatha N, Reik A, Phelps S, et al. Disruption of the BCL11A erythroid enhancer reactivates fetal hemoglobin in erythroid cells of patients with β-thalassemia major. Mol Ther- Meth Clin D. 2018;10:313–326. doi:10.1016/j.omtm.2018.08.003
  • Chang K-H, Smith SE, Sullivan T, et al. Long-term engraftment and fetal globin induction upon BCL11A gene editing in bone-marrow-derived CD34(+) hematopoietic stem and progenitor cells. Molecular Therapy Methods Clinical Development. 2017;4:137–148. doi:10.1016/j.omtm.2016.12.00928344999
  • Shariati L, Khanahmad H, Salehi M, et al. Genetic disruption of the KLF1 gene to overexpress the γ-globin gene using the CRISPR/Cas9 system. J Gene Med. 2016;18(10):294–301. doi:10.1002/jgm.292827668420
  • Lamsfus-Calle A, Daniel-Moreno A, Antony JS, et al. Comparative targeting analysis of KLF1, BCL11A, and HBG1/2 in CD34+ HSPCs by CRISPR/Cas9 for the induction of fetal hemoglobin. Sci Rep. 2020;10(1):10133. doi:10.1038/s41598-020-66309-x32576837
  • Liu N, Hargreaves VV, Zhu Q, et al. Direct promoter repression by BCL11A controls the fetal to adult hemoglobin switch. Cell. 2018;173(2):430–42.e17. doi:10.1016/j.cell.2018.03.01629606353
  • Weber L, Frati G, Felix T, et al. Editing a γ-globin repressor binding site restores fetal hemoglobin synthesis and corrects the sickle cell disease phenotype. Sci Adv. 2020;6(7):eaay9392. doi:10.1126/sciadv.aay939232917636
  • Zhan J, Irudayam MJ, Nakamura Y, et al. High level of fetal-globin reactivation by designed transcriptional activator-like effector. Blood Adv. 2020;4(4):687–695. doi:10.1182/bloodadvances.201900048232084259
  • Métais JY, Doerfler PA, Mayuranathan T, et al. Genome editing of HBG1 and HBG2 to induce fetal hemoglobin. Blood Adv. 2019;3(21):3379–3392. doi:10.1182/bloodadvances.201900082031698466
  • ClinicalTrials. A safety and efficacy study evaluating CTX001 in subjects with transfusion-dependent β-thalassemia; 2018 Available from: https://clinicaltrials.gov/ct2/show/NCT03655678. Accessed 824, 2020.