292
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Emerging Therapies for Huntington’s Disease – Focus on N-Terminal Huntingtin and Huntingtin Exon 1

, &
Pages 141-160 | Received 10 Jun 2022, Accepted 14 Sep 2022, Published online: 30 Sep 2022

References

  • Crowell V, Houghton R, Tomar A, Fernandes T, Squitieri F. Modeling manifest Huntington’s disease prevalence using diagnosed incidence and survival time. Neuroepidemiology. 2021;55(5):361–368. doi:10.1159/000516767
  • Rawlins MD, Wexler NS, Wexler AR, et al. The prevalence of Huntington’s disease. Neuroepidemiology. 2016;46(2):144–153. doi:10.1159/000443738
  • Caron NS, Wright GE, Hayden MR, et al. Huntington disease. In: Adam M, Ardinger H, editors. GeneReviews®. Seattle: University of Washington; 1993:1–34.
  • Wright GEB, Collins JA, Kay C, et al. Length of uninterrupted CAG, independent of polyglutamine size, results in increased somatic instability, hastening onset of Huntington disease. Am J Hum Genet. 2019;104(6):1116–1126. doi:10.1016/j.ajhg.2019.04.007
  • Lee J-M, Correia K, Loupe J; GeM-HD GM of HDC. CAG repeat not polyglutamine length determines timing of Huntington’s disease onset. Cell. 2019;178(4):887–900.e14. doi:10.1016/j.cell.2019.06.036
  • Iyer RR, Pluciennik A, Mismatch DNA. Repair and its role in Huntington’s disease. J Huntingtons Dis. 2021;10(1):75–94. doi:10.3233/JHD-200438
  • Schulte J, Littleton JT. The biological function of the Huntingtin protein and its relevance to Huntington’s disease pathology. Curr Trends Neurol. 2011;5:65–78.
  • Liu JP, Zeitlin SO. Is huntingtin dispensable in the adult brain? J Huntingtons Dis. 2017;6(1):1–17. doi:10.3233/JHD-170235
  • Saudou F, Humbert S. The biology of Huntingtin. Neuron. 2016;89(5):910–926. doi:10.1016/j.neuron.2016.02.003
  • Kaemmerer WF, Grondin RC. The effects of Huntingtin-lowering: what do we know so far? Degener Neurol Neuromuscul Dis. 2019;9:3–17. doi:10.2147/DNND.S163808
  • Neueder A, Bates GP. RNA related pathology in Huntington’s disease. Polyglutamine Disord. 2018;2018:85–101. doi:10.1007/978-3-319-71779-1_4
  • Heinz A, Nabariya DK, Krauss S. Huntingtin and its role in mechanisms of RNA-mediated toxicity. Toxins. 2021;13(7):487. doi:10.3390/toxins13070487
  • Malik I, Kelley CP, Wang ET, Todd PK. Molecular mechanisms underlying nucleotide repeat expansion disorders. Nat Rev Mol Cell Biol. 2021;22(9):589–607. doi:10.1038/s41580-021-00382-6
  • Sun X, Li PP, Zhu S, et al. Nuclear retention of full-length HTT RNA is mediated by splicing factors MBNL1 and U2AF65. Sci Rep. 2015;5:1–16. doi:10.1038/srep12521
  • Mykowska A, Sobczak K, Wojciechowska M, Kozlowski P, Krzyzosiak WJ. CAG repeats mimic CUG repeats in the misregulation of alternative splicing. Nucleic Acids Res. 2011;39(20):8938–8951. doi:10.1093/nar/gkr608
  • Schilling J, Broemer M, Atanassov I, et al. Deregulated splicing is a major mechanism of RNA-induced toxicity in Huntington’s disease. J Mol Biol. 2019;431(9):1869–1877. doi:10.1016/j.jmb.2019.01.034
  • Gu X, Richman J, Langfelder P, et al. Uninterrupted CAG repeat drives striatum-selective transcriptionopathy and nuclear pathogenesis in human Huntingtin BAC mice. Neuron. 2022;110(7):1173–1192.e7. doi:10.1016/j.neuron.2022.01.006
  • Bañez-Coronel M, Ayhan F, Tarabochia AD, et al. RAN translation in Huntington disease. Neuron. 2015;88(4):667–677. doi:10.1016/j.neuron.2015.10.038
  • Rudich P, Watkins S, Lamitina T. PolyQ-independent toxicity associated with novel translational products from CAG repeat expansions. PLoS One. 2020;15(4):1–21. doi:10.1371/journal.pone.0227464
  • Yang S, Yang H, Huang L, et al. Lack of RAN-mediated toxicity in Huntington’s disease knock-in mice. Proc Natl Acad Sci U S A. 2020;117(8):4411–4417. doi:10.1073/pnas.1919197117
  • Steffan JS, Kazantsev A, Spasic-Boskovic O, et al. The Huntington’s disease protein interacts with p53 and CREB-binding protein and represses transcription. Proc Natl Acad Sci U S A. 2000;97(12):6763–6768. doi:10.1073/pnas.100110097
  • Suhr ST, Senut MC, Whitelegge JP, Faull KF, Cuizon DB, Gage FH. Identities of sequestered proteins in aggregates from cells with induced polyglutamine expression. J Cell Biol. 2001;153(2):283–294. doi:10.1083/jcb.153.2.283
  • Bae B, Xu H, Igarashi S, et al. p53 mediates cellular dysfunction and behavioral abnormalities in Huntington’s disease. Neuron. 2005;47(1):29–41. doi:10.1016/j.neuron.2005.06.005
  • Pryor WM, Biagioli M, Shahani N, et al. Huntingtin promotes mTORC1 signaling in the pathogenesis of Huntington’s disease. Sci Signal. 2014;7(349):1–13. doi:10.1126/scisignal.2005633
  • Gao R, Chakraborty A, Geater C, et al. Mutant Huntingtin impairs PNKP and ATXN3, disrupting DNA repair and transcription. Elife. 2019;8:1–31. doi:10.7554/eLife.42988
  • Martindale D, Hackam A, Wieczorek A, et al. Length of Huntingtin and its polyglutamine tract influences localization and frequency of intracellular aggregates. Nat Genet. 1998;18(2):150–154. doi:10.1038/ng0298-150
  • Hackam AS, Singaraja R, Wellington CL, et al. The influence of Huntingtin protein size on nuclear localization and cellular toxicity. J Cell Biol. 1998;141(5):1097–1105. doi:10.1083/jcb.141.5.1097
  • Barbaro BA, Lukacsovich T, Agrawal N, et al. Comparative study of naturally occurring Huntingtin fragments in Drosophila points to exon 1 as the most pathogenic species in Huntington’s disease. Hum Mol Genet. 2015;24(4):913–925. doi:10.1093/hmg/ddu504
  • El‐Daher M, Hangen E, Bruyère J, et al. Huntingtin proteolysis releases non‐polyQ fragments that cause toxicity through dynamin 1 dysregulation. EMBO J. 2015;34(17):2255–2271. doi:10.15252/embj.201490808
  • Mangiarini L, Sathasivam K, Seller M, et al. Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell. 1996;87(3):493–506. doi:10.1016/S0092-8674(00)81369-0
  • Schilling G, Becher MW, Sharp AH, et al. Intranuclear inclusions and neuritic aggregates in transgenic mice expressing a mutant N-terminal fragment of Huntingtin. Hum Mol Genet. 1999;8(3):397–407. doi:10.1093/hmg/8.3.397
  • Tanaka Y, Igarashi S, Nakamura M, et al. Progressive phenotype and nuclear accumulation of an amino-terminal cleavage fragment in a transgenic mouse model with inducible expression of full-length mutant Huntingtin. Neurobiol Dis. 2006;21(2):381–391. doi:10.1016/j.nbd.2005.07.014
  • Landles C, Sathasivam K, Weiss A, et al. Proteolysis of mutant Huntingtin produces an exon 1 fragment that accumulates as an aggregated protein in neuronal nuclei in Huntington disease. J Biol Chem. 2010;285(12):8808–8823. doi:10.1074/jbc.M109.075028
  • Vieweg S, Mahul-Mellier AL, Ruggeri FS, et al. The Nt17 domain and its helical conformation regulate the aggregation, cellular properties and neurotoxicity of mutant Huntingtin exon 1. J Mol Biol. 2021;433(21):167222. doi:10.1016/j.jmb.2021.167222
  • Chongtham A, Bornemann DJ, Barbaro BA, et al. Effects of flanking sequences and cellular context on subcellular behavior and pathology of mutant HTT. Hum Mol Genet. 2020;29(4):674–688. doi:10.1093/hmg/ddaa001
  • Goldberg YP, Nicholson DW, Rasper DM, et al. Cleavage of Huntingtin by apopain, a proapoptotic cysteine protease, is modulated by the polyglutamine tract. Nat Genet. 1996;13(4):442–449. doi:10.1038/ng0896-442
  • Wellington CL, Ellerby LM, Hackam AS, et al. Caspase cleavage of gene products associated with triplet expansion disorders generates truncated fragments containing the polyglutamine tract. J Biol Chem. 1998;273(15):9158–9167. doi:10.1074/jbc.273.15.9158
  • Wellington CL, Singaraja R, Ellerby L, et al. Inhibiting caspase cleavage of Huntingtin reduces toxicity and aggregate formation in neuronal and nonneuronal cells. J Biol Chem. 2000;275(26):19831–19838. doi:10.1074/jbc.M001475200
  • Martin DDO, Schmidt ME, Nguyen YT, Lazic N, Hayden MR. Identification of a novel caspase cleavage site in huntingtin that regulates mutant huntingtin clearance. FASEB J. 2019;33(3):3190–3197. doi:10.1096/fj.201701510RRR
  • Kim YJ, Yi Y, Sapp E, et al. Caspase 3-cleaved N-terminal fragments of wild-type and mutant Huntingtin are present in normal and Huntington’s disease brains, associate with membranes, and undergo calpain dependent proteolysis. Proc Natl Acad Sci U S A. 2001;98(22):12784–12789. doi:10.1073/pnas.221451398
  • Gafni J, Ellerby LM. Calpain activation in Huntington’s disease. J Neurosci. 2002;22(12):4842–4849. doi:10.1523/JNEUROSCI.22-12-04842.2002
  • Sun B, Fan W, Balciunas A, et al. Polyglutamine repeat length-dependent proteolysis of Huntingtin. Neurobiol Dis. 2002;11(1):111–122. doi:10.1006/nbdi.2002.0539
  • Lunkes A, Lindenberg KS, Ben-Haem L, et al. Proteases acting on mutant Huntingtin generate cleaved products that differentially build up cytoplasmic and nuclear inclusions. Mol Cell. 2002;10(2):259–269. doi:10.1016/S1097-2765(02)00602-0
  • Schilling G, Klevytska A, Tebbenkamp ATN, et al. Characterization of Huntingtin pathologic fragments in human Huntington disease, transgenic mice, and cell models. J Neuropathol Exp Neurol. 2007;66(4):313–320. doi:10.1097/nen.0b013e318040b2c8
  • Tebbenkamp ATN, Crosby KW, Siemienski ZB, et al. Analysis of proteolytic processes and enzymatic activities in the generation of Huntingtin N-terminal fragments in an HEK293 cell model. PLoS One. 2012;7(12):1–10. doi:10.1371/journal.pone.0050750
  • Ratovitski T, Nakamura M, D’Ambola J, et al. N-terminal proteolysis of full-length mutant Huntingtin in an inducible PC12 cell model of Huntington’s disease. Cell Cycle. 2007;6(23):2970–2981. doi:10.4161/cc.6.23.4992
  • Sathasivam K, Neueder A, Gipson TA, et al. Aberrant splicing of HTT generates the pathogenic exon 1 protein in Huntington disease. Proc Natl Acad Sci U S A. 2013;110(6):2366–2370. doi:10.1073/pnas.1221891110
  • Neueder A, Landles C, Ghosh R, et al. The pathogenic exon 1 HTT protein is produced by incomplete splicing in Huntington’s disease patients. Sci Rep. 2017;7(1):1–10. doi:10.1038/s41598-017-01510-z
  • Neueder A, Dumas AA, Benjamin AC, Bates GP. Regulatory mechanisms of incomplete Huntingtin mRNA splicing. Nat Commun. 2018;9(1). doi:10.1038/s41467-018-06281-3
  • Mason MA, Gomez-Paredes C, Sathasivam K, Neueder A, Papadopoulou AS, Bates GP. Silencing Srsf6 does not modulate incomplete splicing of the Huntingtin gene in Huntington’s disease models. Sci Rep. 2020;10(1):1–12. doi:10.1038/s41598-020-71111-w
  • Cooper JK, Schilling G, Peters MF, et al. Truncated N-terminal fragments of Huntingtin with expanded glutamine repeats form nuclear and cytoplasmic aggregates in cell culture. Hum Mol Genet. 1998;7(5):783–790. doi:10.1093/hmg/7.5.783
  • Bates GP, Mangiarini L, Mahal A, Davies SW. Transgenic models of Huntington’s disease. Hum Mol Genet. 1997;6(10REV. ISS.):1633–1637. doi:10.1093/hmg/6.10.1633
  • Ramaswamy S, McBride JL, Kordower JH. Animal models of Huntington’s disease. ILAR J. 2007;48(4):356–373. doi:10.1093/ilar.48.4.356
  • Yamamoto A, Lucas JJ, Hen R. Reversal of neuropathology and motor dysfunction in a conditional model of Huntington’s disease. Cell. 2000;101(1):57–66. doi:10.1016/S0092-8674(00
  • Saudou F, Finkbeiner S, Devys D, Greenberg ME. Huntingtin acts in the nucleus to induce apoptosis but death does not correlate with the formation of intranuclear inclusions. Cell. 1998;95(1):55–66. doi:10.1016/S0092-8674(00)81782-1
  • Hackam AS, Singaraja R, Zhang T, Gan L, Hayden MR. In vitro evidence for both the nucleus and cytoplasm as subcellular sites of pathogenesis in Huntington’s disease. Hum Mol Genet. 1999;8(1):25–33. doi:10.1093/hmg/8.1.25
  • Trushina E, Heldebrant MP, Perez-Terzic CM, et al. Microtubule destabilization and nuclear entry are sequential steps leading to toxicity in Huntington’s disease. Proc Natl Acad Sci U S A. 2003;100(21):12171–12176. doi:10.1073/pnas.2034961100
  • Wheeler VC, White JK, Gutekunst CA, et al. Long glutamine tracts cause nuclear localization of a novel form of Huntingtin in medium spiny striatal neurons in Hdh(Q92) and Hdh(Q111) knock-in mice. Hum Mol Genet. 2000;9(4):503–513. doi:10.1093/hmg/9.4.503
  • Lin CH, Tallaksen-Greene S, Chien WM, et al. Neurological abnormalities in a knock-in mouse model of Huntington’s disease. Hum Mol Genet. 2001;10(2):137–144. doi:10.1093/hmg/10.2.137
  • von Horsten S, Schmitt I, Nguyen HP, et al. Transgenic rat model of Huntington’s disease. Hum Mol Genet. 2003;12(6):617–624. doi:10.1093/hmg/ddg075
  • Slow EJ. Selective striatal neuronal loss in a YAC128 mouse model of Huntington disease. Hum Mol Genet. 2003;12(13):1555–1567. doi:10.1093/hmg/ddg169
  • Gray M, Shirasaki DI, Cepeda C, et al. Full-length human mutant Huntingtin with a stable polyglutamine repeat can elicit progressive and selective neuropathogenesis in BACHD mice. J Neurosci. 2008;28(24):6182–6195. doi:10.1523/JNEUROSCI.0857-08.2008
  • Jacobsen JC, Bawden CS, Rudiger SR, et al. An ovine transgenic Huntington’s disease model. Hum Mol Genet. 2010;19(10):1873–1882. doi:10.1093/hmg/ddq063
  • DiFiglia M, Sapp E, Chase KO, et al. Aggregation of Huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science (80-). 1997;277(5334):1990–1993. doi:10.1126/science.277.5334.1990
  • Anne Gutekunst C, Li SH, Yi H, et al. Nuclear and neuropil aggregates in Huntington’s disease: relationship to neuropathology. J Neurosci. 1999;19(7):2522–2534. doi:10.1523/JNEUROSCI.19-07-02522.1999
  • Sánchez I, Mahlke C, Yuan J. Pivotal role of oligomerization in expanded polyglutamine neurodegenerative disorders. Nature. 2003;421(6921):373–379. doi:10.1038/nature01301
  • Schaffar G, Breuer P, Boteva R, et al. Cellular toxicity of polyglutamine expansion proteins: mechanism of transcription factor deactivation. Mol Cell. 2004;15(1):95–105. doi:10.1016/j.molcel.2004.06.029
  • Takahashi T, Kikuchi S, Katada S, Nagai Y, Nishizawa M, Onodera O. Soluble polyglutamine oligomers formed prior to inclusion body formation are cytotoxic. Hum Mol Genet. 2008;17(3):345–356. doi:10.1093/hmg/ddm311
  • Leitman J, Hartl FU, Lederkremer GZ. Rather than large aggregates cause endoplasmic reticulum stress. Nat Commun. 2013;2013:1–10.
  • Arrasate M, Mitra S, Schweitzer ES, Segal MR, Finkbeiner S. Inclusion body formation reduces levels of mutant Huntingtin and the risk of neuronal death. Nature. 2004;431:805–810. doi:10.1038/nature02998
  • Chen JY, Parekh M, Seliman H, et al. Heat shock promotes inclusion body formation of mutant Huntingtin (mHtt) and alleviates mHtt-induced transcription factor dysfunction. J Biol Chem. 2018;293(40):15581–15593. doi:10.1074/jbc.RA118.002933
  • Arrasate M, Finkbeiner S. Protein aggregates in Huntington’s disease. Exp Neurol. 2012;238(1):1–11. doi:10.1016/j.expneurol.2011.12.013
  • Kim YE, Hosp F, Frottin F, et al. Soluble oligomers of PolyQ-expanded Huntingtin target a multiplicity of key cellular factors. Mol Cell. 2016;63(6):951–964. doi:10.1016/j.molcel.2016.07.022
  • Nucifora LG, Burke KA, Feng X, et al. Identification of novel potentially toxic oligomers formed in vitro from mammalian-derived expanded Huntingtin exon-1 protein. J Biol Chem. 2012;287(19):16017–16028. doi:10.1074/jbc.M111.252577
  • Kolla R, Gopinath P, Ricci J, Reif A, Rostami I, Lashuel HA. A new chemoenzymatic semisynthetic approach provides insight into the role of phosphorylation beyond exon1 of huntingtin and reveals N-terminal fragment length-dependent distinct mechanisms of aggregation. J Am Chem Soc. 2021;143(26):9798–9812. doi:10.1021/jacs.1c03108
  • Ehrnhoefer DE, Sutton L, Hayden MR. Small changes, big impact. Neurosci. 2011;17(5):475–492. doi:10.1177/1073858410390378
  • Lontay B, Kiss A, Virág L, Tar K. How do post-translational modifications influence the pathomechanistic landscape of Huntington’s disease? A comprehensive review. Int J Mol Sci. 2020;21(12):4282. doi:10.3390/ijms21124282
  • Aharony I, Ehrnhoefer DE, Shruster A, et al. A Huntingtin-based peptide inhibitor of caspase-6 provides protection from mutant Huntingtin-induced motor and behavioral deficits. Hum Mol Genet. 2015;24(9):2604–2614. doi:10.1093/hmg/ddv023
  • Leyva MJ, DeGiacomo F, Kaltenbach LS, et al. Identification and evaluation of small molecule pan-caspase inhibitors in Huntington’s disease models. Chem Biol. 2010;17(11):1189–1200. doi:10.1016/j.chembiol.2010.08.014
  • Graham RK, Deng Y, Slow EJ, et al. Cleavage at the caspase-6 site is required for neuronal dysfunction and degeneration due to mutant Huntingtin. Cell. 2006;125(6):1179–1191. doi:10.1016/j.cell.2006.04.026
  • Ona VO, Li M, Vonsattel JPG, et al. Inhibition of caspase-1 slows disease progression in a mouse model of Huntington’s disease. Nature. 1999;399(6733):263–267. doi:10.1038/20446
  • Wang X, Zhu S, Drozda M, et al. Minocycline inhibits caspase-independent and -dependent mitochondrial cell death pathways in models of Huntington’s disease. Proc Natl Acad Sci. 2003;100(18):10483–10487. doi:10.1073/pnas.1832501100
  • Toulmond S, Tang K, Bureau Y, et al. Neuroprotective effects of M826, a reversible caspase-3 inhibitor, in the rat malonate model of Huntington’s disease. Br J Pharmacol. 2004;141(4):689–697. doi:10.1038/sj.bjp.0705662
  • Evers MM, Dai Tran H, Zalachoras I, et al. Preventing formation of toxic N-terminal Huntingtin fragments through antisense oligonucleotide-mediated protein modification. Nucleic Acid Ther. 2014;24(1):4–12. doi:10.1089/nat.2013.0452
  • Klein P, Karneva Z, Toonen L, et al. I01 QRX-704, a novel antisense oligonucleotide therapy, designed to prevent hd pathology while maintaining htt function. In: Experimental Therapeutics – Preclinical. BMJ Publishing Group Ltd; 2018:A88.2–A88. doi:10.1136/jnnp-2018-EHDN.237
  • Chaudhary RK, Patel KA, Patel MK, Joshi RH, Roy I. Inhibition of aggregation of mutant Huntingtin by nucleic acid aptamers in vitro and in a yeast model of Huntington’s disease. Mol Ther. 2015;23(12):1912–1926. doi:10.1038/mt.2015.157
  • Patel KA, Chaudhary RK, Roy I. RNA aptamers rescue mitochondrial dysfunction in a yeast model of Huntington’s disease. Mol Ther Nucleic Acid. 2018;12:45–56. doi:10.1016/j.omtn.2018.04.010
  • Messer A, Butler DC. Optimizing intracellular antibodies (intrabodies/nanobodies) to treat neurodegenerative disorders. Neurobiol Dis. 2020;134:104619. doi:10.1016/j.nbd.2019.104619
  • Butler DC, Snyder-Keller A, De Genst E, Messer A. Differential nuclear localization of complexes may underlie in vivo intrabody efficacy in Huntington’s disease. Protein Eng Des Sel. 2014;27(10):359–363. doi:10.1093/protein/gzu041
  • Southwell AL, Khoshnan A, Dunn DE, Bugg CW, Lo DC, Patterson PH. Intrabodies binding the proline-rich domains of mutant Huntingtin increase its turnover and reduce neurotoxicity. J Neurosci. 2008;28(36):9013–9020. doi:10.1523/JNEUROSCI.2747-08.2008
  • Southwell AL, Ko J, Patterson PH. Intrabody gene therapy ameliorates motor, cognitive, and neuropathological symptoms in multiple mouse models of Huntington’s disease. J Neurosci. 2009;29(43):13589–13602. doi:10.1523/JNEUROSCI.4286-09.2009
  • Southwell AL, Bugg CW, Kaltenbach LS, et al. Perturbation with intrabodies reveals that calpain cleavage is required for degradation of Huntingtin exon 1. PLoS One. 2011;6(1):e16676. doi:10.1371/journal.pone.0016676
  • De Genst E, Chirgadze DY, Klein FAC, et al. Structure of a single-chain Fv bound to the 17 N-terminal residues of Huntingtin provides insights into pathogenic amyloid formation and suppression. J Mol Biol. 2015;427(12):2166–2178. doi:10.1016/j.jmb.2015.03.021
  • Michel Lecerf J, Shirley TL, Zhu Q, et al. Human single-chain Fv intrabodies counteract in situ Huntingtin aggregation in cellular models of Huntington’s disease. Proc Natl Acad Sci. 2001;98(8):4764–4769. doi:10.1073/pnas.071058398
  • Murphy RC, Messer A. A single-chain Fv intrabody provides functional protection against the effects of mutant protein in an organotypic slice culture model of Huntington’s disease. Mol Brain Res. 2004;121(1–2):141–145. doi:10.1016/j.molbrainres.2003.11.011
  • Wolfgang WJ, Miller TW, Webster JM, et al. Suppression of Huntington’s disease pathology in Drosophila by human single-chain Fv antibodies. Proc Natl Acad Sci. 2005;102(32):11563–11568. doi:10.1073/pnas.0505321102
  • Miller TW, Zhou C, Gines S, et al. A human single-chain Fv intrabody preferentially targets amino-terminal Huntingtin fragments in striatal models of Huntington’s disease. Neurobiol Dis. 2005;19(1–2):47–56. doi:10.1016/j.nbd.2004.11.003
  • Snyder-Keller A, McLear JA, Hathorn T, Messer A. Early or late-stage anti-N-terminal Huntingtin intrabody gene therapy reduces pathological features in B6.HDR6/1 mice. J Neuropathol Exp Neurol. 2010;69(10):1078–1085. doi:10.1097/NEN.0b013e3181f530ec
  • Wang CE, Zhou H, McGuire JR, et al. Suppression of neuropil aggregates and neurological symptoms by an intracellular antibody implicates the cytoplasmic toxicity of mutant Huntingtin. J Cell Biol. 2008;181(5):803–816. doi:10.1083/jcb.200710158
  • Amaro IA, Henderson LA. An intrabody drug (rAAV6-INT41) reduces the binding of N-terminal Huntingtin fragment(s) to DNA to basal levels in PC12 cells and delays cognitive loss in the R6/2 animal model. J Neurodegener Dis. 2016;2016:1–10. doi:10.1155/2016/7120753
  • Jarosińska OD, Rüdiger SGD. Molecular strategies to target protein aggregation in Huntington’s disease. Front Mol Biosci. 2021;8:1–21. doi:10.3389/fmolb.2021.769184
  • Bauer PO, Goswami A, Wong HK, et al. Harnessing chaperone-mediated autophagy for the selective degradation of mutant Huntingtin protein. Nat Biotechnol. 2010;28(3):256–263. doi:10.1038/nbt.1608
  • Clift D, McEwan WA, Labzin LI, et al. A method for the acute and rapid degradation of endogenous proteins. Cell. 2017;171(7):1692–1706.e18. doi:10.1016/j.cell.2017.10.033
  • Butler DC, Messer A, Kahle PJ. Bifunctional anti-Huntingtin proteasome-directed intrabodies mediate efficient degradation of mutant Huntingtin exon 1 protein fragments. PLoS One. 2011;6(12):e29199. doi:10.1371/journal.pone.0029199
  • Ghosh B, Karmakar S, Prasad M, Mandal AK. Praja1 ubiquitin ligase facilitates degradation of polyglutamine proteins and suppresses polyglutamine-mediated toxicity. Mol Biol Cell. 2021;32(17):1579–1593. doi:10.1091/mbc.E20-11-0747
  • Hegde RN, Chiki A, Petricca L, et al. TBK1 phosphorylates mutant Huntingtin and suppresses its aggregation and toxicity in Huntington’s disease models. EMBO J. 2020;39(17):1–25. doi:10.15252/embj.2020104671
  • Aladdin A, Yao Y, Yang C, et al. The proteasome activators Blm10/PA200 enhance the proteasomal degradation of N-terminal Huntingtin. Biomolecules. 2020;10(11):1581. doi:10.3390/biom10111581
  • Galyan S, Ewald C, Jalencas X. Fragment-based virtual screening identifies a first- in-class preclinical drug candidate for Huntington ’ s disease. 2022:1–23.
  • Hu J, Matsui M, Gagnon KT, et al. Allele-specific silencing of mutant Huntingtin and ataxin-3 genes by targeting expanded CAG repeats in mRNAs. Nat Biotechnol. 2009;27(5):478–484. doi:10.1038/nbt.1539
  • Hu J, Liu J, Corey DR. Allele-selective inhibition of Huntingtin expression by switching to an miRNA-like RNAi mechanism. Chem Biol. 2010;17(11):1183–1188. doi:10.1016/j.chembiol.2010.10.013
  • Gagnon KT, Pendergraff HM, Deleavey GF, et al. Allele-selective inhibition of mutant Huntingtin expression with antisense oligonucleotides targeting the expanded CAG repeat. Biochemistry. 2010;49(47):10166–10178. doi:10.1021/bi101208k
  • de Mezer M, Wojciechowska M, Napierala M, Sobczak K, Krzyzosiak WJ. Mutant CAG repeats of Huntingtin transcript fold into hairpins, form nuclear foci and are targets for RNA interference. Nucleic Acids Res. 2011;39(9):3852–3863. doi:10.1093/nar/gkq1323
  • Fiszer A, Mykowska A, Krzyzosiak WJ. Inhibition of mutant Huntingtin expression by RNA duplex targeting expanded CAG repeats. Nucleic Acids Res. 2011;39(13):5578–5585. doi:10.1093/nar/gkr156
  • Fiszer A, Ellison-Klimontowicz ME, Krzyzosiak WJ. Silencing of genes responsible for polyQ diseases using chemically modified single-stranded siRNAs. Acta Biochim Pol. 2016;63(4):759–764. doi:10.18388/abp.2016_1336
  • Yu D, Pendergraff H, Liu J, et al. Single-stranded RNAs use RNAi to potently and allele-selectively inhibit mutant Huntingtin expression. Cell. 2012;150(5):895–908. doi:10.1016/j.cell.2012.08.002
  • Aiba Y, Hu J, Liu J, Xiang Q, Martinez C, Corey DR. Allele-selective inhibition of expression of Huntingtin and ataxin-3 by RNA duplexes containing unlocked nucleic acid substitutions. Biochemistry. 2013;52(51):9329–9338. doi:10.1021/bi4014209
  • Liu J, Pendergraff H, Narayanannair KJ, et al. RNA duplexes with abasic substitutions are potent and allele-selective inhibitors of Huntingtin and ataxin-3 expression. Nucleic Acids Res. 2013;41(18):8788–8801. doi:10.1093/nar/gkt594
  • Monteys AM, Wilson MJ, Boudreau RL, Spengler RM, Davidson BL. Artificial miRNAs targeting mutant Huntingtin show preferential silencing in vitro and in vivo. Mol Ther. 2015;4:e234. doi:10.1038/mtna.2015.7
  • Urbanek MO, Fiszer A, Krzyzosiak WJ. Reduction of Huntington’s disease RNA Foci by CAG repeat-targeting reagents. Front Cell Neurosci. 2017;11:1–13. doi:10.3389/fncel.2017.00082
  • Datson NA, González-Barriga A, Kourkouta E, et al. The expanded CAG repeat in the Huntingtin gene as target for therapeutic RNA modulation throughout the HD mouse brain. Li Y, editor. PLoS One. 2017;12(2):e0171127. doi:10.1371/journal.pone.0171127
  • Ciesiolka A, Stroynowska-Czerwinska A, Joachimiak P, et al. Artificial miRNAs targeting CAG repeat expansion in ORFs cause rapid deadenylation and translation inhibition of mutant transcripts. Cell Mol Life Sci. 2021;78(4):1577–1596. doi:10.1007/s00018-020-03596-7
  • Kotowska-Zimmer A, Przybyl L, Pewinska M, et al. A CAG repeat-targeting artificial miRNA lowers the mutant Huntingtin level in the YAC128 model of Huntington’s disease. Mol Ther. 2022;28:702–715. doi:10.1016/j.omtn.2022.04.031
  • Miniarikova J, Zanella I, Huseinovic A, et al. Design, characterization, and lead selection of therapeutic miRNAs targeting Huntingtin for development of gene therapy for Huntington’s disease. Mol Ther. 2016;5:e297. doi:10.1038/mtna.2016.7
  • Miniarikova J, Zimmer V, Martier R, et al. AAV5-miHTT gene therapy demonstrates suppression of mutant Huntingtin aggregation and neuronal dysfunction in a rat model of Huntington’s disease. Gene Ther. 2017;24(10):630–639. doi:10.1038/gt.2017.71
  • Boado RJ, Kazantsev A, Apostol BL, Thompson LM, Pardridge WM. Antisense-mediated down-regulation of the human Huntingtin gene. J Pharmacol Exp Ther. 2000;295(1):239–243.
  • Chen ZJ, Kren BT, Wong PYP, Low WC, Steer CJ. Sleeping Beauty-mediated down-regulation of Huntingtin expression by RNA interference. Biochem Biophys Res Commun. 2005;329(2):646–652. doi:10.1016/j.bbrc.2005.02.024
  • Lai Wang Y, Liu W, Wada E, Murata M, Wada K, Kanazawa I. Clinico-pathological rescue of a model mouse of Huntington’s disease by siRNA. Neurosci Res. 2005;53(3):241–249. doi:10.1016/j.neures.2005.06.021
  • Rodriguez-Lebron E, Denovan-Wright EM, Nash K, Lewin AS, Mandel RJ. Intrastriatal rAAV-mediated delivery of anti-Huntingtin shRNAs induces partial reversal of disease progression in R6/1 Huntington’s disease transgenic mice. Mol Ther. 2005;12(4):618–633. doi:10.1016/j.ymthe.2005.05.006
  • DiFiglia M, Sena-Esteves M, Chase K, et al. Therapeutic silencing of mutant Huntingtin with siRNA attenuates striatal and cortical neuropathology and behavioral deficits. Proc Natl Acad Sci. 2007;104(43):17204–17209. doi:10.1073/pnas.0708285104
  • Denovan-Wright EM, Rodriguez-Lebron E, Lewin AS, Mandel RJ. Unexpected off-targeting effects of anti-Huntingtin ribozymes and siRNA in vivo. Neurobiol Dis. 2008;29(3):446–455. doi:10.1016/j.nbd.2007.11.003
  • Kordasiewicz HB, Stanek LM, Wancewicz EV, et al. Sustained therapeutic reversal of Huntington’s disease by transient repression of Huntingtin synthesis. Neuron. 2012;74(6):1031–1044. doi:10.1016/j.neuron.2012.05.009
  • Evers MM, Miniarikova J, Juhas S, et al. AAV5-miHTT gene therapy demonstrates broad distribution and strong human mutant Huntingtin lowering in a Huntington’s disease minipig model. Mol Ther. 2018;26(9):2163–2177. doi:10.1016/j.ymthe.2018.06.021
  • Caron NS, Southwell AL, Brouwers CC, et al. Potent and sustained Huntingtin lowering via AAV5 encoding miRNA preserves striatal volume and cognitive function in a humanized mouse model of Huntington disease. Nucleic Acids Res. 2019;48(1):36–54. doi:10.1093/nar/gkz976
  • Spronck EA, Brouwers CC, Vallès A, et al. AAV5-miHTT gene therapy demonstrates sustained Huntingtin lowering and functional improvement in Huntington disease mouse models. Mol Ther. 2019;13:334–343. doi:10.1016/j.omtm.2019.03.002
  • Keskin S, Brouwers CC, Sogorb-Gonzalez M, et al. AAV5-miHTT lowers Huntingtin mRNA and protein without off-target effects in patient-derived neuronal cultures and astrocytes. Mol Ther. 2019;15:275–284. doi:10.1016/j.omtm.2019.09.010
  • Vallès A, Evers MM, Stam A, et al. Widespread and sustained target engagement in Huntington’s disease minipigs upon intrastriatal microRNA-based gene therapy. Sci Transl Med. 2021;13(588):1–13. doi:10.1126/scitranslmed.abb8920
  • Spronck E, Vallès A, Lampen M, et al. Intrastriatal administration of AAV5-miHTT in non-human primates and rats is well tolerated and results in miHTT transgene expression in key areas of Huntington disease pathology. Brain Sci. 2021;11(2):129. doi:10.3390/brainsci11020129
  • Rindt H, Yen PF, Thebeau CN, Peterson TS, Weisman GA, Lorson CL. Replacement of Huntingtin exon 1 by trans-splicing. Cell Mol Life Sci. 2012;69(24):4191–4204. doi:10.1007/s00018-012-1083-5
  • Rindt H, Tom CM, Lorson CL, Mattis VB. Optimization of trans-splicing for Huntington’s disease RNA therapy. Front Neurosci. 2017;11:1–13. doi:10.3389/fnins.2017.00544
  • Batra R, Nelles DA, Pirie E, et al. Elimination of toxic microsatellite repeat expansion RNA by RNA-targeting Cas9. Cell. 2017;170(5):899–912.e10. doi:10.1016/j.cell.2017.07.010
  • Batra R, Nelles DA, Roth DM, et al. The sustained expression of Cas9 targeting toxic RNAs reverses disease phenotypes in mouse models of myotonic dystrophy type 1. Nat Biomed Eng. 2021;5(2):157–168. doi:10.1038/s41551-020-00607-7
  • Garriga-Canut M, Agustín-Pavón C, Herrmann F, et al. Synthetic zinc finger repressors reduce mutant Huntingtin expression in the brain of R6/2 mice. Proc Natl Acad Sci. 2012;109(45). doi:10.1073/pnas.1206506109
  • Agustín-Pavón C, Mielcarek M, Garriga-Canut M, Isalan M. Deimmunization for gene therapy: host matching of synthetic zinc finger constructs enables long-term mutant Huntingtin repression in mice. Mol Neurodegener. 2016;11(1):64. doi:10.1186/s13024-016-0128-x
  • Zeitler B, Froelich S, Marlen K, et al. Allele-selective transcriptional repression of mutant HTT for the treatment of Huntington’s disease. Nat Med. 2019;25(7):1131–1142. doi:10.1038/s41591-019-0478-3
  • Kolli N, Lu M, Maiti P, Rossignol J, Dunbar G. CRISPR-Cas9 mediated gene-silencing of the mutant Huntingtin gene in an in vitro model of Huntington’s disease. Int J Mol Sci. 2017;18(4):754. doi:10.3390/ijms18040754
  • Merienne N, Vachey G, de Longprez L, et al. The self-inactivating KamiCas9 system for the editing of CNS disease genes. Cell Rep. 2017;20(12):2980–2991. doi:10.1016/j.celrep.2017.08.075
  • Ekman FK, Ojala DS, Adil MM, Lopez PA, Schaffer DV, Gaj T. CRISPR-Cas9-mediated genome editing increases lifespan and improves motor deficits in a Huntington’s disease mouse model. Mol Ther. 2019;17:829–839. doi:10.1016/j.omtn.2019.07.009
  • Powell JE, Lim CKW, Krishnan R, et al. Targeted gene silencing in the nervous system with CRISPR-Cas13. Sci Adv. 2022;8(3):1–11. doi:10.1126/sciadv.abk2485
  • Shin JW, Hee Kim K, Chao MJ, et al. Permanent inactivation of Huntington’s disease mutation by personalized allele-specific CRISPR/Cas9. Hum Mol Genet. 2016;25(20):ddw286. doi:10.1093/hmg/ddw286
  • Yang S, Chang R, Yang H, et al. CRISPR/Cas9-mediated gene editing ameliorates neurotoxicity in mouse model of Huntington’s disease. J Clin Invest. 2017;127(7):2719–2724. doi:10.1172/JCI92087
  • Monteys AM, Ebanks SA, Keiser MS, Davidson BL. CRISPR/Cas9 editing of the mutant Huntingtin allele in vitro and in vivo. Mol Ther. 2017;25(1):12–23. doi:10.1016/j.ymthe.2016.11.010
  • Dabrowska M, Juzwa W, Krzyzosiak WJ, Olejniczak M. Precise excision of the CAG tract from the Huntingtin gene by Cas9 nickases. Front Neurosci. 2018;12:1–8. doi:10.3389/fnins.2018.00075
  • Wu J, Tang Y, Li Zhang C. Targeting N-terminal Huntingtin with a dual-sgRNA strategy by CRISPR/Cas9. Biomed Res Int. 2019;2019:1–10. doi:10.1155/2019/1039623
  • Lopes C, Tang Y, Anjo SI, et al. Mitochondrial and redox modifications in Huntington disease induced pluripotent stem cells rescued by CRISPR/Cas9 CAGs targeting. Front Cell Dev Biol. 2020;8:1–19. doi:10.3389/fcell.2020.576592
  • Rook ME, Southwell AL. Antisense oligonucleotide therapy: from design to the Huntington disease clinic. BioDrugs. 2022;36(2):105–119. doi:10.1007/s40259-022-00519-9
  • Bhattacharyya A, Trotta CR, Narasimhan J, et al. Small molecule splicing modifiers with systemic HTT-lowering activity. Nat Commun. 2021;12(1):7299. doi:10.1038/s41467-021-27157-z
  • Keller CG, Shin Y, Monteys AM, et al. An orally available, brain penetrant, small molecule lowers Huntingtin levels by enhancing pseudoexon inclusion. Nat Commun. 2022;13(1):1–11. doi:10.1038/s41467-022-28653-6
  • Arnoux I, Willam M, Griesche N, et al. Metformin reverses early cortical network dysfunction and behavior changes in Huntington’s disease. Elife. 2018;7:1–32. doi:10.7554/eLife.38744
  • Goertsen D, Flytzanis NC, Goeden N, et al. AAV capsid variants with brain-wide transgene expression and decreased liver targeting after intravenous delivery in mouse and marmoset. Nat Neurosci. 2022;25(1):106–115. doi:10.1038/s41593-021-00969-4
  • Scahill RI, Zeun P, Osborne-Crowley K, et al. Biological and clinical characteristics of gene carriers far from predicted onset in the Huntington’s disease Young Adult Study (HD-YAS): a cross-sectional analysis. Lancet Neurol. 2020;19(6):502–512. doi:10.1016/S1474-4422(20)30143-5
  • Miller JP, Holcomb J, Al-Ramahi I, et al. Matrix metalloproteinases are modifiers of Huntingtin proteolysis and toxicity in Huntington’s Ddsease. Neuron. 2010;67(2):199–212. doi:10.1016/j.neuron.2010.06.021
  • Ratovitski T, Gucek M, Jiang H, et al. Mutant Huntingtin N-terminal fragments of specific size mediate aggregation and toxicity in neuronal cells. J Biol Chem. 2009;284(16):10855–10867. doi:10.1074/jbc.M804813200
  • Ratovitski T, Chighladze E, Waldron E, Hirschhorn RR, Ross CA. Cysteine proteases bleomycin hydrolase and cathepsin Z mediate N-terminal proteolysis and toxicity of mutant Huntingtin. J Biol Chem. 2011;286(14):12578–12589. doi:10.1074/jbc.M110.185348