2,907
Views
27
CrossRef citations to date
0
Altmetric
Review

The Current Status of Gene Therapy for the Treatment of Cancer

Pages 67-77 | Published online: 18 Mar 2021

References

  • Wirth T, Parker N, Ylä-Herttuala S. History of gene therapy. Gene. 2013;525(2):162–169. doi:10.1016/j.gene.2013.03.137
  • Sharma AR, Kundu SK, Nam JS, et al. Next generation delivery system for proteins and genes of therapeutic purpose: why and how? Biomed Res Int. 2014;2014.
  • Templeton NS, editor. Gene and Cell Therapy: Therapeutic Mechanisms and Strategies. Crc Press; 2008.
  • Vermezovic J, Stergiou L, Hengartner MO, Di Fagagna FD. Differential regulation of DNA damage response activation between somatic and germline cells in Caenorhabditis elegans. Cell Death Differ. 2012;19(11):1847–1855. doi:10.1038/cdd.2012.69
  • Reis RL. Encyclopedia of Tissue Engineering and Regenerative Medicine. Academic Press; 2019.
  • Colella P, Ronzitti G, Mingozzi F. Emerging Issues in AAV-Mediated In Vivo Gene Therapy. Mol Ther Methods Clin Dev. 2018;8:87–104. doi:10.1016/j.omtm.2017.11.007
  • Merten O-W, Charrier S, Laroudie N, et al. Large-scale manufacture and characterization of a lentiviral vector produced for clinical ex vivo gene therapy application. Hum Gene Ther. 2011;22(3):343–356. doi:10.1089/hum.2010.060
  • Ginn SL, Amaya AK, Alexander IE, Edelstein M, Abedi MR. Gene therapy clinical trials worldwide to 2017: an update. J Gene Med. 2018;20(5):e3015.
  • Sung YK, Kim SW. The practical application of gene vectors in cancer therapy. Integrat Cancer Sci Therap. 2018;5:1–5.
  • Suleiman AA, Saedi WY, Muhaidi MJ. Widely used gene editing strategies in cancer treatment a systematic review. Gene Rep. 2020;100983.
  • Zhang HX, Zhang Y, Yin H. Genome editing with mRNA encoding ZFN, TALEN, and Cas9. Mol Therapy. 2019;27(4):735–746. doi:10.1016/j.ymthe.2019.01.014
  • Ernst MP, Broeders M, Herrero-Hernandez P, Oussoren E, van der Ploeg AT, Pijnappel WP. Ready for repair? Gene editing enters the clinic for the treatment of human disease. Mol Therapy Methods Clin Dev. 2020.
  • Sallmyr A, Tomkinson AE. Repair of DNA double-strand breaks by mammalian alternative end-joining pathways. J Biol Chem. 2018;293(27):10536–10546. doi:10.1074/jbc.TM117.000375
  • Zaman QU, Li C, Cheng H, Hu Q. Genome editing opens a new era of genetic improvement in polyploid crops. Crop J. 2019;7(2):141–150. doi:10.1016/j.cj.2018.07.004
  • Palpant NJ, Dudzinski D. Zinc finger nucleases: looking toward translation. Gene Ther. 2013;20(2):121–127. doi:10.1038/gt.2012.2
  • Cassandri M, Smirnov A, Novelli F, et al. Zinc-finger proteins in health and disease. Cell Death Discovery. 2017;3(1):1–2. doi:10.1038/cddiscovery.2017.71
  • Sun N, Zhao H. Transcription activator‐like effector nucleases (TALENs): a highly efficient and versatile tool for genome editing. Biotechnol Bioeng. 2013;110(7):1811–1821. doi:10.1002/bit.24890
  • Nakano C, Kitabatake Y, Takeyari S, et al. Genetic correction of induced pluripotent stem cells mediated by transcription activator-like effector nucleases targeting ALPL recovers enzyme activity and calcification in vitro. Mol Genet Metab. 2019;127(2):158–165. doi:10.1016/j.ymgme.2019.05.014
  • Hille F, Richter H, Wong SP, Bratovič M, Ressel S, Charpentier E. The biology of CRISPR-Cas: backward and forward. Cell. 2018;172(6):1239–1259.
  • Rath D, Amlinger L, Rath A, Lundgren M. The CRISPR-Cas immune system: biology, mechanisms and applications. Biochimie. 2015;117:119–128. doi:10.1016/j.biochi.2015.03.025
  • Terns RM, Terns MP. CRISPR-based technologies: prokaryotic defense weapons repurposed. Trends Genetics. 2014;30(3):111–118. doi:10.1016/j.tig.2014.01.003
  • Li Y, Glass Z, Huang M, Chen ZY, Xu Q. Ex vivo cell-based CRISPR/Cas9 genome editing for therapeutic applications. Biomaterials. 2020;234:119711. doi:10.1016/j.biomaterials.2019.119711
  • Hsu PD, Lander ES, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell. 2014;157(6):1262–1278. doi:10.1016/j.cell.2014.05.010
  • Mali S. Delivery systems for gene therapy. Indian J Hum Genet. 2013;19(1):3. doi:10.4103/0971-6866.112870
  • Sung YK, Kim SW. Recent advances in the development of gene delivery systems. Biomaterials Res. 2019;23(1):8. doi:10.1186/s40824-019-0156-z
  • Humphreys IR, Sebastian S. Novel viral vectors in infectious diseases. Immunology. 2018;153(1):1–9. doi:10.1111/imm.12829
  • Bouard D, Alazard‐Dany N, Cosset FL. Viral vectors: from virology to transgene expression. Br J Pharmacol. 2009;157(2):153–165. doi:10.1038/bjp.2008.349
  • Goswami R, Subramanian G, Silayeva L, et al. Gene therapy leaves a vicious cycle. Front Oncol. 2019;9:297.
  • Pilgrim S, Stritzker J, Schoen C, et al. Bactofection of mammalian cells by Listeria monocytogenes: improvement and mechanism of DNA delivery. Gene Ther. 2003;10(24):2036–2045. doi:10.1038/sj.gt.3302105
  • Johnson SA, Ormsby MJ, McIntosh A, Tait SW, Blyth K, Wall DM. Increasing the bactofection capacity of a mammalian expression vector by removal of the f1 ori. Cancer Gene Ther. 2019;26(7):183–194. doi:10.1038/s41417-018-0039-9
  • Celec P, Gardlik R. Gene therapy using bacterial vectors. Front Biosci. 2017;22:81–95. doi:10.2741/4473
  • Wang W, Li W, Ma N, Steinhoff G. Non-viral gene delivery methods. Curr Pharm Biotechnol. 2013;14(1):46–60.
  • Ramamoorth M, Narvekar A. Non viral vectors in gene therapy-an overview. J Clin Diagnostic Res. 2015;9(1):GE01. doi:10.7860/JCDR/2015/10443.5394
  • Buck J, Grossen P, Cullis PR, Huwyler J, Witzigmann D. Lipid-based DNA therapeutics: hallmarks of non-viral gene delivery. ACS Nano. 2019;13(4):3754–3782. doi:10.1021/acsnano.8b07858
  • Yang R, Chen F, Guo J, Zhou D, Luan S. Recent advances in polymeric biomaterials-based gene delivery for cartilage repair. Bioactive Mater. 2020;5(4):990–1003. doi:10.1016/j.bioactmat.2020.06.004
  • Van Bruggen C, Hexum JK, Tan Z, Dalal RJ, Reineke TM. Nonviral gene delivery with cationic glycopolymers. Acc Chem Res. 2019;52(5):1347–1358. doi:10.1021/acs.accounts.8b00665
  • Darr JA, Zhang J, Makwana NM, Weng X. Continuous hydrothermal synthesis of inorganic nanoparticles: applications and future directions. Chem Rev. 2017;117(17):11125–11238. doi:10.1021/acs.chemrev.6b00417
  • Riley MK, Vermerris W. Recent advances in nanomaterials for gene delivery—a review. Nanomaterials. 2017;7(5):94. doi:10.3390/nano7050094
  • Alsaggar M, Liu D. Physical Methods for Gene Transfer. In Advances in Genetics. Vol. 89. Academic Press; 2015:1–24.
  • Li X, Ruddy B, Taberner A. Characterization of needle-assisted jet injections. J Controlled Release. 2016;243:195–203. doi:10.1016/j.jconrel.2016.10.010
  • Suda T, Liu D. Hydrodynamic gene delivery: its principles and applications. Mol Therapy. 2007;15(12):2063–2069. doi:10.1038/sj.mt.6300314
  • Herrero MJ, Sendra L, Miguel A, Aliño SF. Physical Methods of Gene Delivery. In Safety and Efficacy of Gene-Based Therapeutics for Inherited Disorders. Cham: Springer; 2017:113–135.
  • Du X, Wang J, Zhou Q, et al. Advanced physical techniques for gene delivery based on membrane perforation. Drug Deliv. 2018;25(1):1516–1525. doi:10.1080/10717544.2018.1480674
  • Smolders S, Kessels S, Smolders SM, et al. Magnetofection is superior to other chemical transfection methods in a microglial cell line. J Neurosci Methods. 2018;293:169–173. doi:10.1016/j.jneumeth.2017.09.017
  • Li T, Kang G, Wang T, Huang H. Tumor angiogenesis and anti-angiogenic gene therapy for cancer. Oncol Lett. 2018;16(1):687–702. doi:10.3892/ol.2018.8733
  • Mendell JR, Al-Zaidy SA, Rodino-Klapac LR, et al. Current clinical applications of in vivo gene therapy with AAVs. Mol Ther. 2021;29(2):464–488. doi:10.1016/j.ymthe.2020.12.007
  • Tristán-Manzano M, Justicia-Lirio P, Maldonado-Pérez N, Cortijo-Gutiérrez M, Benabdellah K, Martin F. Externally-controlled systems for immunotherapy: from bench to bedside. Front Immunol. 2020;11.
  • Bommareddy PK, Patel A, Hossain S, Kaufman HL. Talimogene laherparepvec (T-VEC) and other oncolytic viruses for the treatment of melanoma. Am J Clin Dermatol. 2017;18(1):1–5. doi:10.1007/s40257-016-0238-9
  • Sostoa JD, Dutoit V, Migliorini D. Oncolytic viruses as a platform for the treatment of malignant brain tumors. Int J Mol Sci. 2020;21(20):7449. doi:10.3390/ijms21207449
  • Zhang -W-W, Li L, Li D, et al. The first approved gene therapy product for cancer Ad-p53 (Gendicine): 12 Years in the Clinic. Hum Gene Ther. 2018;29(2):160–179. doi:10.1089/hum.2017.218
  • Xia Y, Li X, Sun W. Applications of recombinant adenovirus-p53 gene therapy for cancers in the clinic in China. Curr Gene Ther. 2020;20(2):127–141. doi:10.2174/1566523220999200731003206
  • Shahryari A, Saghaeian Jazi M, Mohammadi S, Razavi Nikoo H, Nazari Z, Hosseini ES. Development and clinical translation of approved gene therapy products for genetic disorders. Front Genet. 2019;10:868. doi:10.3389/fgene.2019.00868
  • Russell L, Peng K-W. The emerging role of oncolytic virus therapy against cancer. Chine Clin Oncol. 2018;7(2):16. doi:10.21037/cco.2018.04.04
  • Osman AE, Luke JJ. The impact of the fecal microbiome on cancer immunotherapy. BioDrugs. 2019;33(1)::1–7. doi:10.1007/s40259-018-0328-8
  • Chawla SP, Bruckner H, Morse MA, Assudani N, Hall FL, Gordon EM. A Phase I-II study using rexin-g tumor-targeted retrovector encoding a dominant-negative cyclin g1 inhibitor for advanced pancreatic cancer. Mol Therapy Oncolytics. 2019;12:56–67. doi:10.1016/j.omto.2018.12.005
  • Gordon EM, Hall FL. Rexin-G, a targeted genetic medicine for cancer. Expert Opin Biol Ther. 2010;10(5):819–832. doi:10.1517/14712598.2010.481666
  • Bb Pettitt D, Arshad Z, Smith J, Stanic T, Holländer G, Brindley D. CAR-T cells: a systematic review and mixed methods analysis of the clinical trial landscape. Mol Therapy. 2018;26(2):342–353. doi:10.1016/j.ymthe.2017.10.019
  • Oluwole OO, Davila ML. At The Bedside: clinical review of chimeric antigen receptor (CAR) T cell therapy for B cell malignancies. J Leukoc Biol. 2016;100(6):1265–1272. doi:10.1189/jlb.5BT1115-524R
  • Ali S, Kjeken R, Niederlaender C, et al. The European Medicines Agency Review of Kymriah (Tisagenlecleucel) for the Treatment of Acute Lymphoblastic Leukemia and Diffuse Large B-Cell Lymphoma. oncologist. 2020;25(2):e321. doi:10.1634/theoncologist.2019-0233
  • Gill S, Maus MV, Porter DL. Chimeric antigen receptor T cell therapy: 25years in the making. Blood Rev. 2016;30(3):157–167. doi:10.1016/j.blre.2015.10.003
  • Liu Y, Chen X, Han W, Zhang Y. Tisagenlecleucel, an approved anti-CD19 chimeric antigen receptor T-cell therapy for the treatment of leukemia. Drugs Today. 2017;53(11):597. doi:10.1358/dot.2017.53.11.2725754
  • Schuster SJ, Bishop MR, Tam CS, et al. Tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma. N Eng J Med. 2019;380(1):45–56. doi:10.1056/NEJMoa1804980
  • Bouchkouj N, Kasamon YL, de Claro RA, et al. FDA approval summary: axicabtagene ciloleucel for relapsed or refractory large B-cell lymphoma. Clin Cancer Res. 2019;25(6):1702–1708. doi:10.1158/1078-0432.CCR-18-2743
  • Jacobson CA, Farooq U, Ghobadi A. Axicabtagene ciloleucel, an Anti-CD19 Chimeric Antigen Receptor T-Cell Therapy for Relapsed or Refractory Large B-cell lymphoma: practical implications for the community oncologist. Oncologist. 2020;25(1):e138. doi:10.1634/theoncologist.2019-0395
  • Mohty M, Labopin M, Velardi A, et al. Allogeneic genetically modified T Cells (HSV-TK) as adjunctive treatment in haploidentical hematopoietic stem-cell transplantation (haplo-HSCT) of adult patients with high-risk hematological malignancies: a pair-matched analysis from the acute leukemia working party of EBMT. 2016. 672.
  • Hoogendoorn KH. Advanced Therapies: clinical, Non-clinical and Quality. Pharm Biotechn. 2019;357.
  • Parashar D, Rajendran V, Shukla R, Sistla R. Lipid-based nanocarriers for delivery of small interfering RNA for therapeutic use. Eur J Pharm Sci. 2020;142:105159. doi:10.1016/j.ejps.2019.105159
  • Takeshita F, Ochiya T. Therapeutic potential of RNA interference against cancer. Cancer Sci. 2006;97(8):689–696. doi:10.1111/j.1349-7006.2006.00234.x
  • Hu B, Weng Y, Xia X-H, Liang X-J, Huang Y. Clinical advances of siRNA therapeutics. J Gene Med. 2019;21(7):e3097. doi:10.1002/jgm.3097
  • Hu B, Zhong L, Weng Y, et al. Therapeutic siRNA: state of the art. Signal Transduction Targeted Ther. 2020;5(1):1–25.
  • Hossen MN, Wang L, Chinthalapally HR, et al. Switching the intracellular pathway and enhancing the therapeutic efficacy of small interfering RNA by auroliposome. Sci Adv. 2017;22(1):eaba5379. doi:10.1126/sciadv.aba5379
  • Düzgüneş N. Origins of Suicide Gene Therapy. In Suicide Gene Therapy. New York, NY: Humana Press; 2019:1–9.
  • Dey D, Evans GR. Suicide gene therapy by herpes simplex virus-1 thymidine kinase (HSV-TK). Targets Gene Therapy. 2011;65.
  • Sonabend AM, Ulasov IV, Lesniak MS. Gene therapy trials for the treatment of high-grade gliomas. Gene Ther Mol Biol. 2007;11(A):79.
  • Aučynaitė A, Rutkienė R, Tauraitė D, Meškys R, Urbonavičius J. Discovery of bacterial deaminases that convert 5-fluoroisocytosine into 5-fluorouracil. Front Microbiol. 2018;9:2375. doi:10.3389/fmicb.2018.02375
  • Zarogoulidis P, Darwiche K, Sakkas A, et al. Suicide gene therapy for cancer–current strategies. J Genet Syndr Gene Ther. 2013;4.
  • El‐Kenawi AE, El‐Remessy AB. Angiogenesis inhibitors in cancer therapy: mechanistic perspective on classification and treatment rationales. Br J Pharmacol. 2013;170(4):712–729.
  • Li T, Kang G, Wang T, Huang H. Tumor angiogenesis and anti-angiogenic gene therapy for cancer. Oncol Lett. 2018;16(1):687–702.
  • Ma CC, Wang ZL, Xu T, He ZY, Wei YQ. The approved gene therapy drugs worldwide: from 1998 to 2019. Biotechnol Adv. 2020;40:107502.