598
Views
2
CrossRef citations to date
0
Altmetric
Review

Current Applications and Future Perspectives of CRISPR-Cas9 for the Treatment of Lung Cancer

, ORCID Icon, , , & ORCID Icon
Pages 199-204 | Published online: 31 May 2021

References

  • Liu T, Shen JK, Li Z, Choy E, Hornicek FJ, Duan Z. Development and potential applications of CRISPR-Cas9 genome editing technology in sarcoma. Cancer Lett. 2016;373(1):109–118. doi:10.1016/j.canlet.2016.01.030
  • Yin H, Song CQ, Dorkin JR, et al. Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo. Nat Biotechnol. 2016;34(3):328–333. doi:10.1038/nbt.3471
  • Zhen S, Li X. Oncogenic human papillomavirus: application of CRISPR/Cas9 therapeutic strategies for cervical cancer. Cell Physiol Biochem. 2017;44(6):2455–2466. doi:10.1159/000486168
  • Chen Y, Zhang Y. Application of the CRISPR/Cas9 system to drug resistance in breast cancer. Adv Sci. 2018;5(6):1700964. doi:10.1002/advs.201700964
  • Shen Q, Li J, Mai J, et al. Sensitizing non-small cell lung cancer to BCL-xL-targeted apoptosis. Cell Death Dis. 2018;9(10):1–3. doi:10.1038/s41419-018-1040-9
  • Castillo A. Gene editing for the treatment of lung cancer (CRISPR-Cas9). Colomb Med. 2016;47(4):178–180. doi:10.25100/cm.v47i4.2856
  • Platt RJ, Chen S, Zhou Y, et al. CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell. 2014;159(2):440–455. doi:10.1016/j.cell.2014.09.014
  • Wen WS, Yuan ZM, Ma SJ, Xu J, Yuan DT. CRISPR‐Cas9 systems: versatile cancer modeling platforms and promising therapeutic strategies. Int J Cancer. 2016;138(6):1328–1336. doi:10.1002/ijc.29626
  • Bhattacharjee R, Purkayastha KD, Adapa D, Choudhury A. CRISPR/Cas9 genome editing system in the diagnosis and treatment of cancer. J RNAi Gene Silencing. 2017;13:585–591.
  • Gwiazda KS, Grier AE, Sahni J, et al. High-efficiency CRISPR/Cas9-mediated gene editing in primary human T-cells using mutant adenoviral E4orf6/E1b55k “helper” proteins. Mol Ther. 2016;24(9):1570–1580. doi:10.1038/mt.2016.105
  • Wang T, Wei JJ, Sabatini DM, Lander ES. Genetic screens in human cells using the CRISPR-Cas9 system. Science. 2014;343(6166):80–84. doi:10.1126/science.1246981
  • Ran FA, Cong L, Yan WX, et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature. 2015;520(7546):186–191. doi:10.1038/nature14299
  • Gori JL, Hsu PD, Maeder ML, Shen S, Welstead GG, Bumcrot D. Delivery and specificity of CRISPR/Cas9 genome editing technologies for human gene therapy. Hum Gene Ther. 2015;26(7):443–451. doi:10.1089/hum.2015.074
  • Shinmyo Y, Tanaka S, Tsunoda S, Hosomichi K, Tajima A, Kawasaki H. CRISPR/Cas9-mediated gene knockout in the mouse brain using in utero electroporation. Sci Rep. 2016;6(1):1–3. doi:10.1038/srep20611
  • Ratan ZA, Son YJ, Haidere MF, et al. CRISPR-Cas9: a promising genetic engineering approach in cancer research. Ther Adv Med Oncol. 2018;10:1758834018755089. doi:10.1177/1758834018755089
  • Jamal M, Ullah A, Ahsan M, et al. Treating genetic disorders using state-of-the-art technology. Curr Issues Mol Biol. 2017;26:33–46. doi:10.21775/cimb.026.033
  • Kim EJ, Kang KH, Ju JH. CRISPR-Cas9: a promising tool for gene editing on induced pluripotent stem cells. Korean J Intern Med. 2017;32(1):42. doi:10.3904/kjim.2016.198
  • Liu C, Zhang L, Liu H, Cheng K. Delivery strategies of the CRISPR-Cas9 gene-editing system for therapeutic applications. J Control Release. 2017;266:17–26. doi:10.1016/j.jconrel.2017.09.012
  • Sánchez-Rivera FJ, Jacks T. Applications of the CRISPR–Cas9 system in cancer biology. Nat Rev Cancer. 2015;15(7):387–393. doi:10.1038/nrc3950
  • Lino CA, Harper JC, Carney JP, Timlin JA. Delivering CRISPR: a review of the challenges and approaches. Drug Deliv. 2018;25(1):1234–1257. doi:10.1080/10717544.2018.1474964
  • McGinn J, Marraffini LA. Molecular mechanisms of CRISPR–Cas spacer acquisition. Nat Rev Microbiol. 2019;17(1):7–12. doi:10.1038/s41579-018-0071-7
  • Finn JD, Smith AR, Patel MC, et al. A single administration of CRISPR/Cas9 lipid nanoparticles achieves robust and persistent in vivo genome editing. Cell Rep. 2018;22(9):2227–2235. doi:10.1016/j.celrep.2018.02.014
  • Martinez-Lage M, Puig-Serra P, Menendez P, Torres-Ruiz R, Rodriguez-Perales S. CRISPR/Cas9 for cancer therapy: hopes and challenges. Biomedicines. 2018;6(4):105. doi:10.3390/biomedicines6040105
  • Kolli N, Lu M, Maiti P, Rossignol J, Dunbar GL. Application of the gene-editing tool, CRISPR-Cas9, for treating neurodegenerative diseases. Neurochem Int. 2018;112:187–196. doi:10.1016/j.neuint.2017.07.007
  • Lu Y. PD-1 knockout engineered T cells for metastatic non-small cell lung cancer. ClinicalTrials.gov. 2019. doi:10.1016/j.compcom.2006.05.002
  • Doudna JA. The promise and challenge of therapeutic genome editing. Nature. 2020;578(7794):229–236. doi:10.1038/s41586-020-1978-5
  • Pandey VK, Tripathi A, Bhushan R, Ali A, Dubey PK, Therapy G. Application of CRISPR/Cas9 genome editing in genetic disorders: a systematic review up to date. J Genet Syndr Gene Ther. 2017;8(2). doi:10.4172/2157-7412.1000321
  • Jiang C, Lin X, Zhao Z. Applications of CRISPR/Cas9 technology in the treatment of lung cancer. Trends Mol Med. 2019;25(11):1039–1049. doi:10.1016/j.molmed.2019.07.007
  • Tang H, Shrager JB. CRISPR/Cas‐mediated genome editing to treat EGFR‐mutant lung cancer: a personalized molecular surgical therapy. EMBO Mol Med. 2016;8(2):83–85. doi:10.15252/emmm.201506006
  • Lizotte PH, Hong RL, Luster TA, et al. A high-throughput immune-oncology screen identifies EGFR inhibitors as potent enhancers of antigen-specific cytotoxic T-lymphocyte tumor cell killing. Cancer Immunol Res. 2018;6(12):1511–1523. doi:10.1158/2326-6066.CIR-18-0193
  • Zhao Z, Shi L, Zhang W, et al. CRISPR knock out of programmed cell death protein 1 enhances the anti-tumor activity of cytotoxic T lymphocytes. Oncotarget. 2018;9(4):5208. doi:10.18632/oncotarget.23730
  • Zhang B. CRISPR/Cas gene therapy. J Cell Physiol. 2021;236(4):2459–2481.
  • Lu Y, Xue J, Deng T, et al. Safety and feasibility of CRISPR-edited T cells in patients with refractory non-small-cell lung cancer. Nat Med. 2020;26(5):732–740. doi:10.1038/s41591-020-0840-5
  • Li H, Yang Y, Hong W, Huang M, Wu M, Zhao X. Applications of genome editing technology in the targeted therapy of human diseases: mechanisms, advances, and prospects. Signal Transduct Target Ther. 2020;5(1):1–23.
  • Xu M, Weng Q, Ji J. Applications and advances of CRISPR/Cas9 in an animal cancer model. Brief Funct Genomics. 2020;19(3):235–241. doi:10.1093/bfgp/elaa002
  • Ma CC, Wang ZL, Xu T, He ZY, Wei YQ. The approved gene therapy drugs worldwide: from 1998 to 2019. Biotechnol Adv. 2020;40:107502. doi:10.1016/j.biotechadv.2019.107502
  • Hanna RE, Doench JG. Design and analysis of CRISPR–Cas experiments. Nat Biotechnol. 2020;38(7):813–823. doi:10.1038/s41587-020-0490-7
  • Hong W, Huang M, Wei Y, Wei X. A new and promising application of gene editing: CRISPR-controlled smart materials for tissue engineering, bioelectronics, and diagnostics. Sci China Life Sci. 2019;62(11):1547–1549. doi:10.1007/s11427-019-1576-0