991
Views
1
CrossRef citations to date
0
Altmetric
REVIEW

Phage Therapy: A Different Approach to Fight Bacterial Infections

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 173-186 | Received 05 Jul 2022, Accepted 22 Sep 2022, Published online: 06 Oct 2022

References

  • Danis-Wlodarczyk K, Dąbrowska K, Abedon ST. Phage therapy: the pharmacology of antibacterial viruses. Curr Issues Mol Biol. 2020;40:81–164. doi:10.21775/cimb.040.081
  • Hendrix RW. Bacteriophages: evolution of the majority. Theor Popul Biol. 2002;61(4):471–480. doi:10.1006/tpbi.2002.1590
  • Sabour PM, Griffiths MW. Bacteriophages in the Control of Food-and Waterborne Pathogens. American Society for Microbiology Press; 2010.
  • Servick K. Beleaguered phage therapy trial presses on. American Association for the Advancement of Science; 2016.
  • Viertel TM, Ritter K, Horz H-P. Viruses versus bacteria—novel approaches to phage therapy as a tool against multidrug-resistant pathogens. J Antimicrob Chemother. 2014;69(9):2326–2336. doi:10.1093/jac/dku173
  • Lin DM, Koskella B, Lin HC. Phage therapy: an alternative to antibiotics in the age of multi-drug resistance. World J Gastrointest Pharmacol Ther. 2017;8(3):162. doi:10.4292/wjgpt.v8.i3.162
  • Patey O, McCallin S, Mazure H, Liddle M, Smithyman A, Dublanchet A. Clinical indications and compassionate use of phage therapy: personal experience and literature review with a focus on osteoarticular infections. Viruses. 2019;11(1):18. doi:10.3390/v11010018
  • Love MJ, Bhandari D, Dobson RC, Billington C. Potential for bacteriophage endolysins to supplement or replace antibiotics in food production and clinical care. Antibiotics. 2018;7(1):17. doi:10.3390/antibiotics7010017
  • Drulis-Kawa Z, Majkowska-Skrobek G, Maciejewska B. Bacteriophages and phage-derived proteins–application approaches. Curr Med Chem. 2015;22(14):1757–1773. doi:10.2174/0929867322666150209152851
  • Hobbs Z, Abedon ST, Millard A. Diversity of phage infection types and associated terminology: the problem with ‘Lytic or lysogenic’. FEMS Microbiol Lett. 2016;363(7):fnw047. doi:10.1093/femsle/fnw047
  • Chen Y, Yang L, Yang D, et al. Specific integration of temperate phage decreases the pathogenicity of host bacteria. Front Cell Infect Microbiol. 2020;10:14. doi:10.3389/fcimb.2020.00014
  • Örmälä A-M, Jalasvuori M. Phage therapy: should bacterial resistance to phages be a concern even in the long run?. Bacteriophage. 2013;3(1):e24219. doi:10.4161/bact.24219
  • Brives C, Pourraz J. Phage therapy as a potential solution in the fight against AMR: obstacles and possible futures. Palgrave Commun. 2020;6(1):1–11. doi:10.1057/s41599-020-0478-4
  • Reuter M, Kruger DH. Approaches to optimize therapeutic bacteriophage and bacteriophage-derived products to combat bacterial infections. Virus Genes. 2020;56(2)1–14.
  • Romero-Calle D, Benevides RG, Góes-Neto A, Billington C. Bacteriophages as alternatives to antibiotics in clinical care. Antibiotics. 2019;8(3):138. doi:10.3390/antibiotics8030138
  • Pirnay J-P. Phage therapy in the year 2035. Front Microbiol. 2020;11:1171. doi:10.3389/fmicb.2020.01171
  • Jończyk-Matysiak E, Weber-Dąbrowska B, Owczarek B. Phage-phagocyte interactions and their implications for phage application as therapeutics. Viruses. 2017;9(6):150. doi:10.3390/v9060150
  • Górski A, Dąbrowska K, Międzybrodzki R. Phages and immunomodulation. Future Microbiol. 2017;12(10):905–914. doi:10.2217/fmb-2017-0049
  • Krut O, Bekeredjian-Ding I. Contribution of the immune response to phage therapy. J Immunol. 2018;200(9):3037–3044. doi:10.4049/jimmunol.1701745
  • Cafora M, Brix A, Forti F, et al. Phages as immunomodulators and their promising use as anti-inflammatory agents in a CFTR loss-of-function zebrafish model. J Cyst Fibros. 2021;20(6):1046–1052. doi:10.1016/j.jcf.2020.11.017
  • Hashiguchi S, Yamaguchi Y, Takeuchi O, Akira S, Sugimura K. Immunological basis of M13 phage vaccine: regulation under MyD88 and TLR9 signaling. Biochem Biophys Res Commun. 2010;402(1):19–22. doi:10.1016/j.bbrc.2010.09.094
  • Dąbrowska K, Miernikiewicz P, Piotrowicz A. Immunogenicity studies of proteins forming the T4 phage head surface. J Virol. 2014;88(21):12551–12557. doi:10.1128/JVI.02043-14
  • Van Belleghem JD, Vaneechoutte M, Barr JJ, Bollyky PL, Bollyky P. Interactions between bacteriophage, bacteria, and the mammalian immune system. Viruses. 2018;11(1):10. doi:10.3390/v11010010
  • Gã³rski A, Miä™dzybrodzki R, Borysowski J, et al. Phage as a modulator of immune responses: practical implications for phage therapy. Adv Virus Res. 2012;83:41–71.
  • Szermer-Olearnik B, Boratyå„ski J, Skurnik M. Removal of endotoxins from bacteriophage preparations by extraction with organic solvents. PLoS One. 2015;10(3):e0122672. doi:10.1371/journal.pone.0122672
  • Leung CYJ, Weitz JS. Modeling the synergistic elimination of bacteria by phage and the innate immune system. J Theor Biol. 2017;429:241–252. doi:10.1016/j.jtbi.2017.06.037
  • Wang J, Hu B, Xu M, et al. Therapeutic effectiveness of bacteriophages in the rescue of mice with extended spectrum β-lactamase-producing Escherichia coli bacteremia. Int J Mol Med. 2006;17(2):347–355.
  • Biswas B, Adhya S, Washart P, et al. Bacteriophage therapy rescues mice bacteremic from a clinical isolate of vancomycin-resistant Enterococcus faecium. Infect Immun. 2002;70(1):204–210. doi:10.1128/IAI.70.1.204-210.2002
  • Hodyra-Stefaniak K, Miernikiewicz P, Drapała J. Mammalian Host-Versus-Phage immune response determines phage fate in vivo. Sci Rep. 2015;5(1):1–13. doi:10.1038/srep14802
  • Labrie SJ, Samson JE, Moineau S. Bacteriophage resistance mechanisms. Nat Rev Microbiol. 2010;8(5):317–327. doi:10.1038/nrmicro2315
  • Pires DP, Costa AR, Pinto G, Meneses L, Azeredo J. Current challenges and future opportunities of phage therapy. FEMS Microbiol Rev. 2020;44(6):684–700. doi:10.1093/femsre/fuaa017
  • Weissman JL, Holmes R, Barrangou R, et al. Immune loss as a driver of coexistence during host-phage coevolution. ISME J. 2018;12(2):585–597. doi:10.1038/ismej.2017.194
  • Koskella B, Brockhurst MA. Bacteria–phage coevolution as a driver of ecological and evolutionary processes in microbial communities. FEMS Microbiol Rev. 2014;38(5):916–931. doi:10.1111/1574-6976.12072
  • Azam AH, Tanji Y. Bacteriophage-host arm race: an update on the mechanism of phage resistance in bacteria and revenge of the phage with the perspective for phage therapy. Appl Microbiol Biotechnol. 2019;103(5):2121–2131. doi:10.1007/s00253-019-09629-x
  • Burmeister AR, Turner PE. Trading-off and trading-up in the world of bacteria–phage evolution. Current Biol. 2020;30(19):R1120–R1124. doi:10.1016/j.cub.2020.07.036
  • Vasu K, Nagaraja V. Diverse functions of restriction-modification systems in addition to cellular defense. Microbiol Mol Biol Rev. 2013;77(1):53–72. doi:10.1128/MMBR.00044-12
  • Dryden D. S-Adenosylmethionine-Dependent Methyltransferases: Structures and Functions. Bacterial DNA Methyltransferases. Singapore: World Scientific Publishing; 1999:283–340.
  • Bonsma-Fisher M, Soutière D, Goyal S. How adaptive immunity constrains the composition and fate of large bacterial populations. Proc Natl Acad Sci. 2018;115(32):E7462–E7468. doi:10.1073/pnas.1802887115
  • Bennett P. Plasmid encoded antibiotic resistance: acquisition and transfer of antibiotic resistance genes in bacteria. Br J Pharmacol. 2008;153(S1):S347–S57. doi:10.1038/sj.bjp.0707607
  • Dahlberg C, Chao L. Amelioration of the cost of conjugative plasmid carriage in Escherichia coli K12. Genetics. 2003;165(4):1641–1649. doi:10.1093/genetics/165.4.1641
  • Dionisio F, Conceicao I, Marques A, Fernandes L, Gordo I. The evolution of a conjugative plasmid and its ability to increase bacterial fitness. Biol Lett. 2005;1(2):250–252. doi:10.1098/rsbl.2004.0275
  • Malone LM, Birkholz N, Fineran PC. Conquering CRISPR: how phages overcome bacterial adaptive immunity. Curr Opin Biotechnol. 2020;68:30–36. doi:10.1016/j.copbio.2020.09.008
  • Barrangou R, Fremaux C, Deveau H, et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science. 2007;315(5819):1709–1712. doi:10.1126/science.1138140
  • Deveau H, Barrangou R, Garneau JE, et al. Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. J Bacteriol. 2008;190(4):1390–1400. doi:10.1128/JB.01412-07
  • Semenova E, Jore MM, Datsenko KA, et al. Interference by clustered regularly interspaced short palindromic repeat (CRISPR) RNA is governed by a seed sequence. Proc Natl Acad Sci. 2011;108(25):10098–10103. doi:10.1073/pnas.1104144108
  • Shearer WT, Lugg DJ, Rosenblatt HM, et al. Antibody responses to bacteriophage φX-174 in human subjects exposed to the Antarctic winter-over model of spaceflight. J Allergy Clin Immunol. 2001;107(1):160–164. doi:10.1067/mai.2001.112269
  • Rubinstein A, Mizrachi Y, Bernstein L, et al. Progressive specific immune attrition after primary, secondary and tertiary immunizations with bacteriophage φX174 in asymptomatic HIV-1 infected patients. AIDS. 2000;14(4):F55–F62. doi:10.1097/00002030-200003100-00004
  • Datsenko KA, Pougach K, Tikhonov A, Wanner BL, Severinov K, Semenova E. Molecular memory of prior infections activates the CRISPR/Cas adaptive bacterial immunity system. Nat Commun. 2012;3(1):1–7. doi:10.1038/ncomms1937
  • Swarts DC, Mosterd C, Van Passel MW, Brouns SJ, Mokrousov I. CRISPR interference directs strand specific spacer acquisition. PLoS One. 2012;7(4):e35888. doi:10.1371/journal.pone.0035888
  • Pyenson NC, Gayvert K, Varble A, Elemento O, Marraffini LA. Broad targeting specificity during bacterial type III CRISPR-Cas immunity constrains viral escape. Cell Host Microbe. 2017;22(3):343–53. e3. doi:10.1016/j.chom.2017.07.016
  • Marino ND, Pinilla-Redondo R, Csörgő B, Bondy-Denomy J. Anti-CRISPR protein applications: natural brakes for CRISPR-Cas technologies. Nat Methods. 2020;17(5):471–479. doi:10.1038/s41592-020-0771-6
  • Wiegand T, Karambelkar S, Bondy-Denomy J, Wiedenheft B. Structures and strategies of anti-CRISPR-mediated immune suppression. Annu Rev Microbiol. 2020;74:21–37. doi:10.1146/annurev-micro-020518-120107
  • Patterson AG, Yevstigneyeva MS, Fineran PC. Regulation of CRISPR–Cas adaptive immune systems. Curr Opin Microbiol. 2017;37:1–7. doi:10.1016/j.mib.2017.02.004
  • Borges AL, Castro B, Govindarajan S, Solvik T, Escalante V, Bondy-Denomy J. Bacterial alginate regulators and phage homologs repress CRISPR–Cas immunity. Nature Microbiol. 2020;5(5):679–687. doi:10.1038/s41564-020-0691-3
  • Hargreaves KR, Kropinski AM, Clokie MR. Bacteriophage behavioral ecology: how phages alter their bacterial host’s habits. Bacteriophage. 2014;4(3):e85131. doi:10.4161/bact.29866
  • Patterson AG, Jackson SA, Taylor C, et al. Quorum sensing controls adaptive immunity through the regulation of multiple CRISPR-Cas systems. Mol Cell. 2016;64(6):1102–1108. doi:10.1016/j.molcel.2016.11.012
  • Bondy-Denomy J, Pawluk A, Maxwell KL, Davidson AR. Bacteriophage genes that inactivate the CRISPR/Cas bacterial immune system. Nature. 2013;493(7432):429–432. doi:10.1038/nature11723
  • Oechslin F. Resistance development to bacteriophages occurring during bacteriophage therapy. Viruses. 2018;10(7):351. doi:10.3390/v10070351
  • Chan BK, Abedon ST, Loc-Carrillo C. Phage cocktails and the future of phage therapy. Future Microbiol. 2013;8(6):769–783. doi:10.2217/fmb.13.47
  • Pirnay J-P, De Vos D, Verbeken G, et al. The phage therapy paradigm: pret-a-porter or sur-mesure? Pharm Res. 2011;28(4):934–937. doi:10.1007/s11095-010-0313-5
  • Górski A, Międzybrodzki R, Weber-Dąbrowska B, et al. Phage therapy: combating infections with potential for evolving from merely a treatment for complications to targeting diseases. Front Microbiol. 2016;7:1515. doi:10.3389/fmicb.2016.01515
  • Lu TK, Collins JJ. Dispersing biofilms with engineered enzymatic bacteriophage. Proc Natl Acad Sci. 2007;104(27):11197–11202. doi:10.1073/pnas.0704624104
  • Tinoco JM, Buttaro B, Zhang H, Liss N, Sassone L, Stevens R. Effect of a genetically engineered bacteriophage on Enterococcus faecalis biofilms. Arch Oral Biol. 2016;71:80–86. doi:10.1016/j.archoralbio.2016.07.001
  • Tinoco JM, Buttaro B, Zhang H, Liss N, Sassone L, Stevens R. Effect of a genetically engineered bacteriophage on Enterococcus faecalis biofilms. Arch Oral Biol. 2019;71:80–86.
  • Monteiro R, Pires DP, Costa AR, Azeredo J. Phage therapy: going temperate? Trends Microbiol. 2019;27(4):368–378. doi:10.1016/j.tim.2018.10.008
  • Ando H, Lemire S, Pires DP, Lu TK. Engineering modular viral scaffolds for targeted bacterial population editing. Cell Systems. 2015;1(3):187–196. doi:10.1016/j.cels.2015.08.013
  • Lu TK, Collins JJ. Engineered bacteriophage targeting gene networks as adjuvants for antibiotic therapy. Proc Natl Acad Sci. 2009;106(12):4629–4634. doi:10.1073/pnas.0800442106
  • Yacoby I, Bar H, Benhar I. Targeted drug-carrying bacteriophages as antibacterial nanomedicines. Antimicrob Agents Chemother. 2007;51(6):2156–2163. doi:10.1128/AAC.00163-07
  • Russel M, Linderoth NA, Šali A. Filamentous phage assembly: variation on a protein export theme. Gene. 1997;192(1):23–32. doi:10.1016/S0378-1119(96)00801-3
  • Kortright KE, Chan BK, Koff JL, Turner PE. Phage therapy: a renewed approach to combat antibiotic-resistant bacteria. Cell Host Microbe. 2019;25(2):219–232. doi:10.1016/j.chom.2019.01.014
  • Wang N, Deaton J, Young R. Sizing the holin lesion with an endolysin-β-galactosidase fusion. J Bacteriol. 2003;185(3):779–787. doi:10.1128/JB.185.3.779-787.2003
  • Jervis EJ, Guarna MM, Doheny JG, Haynes CA, Kilburn DG. Dynamic localization and persistent stimulation of factor‐dependent cells by a stem cell factor/cellulose binding domain fusion protein. Biotechnol Bioeng. 2005;91(3):314–324. doi:10.1002/bit.20611
  • Adhya S, Merril CR, Biswas B. Therapeutic and prophylactic applications of bacteriophage components in modern medicine. Cold Spring Harb Perspect Med. 2014;4(1):a012518. doi:10.1101/cshperspect.a012518
  • Lukacik P, Barnard TJ, Keller PW, et al. Structural engineering of a phage lysin that targets Gram-negative pathogens. Proc Natl Acad Sci. 2012;109(25):9857–9862. doi:10.1073/pnas.1203472109
  • Yosef I, Kiro R, Molshanski-Mor S, Edgar R, Qimron U. Different approaches for using bacteriophages against antibiotic-resistant bacteria. Bacteriophage. 2014;4(1):19549–19554. doi:10.4161/bact.28491
  • Roach DR, Donovan DM. Antimicrobial bacteriophage-derived proteins and therapeutic applications. Bacteriophage. 2015;5(3):e1062590. doi:10.1080/21597081.2015.1062590
  • Yosef I, Manor M, Kiro R, Qimron U. Temperate and lytic bacteriophages programmed to sensitize and kill antibiotic-resistant bacteria. Proc Natl Acad Sci. 2015;112(23):7267–7272. doi:10.1073/pnas.1500107112
  • Hodyra-Stefaniak K, Miernikiewicz P, Drapała J, et al. Mammalian Host-Versus-Phage immune response determines phage fate in vivo. Sci Rep. 2015;5(1):1–13.
  • Chopra S, Harjai K, Chhibber S. Potential of combination therapy of endolysin MR-10 and minocycline in treating MRSA induced systemic and localized burn wound infections in mice. Int J Med Microbiol. 2016;306(8):707–716. doi:10.1016/j.ijmm.2016.08.003
  • Wittekind M, Schuch R. Cell wall hydrolases and antibiotics: exploiting synergy to create efficacious new antimicrobial treatments. Curr Opin Microbiol. 2016;33:18–24. doi:10.1016/j.mib.2016.05.006
  • Furfaro LL, Payne MS, Chang BJ. Bacteriophage therapy: clinical trials and regulatory hurdles. Front Cell Infect Microbiol. 2018;8:376. doi:10.3389/fcimb.2018.00376
  • Harper DR. Criteria for selecting suitable infectious diseases for phage therapy. Viruses. 2018;10(4):177. doi:10.3390/v10040177
  • de Jonge PA, Nobrega FL, Brouns SJ, Dutilh BE. Molecular and evolutionary determinants of bacteriophage host range. Trends Microbiol. 2018;27(1):51–63. doi:10.1016/j.tim.2018.08.006
  • Payne RJ, Jansen VA. Pharmacokinetic principles of bacteriophage therapy. Clin Pharmacokinet. 2003;42(4):315–325. doi:10.2165/00003088-200342040-00002
  • Parracho HM, Burrowes BH, Enright MC, McConville ML, Harper DR. The role of regulated clinical trials in the development of bacteriophage therapeutics. J Mol Genetic Med. 2012;6:279. doi:10.4172/1747-0862.1000050
  • Speck P, Smithyman A, Millard A. Safety and efficacy of phage therapy via the intravenous route. FEMS Microbiol Lett. 2016;363(3):fnv242. doi:10.1093/femsle/fnv242
  • Kutter E, De Vos D, Gvasalia G, et al. Phage therapy in clinical practice: treatment of human infections. Curr Pharm Biotechnol. 2010;11(1):69–86. doi:10.2174/138920110790725401
  • Rhoads D, Wolcott R, Kuskowski M, Wolcott B, Ward L, Sulakvelidze A. Bacteriophage therapy of venous leg ulcers in humans: results of a phase I safety trial. J Wound Care. 2009;18(6):237–243. doi:10.12968/jowc.2009.18.6.42801
  • Wright A, Hawkins C, Änggã¥rd E, Harper D. A controlled clinical trial of a therapeutic bacteriophage preparation in chronic otitis due to antibiotic-resistant Pseudomonas aeruginosa; a preliminary report of efficacy. Clin otolaryngol. 2009;34(4):349–357. doi:10.1111/j.1749-4486.2009.01973.x
  • Abd El-Baky RM, Ibrahim RA, Mohamed DS, Ahmed EF, Hashem ZS. Prevalence of virulence genes and their association with antimicrobial resistance among pathogenic E. coli isolated from Egyptian patients with different clinical infections. Infect Drug Resist. 2020;13:1221. doi:10.2147/IDR.S241073
  • Yang J, Chen L, Sun L, Yu J, Jin Q. VFDB 2008 release: an enhanced web-based resource for comparative pathogenomics. Nucleic Acids Res. 2007;36(suppl_1):D539–D542. doi:10.1093/nar/gkm951
  • Sarker SA, McCallin S, Barretto C, et al. Oral T4-like phage cocktail application to healthy adult volunteers from Bangladesh. Virology. 2012;434(2):222–232. doi:10.1016/j.virol.2012.09.002
  • Muniesa M, Imamovic L, Jofre J. Bacteriophages and genetic mobilization in sewage and faecally polluted environments. Microb Biotechnol. 2011;4(6):725–734. doi:10.1111/j.1751-7915.2011.00264.x
  • Divya Ganeshan S, Hosseinidoust Z. Phage therapy with a focus on the human microbiota. Antibiotics. 2019;8(3):131. doi:10.3390/antibiotics8030131
  • Santos S, Fernandes E, Carvalho CM, et al. Selection and characterization of a multivalent Salmonella phage and its production in a nonpathogenic Escherichia coli strain. Appl Environ Microbiol. 2010;76(21):7338–7342. doi:10.1128/AEM.00922-10
  • Mutti M, Corsini L, Zhou H. Robust approaches for the production of active ingredient and drug product for human phage therapy. Front Microbiol. 2019;10:10. doi:10.3389/fmicb.2019.00010
  • Pirnay J-P, Blasdel BG, Bretaudeau L, et al. Quality and safety requirements for sustainable phage therapy products. Pharm Res. 2015;32(7):2173–2179. doi:10.1007/s11095-014-1617-7
  • Vandenheuvel D, Lavigne R, Brüssow H. Bacteriophage therapy: advances in formulation strategies and human clinical trials. Ann rev virol. 2015;2:599–618. doi:10.1146/annurev-virology-100114-054915
  • Gill JJ, Hyman P. Phage choice, isolation, and preparation for phage therapy. Curr Pharm Biotechnol. 2010;11(1):2–14. doi:10.2174/138920110790725311
  • Ackermann H-W, Tremblay D, Moineau S. Long-term bacteriophage preservation; 2004.
  • Tovkach F, Zhuminska G, Kushkina A. Long-term preservation of unstable bacteriophages of enterobacteria. Mikrobiol Z. 2012;74(2):60–66.
  • Jończyk E, Kłak M, Międzybrodzki R, Górski A. The influence of external factors on bacteriophages. Folia Microbiol. 2011;56(3):191–200. doi:10.1007/s12223-011-0039-8
  • Pires DP, Boas DV, Sillankorva S, Azeredo J, Goff SP. Phage therapy: a step forward in the treatment of Pseudomonas aeruginosa infections. J Virol. 2015;89(15):7449–7456. doi:10.1128/JVI.00385-15
  • Adesanya O, Oduselu T, Akin-Ajani O, Adewumi OM, Ademowo OG. An exegesis of bacteriophage therapy: an emerging player in the fight against anti-microbial resistance. AIMS Microbiol. 2014;6(3):204. doi:10.3934/microbiol.2020014