53
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

LncRNA GAS5 Modulates the Progression of Glioma Through Repressing miR-135b-5p and Upregulating APC

, , & ORCID Icon
Pages 129-142 | Received 16 Jan 2024, Accepted 23 Apr 2024, Published online: 23 May 2024

References

  • Weller M, Wick W, Aldape K. et al. Glioma. Nat Rev Dis Primers. 2015;1(1):15017. doi:10.1038/nrdp.2015.17
  • Chen R, Smith-Cohn M, Cohen AL, Colman H. Glioma subclassifications and their clinical significance. Neurotherapeutics. 2017;14(2):284–297. doi:10.1007/s13311-017-0519-x
  • Zhu XP, Pan SA, Chu Z, Zhou YX, Han DQ, Han D-Q. LncRNA GAS5 regulates epithelial-mesenchymal transition and viability of glioma cells by targeting microRNA-106b and regulating PTEN expression. Neurosci Res. 2020;170:32–40. doi:10.1016/j.neures.2020.08.009
  • Le VH, Minh TNT, Kha QH, Le NQK. A transfer learning approach on MRI-based radiomics signature for overall survival prediction of low-grade and high-grade gliomas. Med Biol Eng Comput. 2023;61(10):2699–2712. doi:10.1007/s11517-023-02875-2
  • Bondy ML, Scheurer ME, Malmer B, et al. Brain tumor epidemiology: consensus from the brain tumor epidemiology consortium. Cancer. 2008;113(S7):1953–1968. doi:10.1002/cncr.23741
  • Connelly JM, Malkin MG. Environmental risk factors for brain tumors. Curr Neurol Neurosci Rep. 2007;7(3):208–214. doi:10.1007/s11910-007-0032-4
  • Ostrom QT, Barnholtz-Sloan JS. Current state of our knowledge on brain tumor epidemiology. Curr Neurol Neurosci Rep. 2011;11(3):329–335. doi:10.1007/s11910-011-0189-8
  • Shete S, Hosking FJ, Robertson LB, et al. Genome-wide association study identifies five susceptibility loci for glioma. Nat Genet. 2009;41(8):899–904. doi:10.1038/ng.407
  • Wrensch M, Jenkins RB, Chang JS, et al. Variants in the CDKN2B and RTEL1 regions are associated with high-grade glioma susceptibility. Nat Genet. 2009;41(8):905–908. doi:10.1038/ng.408
  • Walsh KM, Codd V, Smirnov IV, et al. Variants near TERT and TERC influencing telomere length are associated with high-grade glioma risk. Nat Genet. 2014;46(7):731–735. doi:10.1038/ng.3004
  • Rajaraman P, Melin BS, Wang Z, et al. Genome-wide association study of glioma and meta-analysis. Hum Genet. 2012;131(12):1877–1888. doi:10.1007/s00439-012-1212-0
  • Louis DN, Ohgaki H, Wiestler OD, et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 2007;114(2):97–109. doi:10.1007/s00401-007-0243-4
  • Li X, Guan J, Jiang Z, Cheng S, Wang Z. Microglial exosome miR-7239-3p promotes glioma progression by regulating circadian genes. Bulle Neurosci. 2021;37(4):497–510. doi:10.1007/s12264-020-00626-z
  • Nabors LB, Portnow J, Ammirati M, et al. NCCN guidelines insights: central nervous system cancers, version 1.2017. J Natl Compr Canc Netw. 2017;15(11):1331–1345. doi:10.6004/jnccn.2017.0166
  • Ghantasala S, Gollapalli K, Epari S, Moiyadi A, Srivastava S. Glioma tumor proteomics: clinically useful protein biomarkers and future perspectives. Expert Rev Proteomics. 2020;17(3):221–232. doi:10.1080/14789450.2020.1731310
  • Didier M, Kinan DA, Andre N, Ivan B, Antonin M. Long noncoding RNAs as new architects in cancer epigenetics, prognostic biomarkers, and potential therapeutic targets. Biomed Res Int. 2015;2015:320214. doi:10.1155/2015/320214
  • Liu B, Wu S, Ma J, et al. lncrna gas5 reverses emt and tumor stem cell- mediated gemcitabine resistance and metastasis by targeting mir-221/socs3 in pancreatic cancer. Mol Ther Nucleic Acids. 2018;13:472–482. doi:10.1016/j.omtn.2018.09.026
  • Yue Q, Zhao C, Wang Y, et al. Downregulation of growth arrest-specific transcript 5 alleviates palmitic acid-induced myocardial inflammatory injury through the miR26a/HMGB1/NFκB axis. Molecu Med rep. 2018;18(6):5742–5750. doi:10.3892/mmr.2018.9593
  • Dai SP, Jin J, Li WM. Diagnostic efficacy of long non-coding RNA in lung cancer: a systematic review and meta-analysis. Postgrad Med J. 2018;94(1116):578–587. doi:10.1136/postgradmedj-2018-135862
  • Yang X, Xie Z, Lei X, Gan R. Long noncoding RNA GAS5 in human cancer (Review). Oncol Lett. 2020;20(3):2587–2594. doi:10.3892/ol.2020.11809
  • Juan G, Yueping W, Xuedong W, et al. Effect of the LncRNA GAS5-MiR-23a-ATG3 axis in regulating autophagy in patients with breast cancer. Cell Physiol Biochem. 2018;48(1):194–207. doi:10.1159/000491718
  • Liu J, Chen M, Ma L, Dang X, Du G. LncRNA GAS5 suppresses the proliferation and invasion of osteosarcoma cells via the miR-23a-3p/PTEN/PI3K/AKT pathway. Cell Transplan. 2020;29:1182–1188. doi:10.1177/0963689720953093
  • Bahubeshi A, Tischkowitz M, Foulkes WD. miRNA processing and human cancer: DICER1 cuts the mustard. Sci trans med. 2011;3(111):111ps146. doi:10.1126/scitranslmed.3002493
  • Chou CH, Shrestha S, Yang CD, et al. miRTarBase update 2018: a resource for experimentally validated microRNA-target interactions. Nucleic Acids Res. 2018;46(D1):D296–D302. doi:10.1093/nar/gkx1067
  • Võsa U, Vooder TN, Kolde R, et al. Identification of MiR-374a as a prognostic marker for survival in patients with early-stage nonsmall cell lung cancer. Genes Chromosomes Cancer. 2011;50(10):812–822. doi:10.1002/gcc.20902
  • Zhang Z, Li J, Huang Y. Upregulated miR-1258 regulates cell cycle and inhibits cell proliferation by directly targeting E2F8 in CRC. Cell Proliferation. 2018;51(6):e12505. doi:10.1111/cpr.12505
  • Robertis MD, Poeta ML, Signori E, et al. Current understanding and clinical utility of miRNAs regulation of colon cancer stem cells. Semi Cancer Biol. 2018;53:232–247. doi:10.1016/j.semcancer.2018.08.008
  • Akcakaya P, Ekelund S, Kolosenko I. Ak�akaya. miR-185 and miR-133b deregulation is associated with overall survival and metastasis in colorectal cancer. Int j Oncol. 2011;39(2):311–318. doi:10.3892/ijo.2011.1043
  • Wen SY, Lin Y, Yu YQ, Cao SJ, Zhang ZG. miR-506 acts as a tumor suppressor by directly targeting the hedgehog pathway transcription factor Gli3 in human cervical cancer. Oncogene. 2014;34(6):717–725. doi:10.1038/onc.2014.9
  • Nagel R, le Sage C, Diosdado B, et al. Regulation of the adenomatous polyposis coli gene by the miR-135 family in colorectal cancer. Cancer Res. 2008;68(14):5795–5802. doi:10.1158/0008-5472.CAN-08-0951
  • Chen Z, Gao Y, Gao S, Song D, Feng Y. MiR-135b-5p promotes viability, proliferation, migration and invasion of gastric cancer cells by targeting Krüppel-like factor 4 (KLF4). Arch Med Sci. 2020;16(1):167–176. doi:10.5114/aoms.2019.87761
  • Li L, Wang A, Cai M, Tong M, Chen F, Huang L. Identification of stool miR-135b-5p as a non-invasive diagnostic biomarker in later tumor stage of colorectal cancer. Life Sci. 2020;260:118417. doi:10.1016/j.lfs.2020.118417
  • Bodmer WF, Bailey CJ, Bodmer J, et al. Localization of the gene for familial adenomatous polyposis on chromosome 5. Nature. 1987;328(6131):614–616. doi:10.1038/328614a0
  • Kinzler KW, Nilbert MC, Su LK, et al. Identification of FAP locus genes from chromosome 5q21. Science. 1991;253(5020):661–665. doi:10.1126/science.1651562
  • Senda T, Shimomura A, Iizuka-Kogo A. Adenomatous polyposis coli (APC) tumor suppressor gene as a multifunctional gene. Anat Sci Int. 2005;80(3):121–131. doi:10.1111/j.1447-073x.2005.00106.x
  • Stefanski CD, Prosperi JR. Wnt-independent and wnt-dependent effects of APC loss on the chemotherapeutic response. Int J Mol Sci. 2020;21(21):7844. doi:10.3390/ijms21217844
  • Carothers AM, Melstrom KA, Mueller JD, Weyant MJ, Bertagnolli MM. Progressive changes in adherens junction structure during intestinal adenoma formation in APC mutant mice. J Biol Chem. 2001;276(42):39094–39102. doi:10.1074/jbc.M103450200
  • Hankey W, Frankel WL, Groden J. Functions of the APC tumor suppressor protein dependent and independent of canonical WNT signaling: implications for therapeutic targeting. Cancer Metastasis Rev. 2018;37(1):159–172. doi:10.1007/s10555-017-9725-6
  • Aoki K, Taketo MM. Adenomatous polyposis coli (APC): a multi-functional tumor suppressor gene. J Cell Sci. 2007;120(19):3327–3335. doi:10.1242/jcs.03485
  • van den Broek E, Krijgsman O, Sie D, et al. Genomic profiling of stage II and III colon cancers reveals APC mutations to be associated with survival in stage III colon cancer patients. Oncotarget. 2016;7(45):73876–73887. doi:10.18632/oncotarget.12510
  • Zhang X, Zhang X. MicroRNA-135b-5p regulates trophoblast cell function by targeting phosphoinositide-3-kinase regulatory subunit 2 in preeclampsia. Bioengineered. 2022;13(5):12338–12349. doi:10.1080/21655979.2022.2073655
  • Zhang XH, Xin ZM. MiR-135b-5p inhibits the progression of malignant melanoma cells by targeting RBX1. Eur Rev Med Pharmacol Sci. 2020;24(3):1309–1315. doi:10.26355/eurrev_202002_20188
  • Liu D, Jin Y, Wu J, Zhu H, Ye D. MiR-135b-5p is an oncogene in pancreatic cancer to regulate GPRC5A expression by targeting transcription factor KLF4. Cell Death Discov. 2022;8(1):23–34. doi:10.1038/s41420-022-00814-y
  • Zhao CC, Jiao Y, Zhang YY, et al. Lnc SMAD5-AS1 as ceRNA inhibit proliferation of diffuse large B cell lymphoma via Wnt/β-catenin pathway by sponging miR-135b-5p to elevate expression of APC. Cell Death Dis. 2019;10(4):252–266. doi:10.1038/s41419-019-1479-3
  • Gusyatiner O, Hegi ME. Glioma epigenetics: from subclassification to novel treatment options. Semi Cancer Biol. 2018;51:50–58. doi:10.1016/j.semcancer.2017.11.010
  • Ostrom QT, Luc B, Davis FG, et al. The epidemiology of glioma in adults: a “state of the science” review. Neuro-Oncology. 2014;16(7):896–913. doi:10.1093/neuonc/nou087
  • Louis DN, Perry A, Wesseling P, et al. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro Oncol. 2021;23(8):1231–1251. doi:10.1093/neuonc/noab106
  • Stupp R, Taillibert S, Kanner A, et al. Effect of tumor-treating fields plus maintenance temozolomide vs maintenance temozolomide alone on survival in patients with glioblastoma: a randomized clinical trial. JAMA. 2017;318(23):2306–2316. doi:10.1001/jama.2017.18718
  • Sathornsumetee S, Reardon DA, Desjardins A, Quinn JA, Vredenburgh JJ, Rich JN. Molecularly targeted therapy for malignant glioma. Cancer. 2007;110(1):13–24. doi:10.1002/cncr.22741
  • Zhu XP, Pan SA, Chu Z, Zhou YX, Huang YK, Han DQ. LncRNA GAS5 regulates epithelial-mesenchymal transition and viability of glioma cells by targeting microRNA-106b and regulating PTEN expression. Neurosci Res. 2021;170:32–40.
  • Chen L, Ren P, Zhang Y, Gong B, Yu D, Sun X. Long non‑coding RNA GAS5 increases the radiosensitivity of A549 cells through interaction with the miR‑21/PTEN/Akt axis. Oncol Rep. 2020;43(3):897–907. doi:10.3892/or.2020.7467
  • Ma J, Miao H, Zhang H, et al. LncRNA GAS5 modulates the progression of non-small cell lung cancer through repressing miR-221-3p and up-regulating IRF2. Diagn Pathol. 2021;16(1):46–54. doi:10.1186/s13000-021-01108-0
  • Wang H, Wang D, Shen Y, et al. GAS5 attenuates the malignant progression of glioma stem-like cells by promoting E-cadherin. Cancer Genet Ther. 2023;30(3):450. doi:10.1038/s41417-022-00566-y
  • Zhao X, Wang P, Liu J, et al. Gas5 Exerts Tumor-suppressive functions in human glioma cells by targeting miR-222. Mol Ther. 2015;23(12):1899–1911. doi:10.1038/mt.2015.170
  • Wang Y, Xin S, Zhang K, Shi R, Bao X. Low GAS5 levels as a predictor of poor survival in patients with lower-grade gliomas. J Oncol. 2019;2019:1–15.
  • Duan XM, Liu XN, Li YX, et al. MicroRNA-498 promotes proliferation, migration, and invasion of prostate cancer cells and decreases radiation sensitivity by targeting PTEN. Kaohsiung J Med Sci. 2019;35(11):659–671. doi:10.1002/kjm2.12108
  • Su P, Mu S, Wang Z. Long noncoding RNA SNHG16 promotes osteosarcoma cells migration and invasion via sponging miRNA-340. DNA Cell Biol. 2019;38(2):170–175. doi:10.1089/dna.2018.4424
  • Peng W, Deng W, Zhang J, Pei G, Rong Q, Zhu S. Long noncoding RNA ANCR suppresses bone formation of periodontal ligament stem cells via sponging miRNA-758. Biochem Biophys Res Commun. 2018;503(2):815–821. doi:10.1016/j.bbrc.2018.06.081
  • Rezaei O, Tamizkar KH, Sharifi G, Taheri M, Ghafouri-Fard S. Emerging Role of Long Non-Coding RNAs in the Pathobiology of Glioblastoma. Front Oncol. 2021;10:625884. doi:10.3389/fonc.2020.625884
  • Dong L, Li G, Li Y, Zhu Z. Upregulation of long noncoding RNA GAS5 inhibits lung cancer cell proliferation and metastasis via miR-205/PTEN axis. Med Sci Monit. 2019;25:2311–2319. doi:10.12659/MSM.912581
  • Jin C, Zhao J, Zhang ZP, Wu M, Liu JP. Long non-coding RNA GAS5, by up-regulating PRC2 and targeting the promoter methylation of miR-424, suppresses multiple malignant phenotypes of glioma. J Neuro-oncol. 2020;148(3):529–543. doi:10.1007/s11060-020-03544-2
  • Lin CW, Chang YL, Chang YC, et al. MicroRNA-135b promotes lung cancer metastasis by regulating multiple targets in the Hippo pathway and LZTS1. Nat Commun. 2013;4(1):1877–1890. doi:10.1038/ncomms2876
  • Zhang L, Sun ZJ, Bian Y, Kulkarni AB. MicroRNA-135b acts as a tumor promoter by targeting the hypoxia-inducible factor pathway in genetically defined mouse model of head and neck squamous cell carcinoma. Cancer Lett. 2013;331(2):230–238. doi:10.1016/j.canlet.2013.01.003
  • Wang N, Tao L, Zhong H, et al. miR-135b inhibits tumour metastasis in prostate cancer by targeting STAT6. Oncol Lett. 2016;11(1):543–550. doi:10.3892/ol.2015.3970
  • Su W, Mo Y, Wu F, et al. miR-135b reverses chemoresistance of non-small cell lung cancer cells by downregulation of FZD1. Biomed Pharmacother. 2016;84:123–129. doi:10.1016/j.biopha.2016.09.027
  • Lulli V, Buccarelli M, Martini M, et al. miR-135b suppresses tumorigenesis in glioblastoma stem-like cells impairing proliferation, migration and self-renewal. Oncotarget. 2015;6(35):37241–37256. doi:10.18632/oncotarget.5925
  • Wang Q, Cao T, Guo K, et al. Regulation of integrin subunit alpha 2 by miR-135b-5p modulates chemoresistance in gastric cancer. Front Oncol. 2020;10:308–319. doi:10.3389/fonc.2020.00308
  • Li P, Fan JB, Gao Y, et al. miR-135b-5p inhibits LPS-induced TNFα production via silencing AMPK phosphatase Ppm1e. Oncotarget. 2016;7(47):77978–77986. doi:10.18632/oncotarget.12866
  • Jin H, Luo S, Wang Y, et al. miR-135b stimulates osteosarcoma recurrence and lung metastasis via notch and wnt/β-catenin signaling. Mol Ther Nucleic Acids. 2017;8:111–122. doi:10.1016/j.omtn.2017.06.008
  • Xu M, Liu X, Xu Y, Zhu S, Gao Y. Co‑expression of Axin and APC gene fragments inhibits colorectal cancer cell growth via regulation of the wnt signaling pathway. Mol Med Rep. 2017;16(4):3783–3790. doi:10.3892/mmr.2017.7049
  • Schweigert A, Fischer C, Mayr D, von Schweinitz D, Kappler R, Hubertus J. Activation of the Wnt/β-catenin pathway is common in Wilms tumor, but rarely through β-catenin mutation and APC promoter methylation. Pediatr Surg Int. 2016;32(12):1141–1146. doi:10.1007/s00383-016-3970-6
  • Lee E, Salic A, Krüger R, Heinrich R, Kirschner MW. The roles of APC and Axin derived from experimental and theoretical analysis of the Wnt pathway. PLoS Biol. 2003;1(1):E10–E26. doi:10.1371/journal.pbio.0000010
  • Jiang D, Zhou B, Xiong Y, Cai H. [Corrigendum] miR‑135 regulated breast cancer proliferation and epithelial‑mesenchymal transition acts by the Wnt/β‑catenin signaling pathway. Int J Mol Med. 2022;50(2):105–107. doi:10.3892/ijmm.2022.5161
  • Wang LP, Ma XQ, Cai JC. Clinicopathological significance and function of miR-135b in the occurrence and development of gastric cancer. Zhonghua Yi Xue Za Zhi. 2012;92(46):3269–3273.