345
Views
1
CrossRef citations to date
0
Altmetric
Original Research

Mechanism of Ba Zhen Tang Delaying Skin Photoaging Based on Network Pharmacology and Molecular Docking

, , , , , , , , ORCID Icon & show all
Pages 763-781 | Published online: 27 Apr 2022

References

  • Zhang S, Duan E. Fighting against skin aging: the way from bench to bedside. Cell Transplant. 2018;27(5):729–738. doi:10.1177/0963689717725755
  • Celia B, Hughes M, Williams GM, Pageon H, Fourtanier A, Green AC. Dietary antioxidant capacity and skin photoaging: a 15-year longitudinal study. J Invest Dermatol. 2021;141(4S):1111–1118. doi:10.1016/j.jid.2020.06.026
  • Young AR, Claveau J, Rossi AB. Ultraviolet radiation and the skin: photobiology and sunscreen photoprotection. J Am Acad Dermatol. 2016;76(3S1):S100–S109. doi:10.1016/j.jaad.2016.09.038
  • Panich U, Sititithumcharee G, Rathv Iboon N, Jirawatnotai S. Ultraviolet radiation-induced skin aging: the role of DNA damage and oxidative stress in epidermal stem cell damage mediated skin aging. Stem Cells Int. 2016;2016:7370642. doi:10.1155/2016/7370642
  • Gerasymchuk M, Cherkasova V, Kovalchuk O, Kovalchuk I. The role of microRNAs in organismal and skin aging. Int J Mol Sci. 2020;21:15. doi:10.3390/ijms21155281
  • Xin C, Wang Y, Liu M, Zhang B, Yang S. Correlation analysis between advanced glycation end products detected noninvasively and skin aging factors. J Cosmet Dermatol. 2021;20(1):243–248. doi:10.1111/JOCD.13452
  • Poon F, Kang S, Chien AL. Mechanisms and treatments of photoaging. Photodermatol Photoimmunol Photomed. 2015;31(2):65–74. doi:10.1111/phpp.12145
  • Song E, Fu J, Xia X, Su C, Song Y. Bazhen decoction protects against Acetaminophen induced acute liver injury by inhibiting oxidative stress, inflammation and apoptosis in mice. PLoS One. 2014;9(9):e107405. doi:10.1371/journal.pone.0107405
  • Zhu Y, Ge J, Huang C, Liu H, Jiang H. Application of mesenchymal stem cell therapy for aging frailty: from mechanisms to therapeutics. Theranostics. 2021;11(12):5675–5685. doi:10.7150/THNO.46436
  • Shi HZ, Zeng JC, Shi SH, Giannakopoulos H, Zhang QZ, Le AD. Extracellular vesicles of GMSCs alleviate aging-related cell senescence. J Dent Res. 2021;100(3):283–292. doi:10.1177/0022034520962463
  • Liu C, Li Q, Yang Y. Effects of the modified bazhen decoction in the treatment of premature ovarian failure in rats. Ann Clin Lab Sci. 2019;49(1):16–22.
  • Wang X, Wang ZY, Zheng JH, Li S. TCM network pharmacology: a new trend towards combining computational, experimental and clinical approaches. Chin J Nat Med. 2021;19(1):1–11. doi:10.1016/S1875-5364(21)60001-8
  • Pinzi L, Rastelli G. Molecular docking: shifting paradigms in drug discovery. Int J Mol Sci. 2019;20(8):1422–1467. doi:10.3390/ijms20184331
  • Ru J, Li P, Wang J, et al. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. J Cheminform. 2014;6:13. doi:10.1186/1758-2946-6-13
  • Wang Y, Xing J, Xu Y, et al. In silico ADME/T modelling for rational drug design. Q Rev Biophys. 2015;48(4):488–515. doi:10.1017/s0033583515000190
  • Bateman A, Martin M-J, Orchard S. The UniProt consortium. UniProt: the universal protein knowledgebase in 2021.. Nucleic Acids Res. 2021;49(D1):D480–D489. doi:10.1093/NAR/GKAA1100
  • Richards JE, Scott Hawley R.Chapter 11 - The gene hunt: how genetic maps are built and used. In: Richards JE, Scott Hawley R, editors. The Human Genome. 3rd ed. Academic Press; 2011:369–403.
  • Stelzer G, Rosen N, Plaschkes I, et al. The genecards suite: from gene data mining to disease genome sequence analyses. Curr Protoc Bioinformatics. 2016;54:1.30.1–1.30.33. doi:10.1002/cpbi.5
  • Szklarczyk D, Gable AL, Lyon D, et al. STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47(D1):D607–D613. doi:10.1093/nar/gky1131
  • Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–2504. doi:10.1101/gr.1239303
  • Zhou Y, Zhou B, Pache L, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun. 2019;10(1):1523. doi:10.1038/s41467-019-09234-6
  • Kim S, Chen J, Cheng T, et al. PubChem in 2021: new data content and improved web interfaces. Nucleic Acids Res. 2021;49(D1):D1388–D1395. doi:10.1093/nar/gkaa971
  • Burley SK, Bhikadiya C, Bi C, et al. RCSB Protein Data Bank: powerful new tools for exploring 3D structures of biological macromolecules for basic and applied research and education in fundamental biology, biomedicine, biotechnology, bioengineering and energy sciences. Nucleic Acids Res. 2021;49(D1):D437–D451. doi:10.1093/nar/gkaa1038
  • Bunin DI, Chang PY, Doppalapudi RS, et al. Dose-dependent efficacy and safety toxicology of hydroxypyridinonate actinide decorporation agents in rodents: towards a safe and effective human dosing regimen. Radiat Res. 2013;179(2):171–182. doi:10.1667/RR3115.1
  • Zhang ZW, Lian JW, Jian-wei effective treatment of melasma cases introduced. J Tradit Chin Med. 2011;10:3–4.
  • Ilk S, Sağlam N, Özgen M, Korkusuz F. Chitosan nanoparticles enhances the anti-quorum sensing activity of kaempferol. Int J Biol Macromol. 2017;94:(Pt A):653–662. doi:10.1016/j.ijbiomac.2016.10.068
  • Kashyap D, Sharma A, Tuli HS, Sak K, Punia S, Mukherjee TK. Kaempferol - A dietary anticancer molecule with multiple mechanisms of action: recent trends and advancements. J Funct Foods. 2017;30:203–219. doi:10.1016/j.jff.2017.01.022
  • Du W, An Y, He X, Zhang D, He W. Protection of kaempferol on oxidative stress-induced retinal pigment epithelial cell damage. Oxid Med Cell Longev. 2018;2018:1610751. doi:10.1155/2018/1610751
  • Fernández-Del-Río L, Soubeyrand E, Basset GJ, Clarke CF. Metabolism of the flavonol kaempferol in kidney cells liberates the B-ring to enter coenzyme Q biosynthesis. Molecules. 2020;25(13):2955. doi:10.3390/molecules25132955
  • Kirkland JL, Tchkonia T. Senolytic drugs: from discovery to translation. J Intern Med. 2020;288(5):518–536. doi:10.1111/JOIM.13141
  • Lewinska A, Adamczyk-Grochala J, Bloniarz D, et al. AMPK-mediated senolytic and senostatic activity of quercetin surface functionalized Fe 3 O 4 nanoparticles during oxidant-induced senescence in human fibroblasts. Redox Biol. 2020;28:101337. doi:10.1016/j.redox.2019.101337
  • Tang J, Diao P, Shu X, Li L, Xiong L. Quercetin and quercitrin attenuates the inflammatory response and oxidative stress in LPS-Induced RAW264.7 cells: in vitro assessment and a theoretical model. Biomed Res Int. 2019;2019:7039802. doi:10.1155/2019/7039802
  • Koc K, Geyikoglu F, Cakmak O, et al. The targets of β-sitosterol as a novel therapeutic against cardio-renal complications in acute renal ischemia/reperfusion damage. Naunyn-Schmiedeb Arch Phar. 2021;394(3):469–479. doi:10.1007/S00210-020-01984-1
  • Parvez MK, Al-Dosari MS, Arbab AH, et al. Hepatoprotective effect of Solanum surattense leaf extract against chemical- induced oxidative and apoptotic injury in rats. BioMed Central. 2019;19(1):154. doi:10.1186/s12906-019-2553-1
  • Shi C, Wu F, Zhu XC, Xu J. Incorporation of beta-sitosterol into the membrane increases resistance to oxidative stress and lipid peroxidation via estrogen receptor-mediated PI3K/GSK3beta signaling. Biochim Biophys Acta. 2013;1830(3):2538–2544. doi:10.1016/j.bbagen.2012.12.012
  • Nuttinck F, Jouneau A, Charpigny G, et al. Prosurvival effect of cumulus prostaglandin G/H synthase 2/prostaglandin2 signaling on bovine blastocyst: impact on in vivo posthatching development. Biol Reprod. 2017;96(3):531–541. doi:10.1095/biolreprod.116.145367
  • Allen SL, Marshall RN, Edwards SJ, Lord JM, Lavery GG, Breen L. The effect of young and old ex vivo human serum on cellular protein synthesis and growth in an in vitro model of ageing. Am J Physiol Cell Physiol. 2021;321(1):C26–C37. doi:10.1152/ajpcell.00093.2021
  • Sica V, Kroemer G. A bidirectional crosstalk between autophagy and TP53 determines the pace of aging. Mol Cell Oncol. 2020;7(5):1769434. doi:10.1080/23723556.2020.1769434
  • Franceschi C, Garagnani P, Parini P, Giuliani C, Santoro A. Inflammaging: a new immune-metabolic viewpoint for age-related diseases. Nat Rev Endocrinol. 2018;14(10):576–590. doi:10.1038/s41574-018-0059-4
  • Chen Y, Li Y, Peng Y, et al. ΔNp63α down-regulates c-Myc modulator MM1 via E3 ligase HERC3 in the regulation of cell senescence. Cell Death Differ. 2018;25(12):2118–2129. doi:10.1038/s41418-018-0132-5
  • Tong Q, Zhang M, Cao X, Xu S, Wang D, Zhao Y. Expression and activation of Daphnia pulex Caspase-3 are involved in regulation of aging. Gene. 2017;634:37–46. doi:10.1016/j.gene.2017.08.035
  • Shi LQ, Ruan CL. Expression and significance of MMP-7 c-Jun and c-Fos in rats skin photoaging. Asian Pac J Trop Med. 2013;6(10):768–770. doi:10.1016/S1995-7645(13)60135-2
  • Ashburner M, Ball CA, Blake JA, et al. Gene ontology: tool for the unification of biology. Nat Genet. 2000;25(1):25–29. doi:10.1038/75556
  • Moaddel R, Ubaida-Mohien C, Tanaka T, et al. Proteomics in aging research: a roadmap to clinical, translational research. Aging Cell. 2021;20(4):e13325. doi:10.1111/ACEL.13325
  • Yu ZH, Cai M, Xiang J, et al. PI3K/Akt pathway contributes to neuroprotective effect of Tongxinluo against focal cerebral ischemia and reperfusion injury in rats. J Ethnopharmacol. 2016;181:8–19. doi:10.1016/j.jep.2016.01.028
  • Kyosseva SV. Targeting MAPK signaling in age-related macular degeneration. Ophthalmol Eye Dis. 2016;8:23–30. doi:10.4137/OED.S32200
  • Mavrogonatou E, Konstantinou A, Kletsas D. Long-term exposure to TNF-α leads human skin fibroblasts to a p38 MAPK- and ROS-mediated premature senescence. Biogerontology. 2018;19(3–4):237–249. doi:10.1007/s10522-018-9753-9
  • Rutting S, Xenaki D, Malouf M, et al. Short chain fatty acids increase TNFα-induced inflammation in primary human lung mesenchymal cells through the activation of p38 MAP kinase. Am J Physiol Lung Cell Mol Physiol. 2019;316(1):L157–L174. doi:10.1152/ajplung.00306.2018
  • Waghela BN, Vaidya FU, Ranjan K, Chhipa AS, Tiwari BS, Pathak C. AGE-RAGE synergy influences programmed cell death signaling to promote cancer. Mol Cell Biochem. 2021;476(2):585–598. doi:10.1007/s11010-020-03928-y
  • Tokmakov AA, Sato KI. Activity and intracellular localization of senescence-associated β-galactosidase in aging Xenopus oocytes and eggs. Exp Gerontol. 2019;119(157–167):1873–6815. doi:10.1016/j.exger.2019.02.002
  • Ressler S, Bartkova J, Niederegger H, et al. p16INK4A is a robust in vivo biomarker of cellular aging in human skin. Aging Cell. 2006;5(5):379–389. doi:10.1111/j.1474-9726.2006.00231.x